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Hybrid Optimisation Method Using PGA and 

SQP Algorithm 

B. T. Skinner, H. T. Nguyen, D. K. Liu 

Abstract— This paper investigates the hybridisation of two 
very different optimisation methods, namely the Parallel Genetic 
Algorithm (PGA) and Sequential Quadratic Programming (SQP) 
Algorithm. The different characteristics of genetic-based and 
traditional quadratic programming-based methods are discussed 
and to what extent the hybrid method can benefit the solving of 
optimisation problems with nonlinear complex objective and 
constraint functions. Experiments show the hybrid method 
effectively combines the robust and global search property of 
Parallel Genetic Algorithms with the high convergence velocity 
of the Sequential Quadratic Programming Algorithm, thereby 
reducing computation time, maintaining robustness and 
increasing solution quality.  

Index Terms— Parallel Genetic Algorithm, Sequential 
Quadratic Programming Algorithm, Hybrid Methods, Global 
Optimisation, Evolutionary Algorithms and Constraint 
Functions. 

I. INTRODUCTION

ARALLEL Genetic algorithms (PGAs) have become an 

increasingly popular method for solving global 

optimisation problems [1-3]. They are very effective 

techniques for searching complex problem spaces for an 

optimum. Parallel and Sequential Genetic Algorithms [4] are 

stochastic algorithms that require minimal information from 

the problem domain to guide the search process. These 

methods perform a search by evolving a random population of 

tentative solutions towards the optimum solution. This is 

achieved through the iterative application of simple and 

stochastic operators inspired from those of genetics (e.g., 

selection, crossover and mutation). Genetic algorithms 

provide significant advantages over traditional search methods 

including implicit population-wide search (not greedy), ability 

to control exploration (population diversity) and exploitation 

(convergence) and the principle of building-block 

combination (reuse of search information) [5, 6]. 

Traditional optimisation methods, such as the Sequential 

Quadratic Programming (SQP) Algorithm [7] and Quasi-

Newton Method exploit all local information in an efficient 

way, provided the objective function to be minimised is “well-

conditioned” in the neighbourhood of the optimum [8]. 

Otherwise, these methods tend to converge to local optima 

when used to solve complex optimisation problems containing 

numerous local optima. Conversely, genetic algorithms 

experience slow convergence before providing an accurate 

solution because the minimal use of a priori domain 

knowledge and not exploiting local information.  
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This paper presents a hybrid search algorithm that couples 

the benefits offered by both classes of search technique. The 

proposed hybrid search algorithm combines the reliable 

exploratory property of a parallel genetic algorithm with the 

efficient exploitative property offered by the reduced feasible 

sequential quadratic programming algorithm (RFSQP) [9, 10], 

in order to reduce the overall computation time. To illustrate 

the theoretical aspects and facilitate an empirical comparison 

of the hybrid search algorithm, a suite of multimodal non-

linear functions have been selected. We compare the 

convergence velocity, reliability, solution quality (accuracy) 

and computation time of the standalone parallel genetic 

algorithm to the hybrid search algorithm. 

II. THE HYBRID SEARCH ALGORITHM

The hybrid search algorithm aims to combine the parallel 

genetic algorithm (PGA) and reduced feasible sequential 

quadratic programming algorithm (RFSQP) in order to blend 

their advantages and minimise their disadvantages. The hybrid 

search algorithm presented in this paper belongs to the family 

of heuristic search algorithms described by memetic 

algorithms[11], also called genetic local search (GA+LS) 

algorithms.   

Specifically, the hybrid search algorithm allows a global 

search to be performed using a cascaded architecture with the 

PGA in the primary stage followed by the RFSQP algorithm 

in the secondary stage as illustrated in Figure 1. The cascaded 

architecture enables the hybrid search algorithm to initially 

explore the entire search space for promising regions and then 

exploit these sub-spaces while satisfying and required 

constraint functions. 

A. Exploration Stage – PGA 

Large, multi-dimensional, multi-modal global search 

problems are typically searched using precedence and balance 

between exploration and exploitation. In the primary stage of 

the hybrid search algorithm it is important to explore the 

search space for promising sub-spaces, also called 

P
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neighbourhoods, that may contain the global optimum 

(minimum or maximum), without prematurely converging to a 

local optimum. The robust, explorative and non-greedy 

properties of the parallel genetic algorithm are important 

during the initial stage of the hybrid search. Once the parallel 

genetic algorithm has narrowed the search region to a 

promising neighbourhood of the search space that contains the 

global optimum, evolution is halted and the solution vector, Xi

of the overall fittest individual provides input to the secondary 

stage of the hybrid search algorithm. 

PGA
Exploration

RFSQP
Exploitation

XS:[x1, x2, …, xn]
T

Solution

Objective Function
f(x1, x2, …, xn)

Side Constraints
xl<x<xu
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Initial
Guess

Side
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Xi:[x1, x2, …, xn]
T

Xu:[x1, x2, …, xn]
T
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Figure 1: The hybridised search algorithm architecture. The PGA is coupled 

with the RFSQP algorithm using feedback. The feedback mechanism allows 

the PGA to received ‘only improving’ solution vectors from the RFSQP. 

The exploration stage of the hybrid search algorithm is 

handled exclusively by the PGA. To perform fitness 

evaluations of individuals in a population, the PGA works 

directly with objective function. The search space or fitness 

landscape is bounded by initial side constraints. No other a
priori knowledge is provided to the parallel genetic algorithm. 

In general, the parallel genetic algorithm begins the search 

with a population of randomly generated candidate solutions 

from the search space. This initial population is evolved 

iteratively using stochastic genetic operators so most of the 

population in later generations have reached the 

neighbourhood containing the global optimum. In this paper, 

the parallel genetic algorithm is multiple-deme and coarse-

grained with loosely-coupled, static subpopulations. 

Decoding of chromosome genotype from binary-coded to a 

real-coded phenotype representation is required for all fitness 

evaluations. All subpopulations evolve in isolation starting 

from an initial random population of candidate solutions. All 

subpopulations maintain two non-overlapping populations, 

with each new generation replacing the old to help maintain 

population diversity (generational model). To minimise the 

likelihood of premature convergence of the PGA in each 

subpopulation, elitism is not used, prior to the subpopulation 

being updated from the RFSQP phase as discussed in section 

II-B.

For all subpopulations, the tournament selection method is 

used to select a fixed number of tour individuals chosen 

randomly from the population. The fittest individual from the 

tour is then selected for mating. This process occurs twice 

with two, different parents chosen for mating. The tournament 

selection method allows selective intensity and population 

diversity to be adjusted through setting of the tour

size 2 tour popsize . The recombination of binary 

encoded chromosomes is performed using uniform crossover 

or multi-point crossover, depending on the particular objective 

function being solved. Both crossover methods use the same 

crossover probability (Pc=0.95).

Bit-flip mutation is performed with an adaptive probability 

given by Equation (1).

1
2

20 1

n l n l
p t tm

T
      (1) 

where, pm(t) is the temporal mutation probability at generation 

step t, 0,1, ..., 1t T , T is the maximum number of 

generations in a single epoch, n is the problem dimensionality, 

and l is the gene bit length (chromosome length is nl).
The adaptive bit-flip mutation described in Equation (1)

provides a large pm(t) in the early stage of evolution for aiding 

the exploration of the search space and a small pm(t) in the 

later stage to protect highly fit individuals from random 

mutations, since they usually have ‘more to lose’ in variation 

of the chromosome, thus retaining good solutions [12]. The 

genes of each child chromosome are decoded into 

corresponding phenotype values, for direct use with objective 

function evaluation and determination of fitness. Each 

chromosome contains a number of genes corresponding to the 

number of function dimensions in each test function. 

Migration between subpopulations is governed by the 

migration policy. The migration policy specifies the migration 

frequency, rate and selection/insertion criteria of individuals 

between subpopulations as illustrated in Figure 2. All 

subpopulations evolve in isolation until the number of 

generations is equal to the migration frequency. The migration 

frequency determines when migrations occur between 

subpopulations. Individuals are selected based upon their 

phenotype fitness value. The fittest individuals are selected 

and migrated to the master process. The master process 

evaluates all migrants, including its own, to determine the 

overall fittest migrant. The least-fittest individuals in each 

subpopulation are replaced by the overall fittest migrant. This 

fitness based selection and replacement strategy provides a 

higher selection pressure opposed to a random strategy for the 

parallel genetic algorithm [13]. 

The proportion of individuals selected from a subpopulation 

and sent during a migration is specified by the migration rate. 

Migrations between subpopulations and the master process are 

unordered and blocking, which may introduce small wait 
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states in the hybrid algorithm, during periods of migration. 

The parallel genetic algorithm is halted before reaching the 

global optimum. The solution (design) vector, Xi, of the 

overall fittest individual is provided to the secondary stage 

RFSQP algorithm. The PGA halts computation once the 

objective function fitness value reaches a predefined and static 

proportion of the global optimum. This halting value is 

typically defined as 99.9%, 99.99% or 99.999% of the global 

optimum value. 
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Pop 1 Pop 2 Pop n
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Figure 2: Unordered and blocking communication provides synchronous 

migration between loosely-coupled subpopulations. The fittest individuals are 

migrated to a master process for final fitness evaluation and retransmission to 

all subpopulations, replacing least-fit individuals. 

B. Exploitation Stage - RFSQP 

The secondary stage of the hybrid search algorithm is 

handled exclusively by the RFSQP algorithm, which provides 

its highly exploitative (convergence) properties. In this paper, 

the RFSQP algorithm takes as input the objective function, 

‘best’ solution vector, Xi as the initial guess, and any side 

constraints. Although, the RFSQP algorithm can enforce 

equality and inequality constraints, this feature is not 

described in this paper.  

The RFSQP algorithm uses local information to guide a 

search of the neighbourhood supplied by the parallel genetic 

algorithm in the solution vector Xi. Typically, the RFSQP 

algorithm has a very high convergence velocity and rapid 

computational time, but it may become trapped in local optima 

if the neighbourhood is large.  

The RFSQP algorithm expands the objective function 

quadratically about the current design vector and linearly 

expands the constraint functions, thus establishing one QP 

problem, and two linear least squares problems. The quadratic 

programming and linear least squares subproblems are then 

solved using QPOPT. For all QPs the active set in the solution 

at a given iteration is used as the initial guess for the active set 

in the solution at the next iteration. 

The RFSQP algorithm halts once stopping criteria has been 

fulfilled. If the RFSQP algorithm managed to locate the global 

optimum the hybrid search algorithm terminates and Xs

represents the final solution vector. If the RFSQP algorithm 

simply moved closer to the region containing the global 

optimum, without locating the global optimum, the updated 

solution vector, Xu is feedback to the primary stage parallel 

genetic algorithm where it is evaluated for fitness. If the 

corresponding phenotype fitness value of the Xu solution 

vector is greater than the phenotype fitness value of the Xs

solution vector (i.e. an improvement was made), Xu is 

encoded into a chromosome and injected into the PGA 

population. Once the highly fit chromosome of Xu has been 

injected into the PGA population, a high degree of elitism is 

enabled to ensure that it permeates to other PGA 

subpopulations during subsequent migration periods. For the 

case where fitness(Xu) is less than fitness(Xs), the encoded Xu

solution vector is not injected into the population and the PGA 

continues until the next call to the RFSQP algorithm. 

The hybrid search algorithm continues to iterate through the 

loop of parallel genetic algorithm followed by the RFSQP 

algorithm at fixed stages of the hybrid search with the PGA 

population moving closer to the global optimum.  

III. EXPERIMENT DESCRIPTION

A set of multimodal, non-linear, smooth objective functions 

are used to illustrate the theoretical aspects and facilitate an 

empirical comparison between the parallel genetic algorithm 

and the hybrid search algorithm. 

A. Comparison Criteria 

The comparison criteria include convergence velocity, 

solution quality, reliability and computation time when 

searching for the global optimum. Essentially, these criteria 

indicate the effectiveness of the search algorithm to balance 

the exploration and exploitation trade-off. 

1) Convergence Velocity: Practically, convergence velocity 

is measured by observing the rate and magnitude of 

change between terms of a sequence. Here, the 

phenotype fitness values of the objective function at 

each generation represents the sequence. Furthermore, it 

is not usually satisfactory to halt a search algorithm 

based exclusively on the magnitude of the difference 

between successive values of the objective function, 

because the search procedure would stop prematurely 

for regions of the search space having a “gentle-slope”.

2) Solution Quality: Solution quality, often called accuracy 
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is a measure of the distance from the final solution to 

the global optimum, for searches that do not result in 

failure. For the PGA and hybrid search algorithm 

solution quality is given by the fitness value of the 

fittest individual in the population once the algorithm 

has terminated.   

3) Reliability: The reliability of a search method is the 

ability to locate the global optima and avoid local 

optima. In this study, an objective function fitness 

value at the maximum number of generations is 

considered a failure for the search method. Each 

objective function and search method is executed for 50 

independent experiments. Accordingly, the reliability of 

a search method is characterised by the ability to locate 

solutions where  for 50 independent 

experiments. 

-131.0e

-13
1.0efitness

4) Computation Time: The computation time for search 

algorithms is often a measure of the number of objective 

function evaluations, because different algorithms may 

be compared regardless of their particular 

implementation. However, this often disregards 

communication times for parallel implementations. In 

this study, the performance is measured by recording 

the wall-clock time, so all components of the execution 

time, including communications, are included. The 

wall-clock time is a fair measure of performance that is 

frequently used [13]. 

B. Numerical Test Functions 

To facilitate an empirical comparison of the parallel genetic 

algorithm and the hybrid search algorithm a test environment 

is provided in the form of a set of idealised objective 

functions, expressed in closed analytical form. The test 

environment contains functions used extensively in 

evolutionary computation literature to benchmark 

evolutionary algorithms including the Sphere Function (fSph),

Ackley’s Path Function (fAck), Rastrigin’s Function (fRas),

Schwefel’s Function (fSch), Michalewicz Function (fMic) and 

the Langerman Function (fLan). Optimisation is characterised 

by searching for a global minimum of each objective functions 

given in Appendix A.

C. Parallel Genetic Algorithm Input Parameters 

There is a complex, non-linear relationship between the 

parameters of a parallel genetic algorithm which influences 

behaviour [6]. Table I lists the input parameters for the 

parallel genetic algorithm. To encourage a meaningful 

empirical comparison between the parallel genetic algorithm 

and hybrid search algorithm, the set of genetic parameters 

remain constant in both algorithms. These parameters are not 

applicable to the SQP algorithm.  

Computation time for the parallel genetic algorithm and 

hybrid search algorithm is halted once the fittest individual 

has a phenotype fitness value or all objective 

function evaluations have been performed. 

131.00 10

D. RFSQP Algorithm Input Parameters 

Table II lists the input parameters for the RFSQP algorithm. 

These parameters are not applicable to the parallel genetic 

algorithm. Additional algorithm parameters specified in the 

file, param.h, remain at their default values in [10], for all 

experiments. 

TABLE I

PARALLEL GENETIC ALGORITHM PARAMETER SET

fSph fRas fAck fSch fMic fLan

Generations 400 400 600 600 600 400

Population
Size 200 200 200 400 400 400

Populations 8 8 8 8 8 8

Aggregate 
Population 1600 1600 1600 3200 3200 3200

Migration 
Freq 4 4 4 25 10 4

Migration 
Rate 0.01 0.04 0.01 0.005 0.005 0.005 

Migrant 
Selection Fittest Fittest Fittest Fittest Fittest Fittest

Migrant 
Reinsertion

Least-

fit

Least-

fit

Least-

fit

Least-

fit

Least-

fit

Least-

fit

Gene bit size 53 52

Dimensions 30 20 30 10 10 5

Chromosome 

Length(bits) 1590 1060 1590 530 530 260

Tour Size 5 3 6 2 2 6

Pm Adaptive (Eq4) 

Pc 0.95 

X-over Sites Uni 3 Uni 8 8 4

TABLE II

REDUCED FEASIBLE

SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

PARAMETER SET

RFSQP Parameter  Value
Problem Dimensions (nparam) (Table I)

# Objective Functions (nf) 1

# Equality constraint functions (neq) 0

# Inequality constraint functions (neq) 0

Maximum Iterations (miter) 200

Stopping Criteria (epsneq)– Sum of abs values of 

non equality constraints 7.0e-10

Number of sets of affine SR constraints (nclsr) 0

Number of sets of nonlinear SR constraints 

(ncnsr) 0 

Number of sets SR objectives (nosr) 0

Bound for QP subproblems (bigbnd) 1.0e15

Current design vector – initial guess – (sqpx) bestindividual.x[i]

Lower Bound Side Constraints – (bl) phenotype_lb 

Upper Bound Side Constraints – (bu) phenotype_ub 

Start/Stopping Criteria (eps) - fsph 0.990 / 10e-7

Start/Stopping Criteria (eps) – fRas 0.999 / 10e-5

Start/Stopping Criteria (eps) – fAck 0.990 / 10e-8

Start/Stopping Criteria (eps) – fSch 0.990 / 10e-8

Start/Stopping Criteria (eps) – fMic 0.999 / 10e-7

Start/Stopping Criteria (eps) – fLan 0.900 / 10e-7
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We found experimentally that limiting the maximum number 

of RFSQP iterations to 200 gave good results for all objective 

functions, while minimising the RFSQP computation. 

E. Cluster Computing Environment 

All experiments were performed on a computing cluster 

with specifications provided in Table III. The parallel genetic 

algorithm is coded in C++ and employs the Message Passing 

Interface Specification ver2.0 for communication between 

subpopulations running on separate cluster nodes. The RFSQP 

algorithm was coded in C.  

TABLE III

CLUSTER COMPUTING HARDWARE AND SOFTWARE ENVIRONMENT

Computing Environment 
Component 

Description

Number of Node Utilised  8

Processor Type and core Speed 

Pentium 4 Hyper threading @ 

3.6Ghz (Prescott) 

Front-side Bus Bandwidth 800MHz 

DRAM capacity and bandwidth 2GB DDR2 @ 533MHz 

Network Type and Bandwidth 1000Mbps Ethernet 

Network Switching Type Gigabit Switching Fabric 

Network Protocol TCP/IP V4 

OS Kernel Type and Version Linux  (2.4.21-20.EL) 

MPI Type and Version LAM 7.0.6 / MPI 2 

Compiler Type and Version mpiCC and gcc (3.2.3) 

Coding Language Standard  ISO C++ (PGA) and C (RFSQP) 

IV. RESULTS AND DISCUSSIONS

Experimental results for the PGA and hybrid search 

algorithm are illustrated in Figure 3 to Figure 8. Each figure is 

a graph representing Objective Function Fitness value versus 

Generation count using a log-linear scale. The horizontal 

dotted line located at an objective function fitness value of 

is the stopping criterion and minimum solution needed 

for a successful search. For all graphs, each curve represents 

the average of the best result achieved from 50 independent 

experiments. 

-13
1.0e

During the early stage of a search the convergence velocity 

is approximately the same for both algorithms in all test 

functions. This is expected, since the hybrid search algorithm 

uses an identical PGA in the primary stage for exploration of 

the search space. In general, the curves begin to deviate once 

the hybrid algorithm makes the transition from primary stage 

PGA to secondary stage RFSQP algorithm.  

Furthermore, results of the hybrid search algorithm show 

periods of extremely rapid convergence in the form of cliffs.

These cliffs initially occur at different stages of the search for 

each test function and are the result of the secondary stage 

RFSQP algorithm. The difference in objective function fitness 

value between the solution vector provided by the primary 

stage PGA (top of cliff) and the resulting solution vector 

found by the RFSQP algorithm (base of cliff), is proportional 

to the effectiveness of the RFSQP algorithm in moving closer 

to the global optimum. 

The RFSQP algorithm is limited to 200 iterations of the 

objective function ensuring computation is complete within a 

single generation of the parallel genetic algorithm. The graphs 

provide a valid representation, because total computation time 

of the secondary stage RFSQP algorithm is less than or equal 

to the total time required for the computation of a single PGA 

generation. 

Results for the Sphere Function show a single cliff 

extending beyond the stopping criterion and exceeding the 

PGA solution quality as shown in Figure 3. Because the 

Sphere Function is unimodal and smooth, the RFSQP 

algorithm converges directly to the global optimum once 

provided with the initial guess by the primary stage PGA. No 

more iterations of the hybrid search algorithm are required.  

Figure 3: PGA and Hybrid Algorithm using the Sphere Function 

Figure 4 illustrates results for the multimodal Rastrigin 

Function. Essentially, a single cliff is followed by a declining 

rate of convergence, as additional iterations of the PGA are 

required to reach the stopping criterion, due to the cosine 

modulation producing many local minima. For the same 

reason, further iterations of the PGA and RFSQP algorithm 

are also needed to achieve similar solution quality as the PGA.  

Figure 4: PGA and Hybrid Algorithm using the Rastrigin Function 

The Ackley Path function in Figure 5, has three distinct 

cliffs. There exists one large cliff in the early stage of the 

1.0E-15

1.0E-13

1.0E-11

1.0E-09

1.0E-07

1.0E-05

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1 101 201 301

Generation

O
b

j 
F

u
n

c
 V

a
lu

e

PGA

Hybrid

1.0E-17

1.0E-15

1.0E-13

1.0E-11

1.0E-09

1.0E-07

1.0E-05

1.0E-03

1.0E-01

1.0E+01

1.0E+03

1 101 201 301

Generation

O
b

j 
F

u
n

c
 V

a
lu

e

PGA

Hybrid

77

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



> Paper Identification Number < 6

s

Figure 5: PGA and Hybrid Algorithm using the Ackley Path Function 

R le 

cl extending very close to the stopping criterion in Figure 6.

T

scape of 

th

earch as the secondary stage RFSQP algorithm away moves 

off the large plateau and falls towards the global optimum. 

Two smaller cliffs occur at generation 200 and 300 as the 

RFSQP algorithm makes small improvements due to many 

local optima. The PGA and RFSQP algorithm are called three 

times to achieve the stopping criterion and to exceed the PGA 

solution quality. The complex multimodal landscape of the 

Ackley Path Function prevents the RFSQP algorithm directly 

locating the global optimum, does provide the PGA with 

higher fitness solution early in the search. 

esults for the continuous Schwefel Function show a sing

iff 

his result suggests that the initial guess provided to the 

RFSQP algorithm is definitely located in the neighbourhood 

of the global optimum. Although, further iterations of the 

PGA and RFSQP algorithm are required to reached the 

stopping criterion and eventually exceed the solution quality 

of the PGA. The geometrically distant global optimum that is 

not oriented along the axes gives a slow convergence velocity 

in the later stage of the search, with no significant 

improvements being made by the RFSQP algorithm.  

Figure 7 illustrates results for the Michalewicz Function, 

which is continuous and multimodal. The fitness land

e Michalewicz Function contains steep gullies or edges 

interconnected with plateaus containing no gradient 

information causing transition from PGA to RFSQP algorithm 

to occur at different generations during the search for each of 

the 50 experiments. This can be seen as the curve for the 

hybrid search algorithm wanders after deviating from the 

PGA curve. In other words, the primary stage PGA falls from 

the plateau into the gulley containing the global optimum at 

different stages of the search. 

Figure 6: PGA and Hybrid Algorithm using the Schwefel Function 

Figure 7: PGA and Hybrid Algorithm using the Michalewicz Function 

Results for the continuous and highly multimodal 

Langerman Function show a single cliff extending beyond the 

stopping criterion and exceeding the PGA solution quality as 

shown in Figure 8. The RFSQP algorithm converges directly 

to the global optimum once provided with the initial guess by 

the primary stage PGA. No more iterations of the hybrid 

search algorithm are required. The wandering phenomenon 

also occurs for the Langerman Function, since many local 

minima are unevenly distributed in the fitness landscape, 

which causes the PGA to enter the promising neighbourhood 

at different generations for the 50 experiments.  

For each of the 50 independent experiments the hybrid 

search algorithm was able to locate the global optimum for all 

test functions, and maintain the robust search properties of the 

standalone PGA. 
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TABLE IV

PERFORMANCE RESULTS FOR THE PGA AND HYBRID SEARCH ALGORITHM

fSph fRas fAck

PGA Hybrid PGA Hybrid PGA Hybrid
Mean 4.780 0.593 2.833 1.068 12.962 6.303Computation

Time (Seconds) Stdev 0.812 0.151 0.201 0.185 0.304 1.024

Mean 183 20 208 75 508 244Reliability
(Generations) Stdev 30 6 13 14 10 39

fSch fMic fLan

PGA Hybrid PGA Hybrid PGA Hybrid
Mean 7.755 5.295 6.196 7.718 1.682 0.459Computation

Time (Seconds) Stdev 0.358 2.011 0.381 2.363 0.657 0.103

Mean 538 341 431 120 93 18Reliability
 (Generations) Stdev 24 152 25 26 19 5

Figure 8: PGA and Hybrid Algorithm using the Langerman Function 

Table IV lists the performance results of the parallel genetic 

algorithm and hybrid search algorithm for each test function. 

The termination criterion, for all experiments, is the ability of 

the algorithm to reach an objective function fitness value of 
-13

, which determines the computation time and reliability 

metrics listed in Table IV.  

1.0e

Computation time is reduced for each test function, except 

the Michalewicz function due to an outlier in the experimental 

results, which delayed convergence of the hybrid search 

algorithm and thus resulted in a large standard deviation of 

2.363. Both algorithms reached the termination value for all 

50 independent experiments, but the hybrid search algorithm 

achieved this using far less generations for each test function. 

V. CONCLUSIONS AND FURTHER INVESTIGATIONS

This paper presented a performance evaluation of a hybrid 

search algorithm which combined two very different 

optimisation techniques. Simulation experiments show the 

hybrid search method effectively combines the robust search 

property of the parallel genetic algorithm with the high 

The injection feedback method, which couples 

convergence velocity of the RFSQP Algorithm.  

the output of 

th secondary stage RFSQP algorithm to the input of the 

p

predefined 

a

 a 

st

somes with real-valued chromosomes will remove the 

P
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rimary stage parallel genetic algorithm, enabled the hybrid 

search algorithm to significantly reduce computation time, 
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Currently, the hybrid search algorithm performs the 

transition from PGA to RFSQP algorithm using 

nd static values. Future research would aim to follow the 

progress of the primary stage PGA by tracking the population 

diversity, convergence velocity and/or computation time. 

Taken together this dynamic method would remove the need 

for artificial values and provide a more ‘natural’ approach in 

switching between the exploration and exploitation phases. 

To provide a comparison between the hybrid search method 

and the RFSQP algorithm, future investigation will examine

ratified multi-start RFSQP algorithm with and without a 

limitation on the number of iterations from the same initial 

solution for each numerical test function presented in this 

paper.

In addition, replacement of the existing binary-coded 
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GA phenotype-to-genotype (real-to-binary) decoding step, 

which currently uses between 33% and 45% of PGA 

computation time. Also, constrained optimisation problems 

could be fully defined through enforcement of equality and 

inequality constraint functions in the secondary stage RFSQP 

algorithm. 
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APPENDIX A
TABLE V

NUMERICAL TEST FUNCTIONS DEFINITIONS

Function Definition 

(1)
2

1

n

iSph
i

f x x

(2)
2

1

cos 2
n

Ras i i
i

n Af x x A x

(3) 

2

1

1
20 20 exp 0.2

1
exp cos 2

1

n

iAck
i

e
n

n
xin i

f x x

(4)

1

sin
n

Sch i i
i

f x x x

(5)
2

2

1

sin sin 1

mn

Mic i i
i

f x x i x

(6)

2

1

1

2

i

1 1

c cos

n

j ij

j

x Am n

Lan j ij
i j

f x e x A

TABLE VI

NUMERICAL TEST FUNCTIONS RANGE AND VALUE

Function Range Function Value 

(1)
5.10 5.10,

30, 1:

ix

n i n

0.0,

0.0

Sph

i

f x

x

(2)
5.10 5.10,

10, 20, 1:

ix

A n i n

0.0,

0.0

Ras

i

f x

x

(3)

32.8 32.8,

exp 1 , 30,

1:

ix

e n

i n

0.0,

0.0

Ack

i

f x

x

(4)
500 500,

10, 1:

ix
n i n

418.98288,

420.96874636

Sch

i

f x n

x

(5)
0.0 , 10,

10, 1:

ix n

m i n

-9.660151715, 

?

Mic

i

f x

x

(6)
0.0 10, 5,

30, 1: , 1: ,

ix n

m i m j n

-1.499943824,

 ?

Lan

i

f x

x
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