
1

Opposition-Based Differential Evolution (ODE)
with Variable Jumping Rate

S. Rahnamayan1, H.R. Tizhoosh1, M.M.A. Salama2

Faculty of Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
1Pattern Analysis and Machine Intelligence (PAMI) Research Group

1,2Medical Instrument Analysis and Machine Intelligence (MIAMI) Research Group
shahryar@pami.uwaterloo.ca, tizhoosh@uwaterloo.ca, m.salama@ece.uwaterloo.ca

Abstract— In this paper, a time varying jumping rate
(TVJR) model for Opposition-Based Differential Evolution
(ODE) has been proposed. According to this model, the
jumping rate changes linearly during the evolution based
on the number of function evaluations. A test suite with
15 well-known benchmark functions has been employed to
compare performance of the DE and ODE with variable
jumping rate settings. Results show that a higher jumping
rate is more desirable during the exploration than during
the exploitation. Details for the proposed approach and the
conducted experiments are provided.

I. INTRODUCTION

Generally speaking, parameter control in Evolutionary
Algorithms (EAs) can be performed by following three
ways [1]: Deterministic, adaptive, and self-adaptive. The
first one uses a predefined rule to modify the parameter
value without gaining any feedback from the evolution
process while the second one changes the parameter
value based on the information which receives from
search process. The third one utilizes the same evolu-
tionary approach not only to solve the problem but also
to optimize own control parameters by encoding some
strategic parameters inside the population.

The idea proposed in this paper is similar to Das et al.
work [2]. They utilized time varying approach for setting
of the scale factor F in Differential Evolution (DE),
which can be considered as a deterministic approach
according to the mentioned categorization.

The concept of opposition-based learning (OBL) was
introduced by Tizhoosh [3] and has thus far been applied
to accelerate reinforcement learning [4]–[6], backprop-
agation learning [7], and differential evolution [8]–[10].
The main idea behind OBL is the simultaneous consid-
eration of an estimate and its corresponding opposite es-
timate (i.e. guess and opposite guess) in order to achieve
a better approximation of the current candidate solution.
Opposition-based differential evolution (ODE) [8] uses
opposite numbers during population initialization and
also for generating new populations during the evolu-
tionary process. ODE introduces a new parameter, called

jumping rate. In this paper, a time varying policy to set
this parameter in order to achieve higher convergence
velocity will be proposed.

Organization of this paper is as follows: Differential
Evolution, the parent algorithm, is briefly reviewed in
section II. In section III, the concept of opposition-
based learning is explained. The opposition-based DE
(ODE) is reviewed and also the proposed jumping rate
setting policies are discussed in section IV. Experimental
verifications are given in section V. Finally, the work is
concluded in section VI.

II. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is a population-based and
directed search method [11], [12]. Like many other evo-
lutionary algorithms, it starts with an initial population
vector, which is randomly generated when no a priori
knowledge about the solution space is available.

Let us assume that Xi,G(i = 1, 2, ..., Np) are candi-
date solution vectors in the generation G (Np: population
size). Successive populations are generated by adding the
weighted difference of two randomly selected vectors to
a third randomly selected vector.

For classical DE (DE/rand/1/bin), the mutation,
crossover, and selection operators are straightforwardly
defined as follows:

Mutation - For each vector Xi,G in generation G a
mutant vector Vi,G is defined by

Vi,G = Xa,G + F (Xb,G −Xc,G), (1)

where i = {1, 2, ..., Np} and a, b, and c are
mutually different random integer indices selected from
{1, 2, ..., Np}. Further, i, a, b, and c are different so that
Np ≥ 4 is required. F ∈ [0, 2] is a real constant which
determines the amplification of the added differential
variation of (Xb,G − Xc,G). Larger values for F result
higher diversity in the generated population and lower

81

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE



2

values cause faster convergence.

Crossover - DE utilizes the crossover operation to
increase the diversity of the population. It defines the
following trial vector:

Ui,G = (U1i,G, U2i,G, ..., UDi,G), (2)

where D is the problem dimension and

Uji,G =
{

Vji,G if randj(0, 1) ≤ Cr,
Xji,G otherwise.

(3)

Cr ∈ (0, 1) is the predefined crossover rate constant,
and randj(0, 1) is the jth evaluation of a uniform
random number generator. Most popular values for Cr

are in the range of (0.4, 1) [2].

Selection - The approach that must decide which
vector (Ui,G or Xi,G) should be a member of next (new)
generation, G + 1. For a maximization problem, the
vector with the higher fitness value is chosen. There are
other variants based on different mutation strategies [13].

III. OPPOSITION-BASED LEARNING

Generally speaking, evolutionary optimization
methods start with some initial solutions (initial
population) and try to improve them toward some
optimal solution(s). The process of searching terminates
when some predefined criteria are satisfied. In the
absence of any a priori information about the solution,
we usually start with random guesses. The computation
time, among others, is related to the distance of these
initial guesses from the optimal solution. We can
improve our chance of starting with a closer (fitter)
solution by simultaneously checking the opposite
solution. By doing this, the fitter one (guess or opposite
guess) can be chosen as an initial solution. In fact,
according to probability theory, 50% of the time a
guess is further from the solution than its opposite. So,
starting with the closer of the two guesses (as judged by
their fitness) has the potential to accelerate convergence.
The same approach can be applied not only to initial
solutions but also continuously to each solution in
the current population. However, before concentrating
on opposition-based learning, we need to define the
concept of opposite numbers [3]:

Definition (Opposite Number) - Let x ∈ [a, b] be a
real number. The opposite number x̆ is defined by

x̆ = a + b− x. (4)

Similarly, this definition can be extended to higher
dimensions as follows [3]:

Definition (Opposite Point) - Let P =
(x1, x2, ..., xn) be a point in n-dimensional space, where
x1, x2, ..., xn ∈ R and xi ∈ [ai, bi] ∀i ∈ {1, 2, ..., n}.
The opposite point P̆ = (x̆1, x̆2, ..., x̆n) is completely
defined by its components

x̆i = ai + bi − xi. (5)

Now, by employing the opposite point definition, the
opposition-based optimization can be defined as follows:

Opposition-Based Optimization - Let P =
(x1, x2, ..., xn) be a point in an n-dimensional space
(i.e. a candidate solution). Assume f(·) is a fitness
function which is used to measure the candidate’s fitness.
According to the definition of the opposite point, P̆ =
(x̆1, x̆2, ..., x̆n) is the opposite of P = (x1, x2, ..., xn).
Now, if f(P̆ ) ≥ f(P ), then point P can be replaced
with P̆ ; otherwise we continue with P .

Hence, the point and its opposite point are evaluated
simultaneously in order to continue with the fitter one.

IV. REVISITING ODE AND PROPOSING VARIABLE

JUMPING RATES

Similar to all population-based optimization algo-
rithms, two main steps are distinguishable for DE,
namely population initialization and producing new gen-
erations by evolutionary operations such as mutation,
crossover, and selection. We will enhance these two steps
using the opposition-based learning scheme. The original
DE is chosen as a parent algorithm and the proposed
opposition-based ideas are embedded in DE to accelerate
its convergence velocity. Corresponding pseudo-code for
the ODE is given in Table I. Newly added/extended code
segments will be explained in the following subsections.

A. Opposition-Based Population Initialization

Random number generation, in absence of a priori
knowledge, is a widely used choice to create an initial
population. But as mentioned in section III, by utilizing
opposition-based learning we can obtain fitter starting
candidate solutions even when there is no knowledge
about the solution(s). Steps 1-5 from Table I show the
implementation of opposition-based initialization for the
ODE. Following steps show that procedure:

1) Initialize the population P(NP ) randomly,
2) Calculate opposite population by

OPi,j = aj + bj − Pi,j , (6)

i = 1, 2, ..., Np ; j = 1, 2, ..., D,
where Pi,j and OPi,j denote jth variable of the
ith vector of the population and the opposite-
population, respectively.

82

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



3

3) Select the Np fittest individuals from {P ∪ OP} as
initial population.

B. Opposition-Based Generation Jumping

By applying a similar approach to the current popu-
lation, the evolutionary process can be forced to jump
to a new solution candidate, which ideally is fitter
than the current one. Based on a jumping rate Jr (i.e.
jumping probability), after generating new populations
by mutation, crossover, and selection, the opposite pop-
ulation is calculated and the Np fittest individuals are
selected from the union of the current population and the
opposite population. As a difference to opposition-based
initialization, it should be noted here that in order to
calculate the opposite population for generation jumping,
the opposite of each variable is calculated dynamically.
That is, the maximum and minimum values of each vari-
able in the current population ([MINp

j , MAXp
j ]) are used

to calculate opposite points instead of using variables’
predefined interval boundaries ([aj , bj ]):

OPi,j = MINp
j + MAXp

j − Pi,j , (7)

i = 1, 2, ..., Np ; j = 1, 2, ..., D.

By staying within variables’ interval static bound-
aries, we would jump outside of the already shrunken
search space and the knowledge of the current reduced
space (converged population) would be lost. Hence, we
calculate opposite points by using variables’ current
interval in the population ([MINp

j , MAXp
j ]) which is, as

the search does progress, increasingly smaller than the
corresponding initial range [aj , bj ]. Steps 26-32 from
Table I show the implementation of opposition-based
generation jumping for ODE.

C. Proposed jumping rate settings

In the first version of the opposition-based differential
evolution (ODE) [8]–[10], a constant value for jumping
rate was used (Jr = 0.3). In this paper, two types of
time varying jumping rate are investigated (linearly
increasing and decreasing functions). Three proposed
settings for the current investigation are as follows:

• Jr (constant)= Jrave
,

• Jr(TVJR1) = (Jrmax − Jrmin)× (MAXNFC−NFC
MAXNFC

),

• Jr(TVJR2) = (Jrmax
−Jrmin

)−(Jrmax
−Jrmin

)×
(MAXNFC−NFC

MAXNFC
),

where Jrave , Jrmax , and Jrmin are the average,
maximum, and minimum jumping rates, respectively.
MAXNFC and NFC are the maximum number of function

calls and the current number of function calls, respec-
tively.

In order to support as fair as possible comparison
between these three different jumping rate settings, the
average jumping rate should be the same for all of them.
So, obviously we should have Jrave

= (Jrmax+Jrmin
)

2 .
Following values for these parameters are selected:
Jrave = 0.3 [8]–[10] and Jrmin = 0 (no jumping),
so Jrmax

= 0.6 is resulted. Figure 1 shows the
corresponding diagrams (jumping rate vs. NFCs) for
four following settings:

• Jr(constant) = 0.3,

• Jr(TVJR1) = 0.6× (MAXNFC−NFC
MAXNFC

),

• Jr(TVJR2) = 0.6− 0.6× (MAXNFC−NFC
MAXNFC

).

• Jr(constant) = 0.6.

Fig. 1. Jumping rate vs. NFCs for Jr(ODE) = 0.3, Jr(TVJR1) =
0.6×( MAXNFC−NFC

MAXNFC
), Jr(TVJR2) = 0.6−0.6×( MAXNFC−NFC

MAXNFC
), and

Jr(ODE) = 0.6.

Jr(TVJR1) represents higher jumping rate during
exploration and lower jumping rate during exploitation
(tuning); Jr(TVJR2) performs exactly in reverse manner.
By these settings, we can investigate effects of genera-
tion jumping during optimization process.

V. EXPERIMENTAL VERIFICATION

In this section we describe the benchmark functions,
comparison strategies, algorithm settings, and present the
results.

A. Benchmark Functions

A set of 15 well-known benchmark functions has
been used for performance verification of the proposed
approach. The classical differential evolution (DE) and
the opposition-based DE (ODE) with different jumping

83

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



4

TABLE I

PSEUDO-CODE FOR OPPOSITION-BASED DIFFERENTIAL EVOLUTION (ODE). P0 : INITIAL POPULATION, OP0 : OPPOSITE OF INITIAL

POPULATION, Np : POPULATION SIZE, P : CURRENT POPULATION, OP : OPPOSITE OF CURRENT POPULATION, V : NOISE VECTOR, U :

TRIAL VECTOR, D: PROBLEM DIMENSION, [aj , bj ]: RANGE OF THE j-TH VARIABLE, BFV: BEST FITNESS VALUE SO FAR, VTR: VALUE TO

REACH, NFC: NUMBER OF FUNCTION CALLS, MAXNFC : MAXIMUM NUMBER OF FUNCTION CALLS, F: MUTATION CONSTANT, rand(0, 1):

UNIFORMLY GENERATED RANDOM NUMBER, Cr : CROSSOVER RATE, f(·): OBJECTIVE FUNCTION, P ′ : POPULATION OF NEXT

GENERATION, Jr : JUMPING RATE, MIN
p
j /MAX

p
j : MINIMUM/MAXIMUM VALUE OF THE j-TH VARIABLE IN THE CURRENT POPULATION.

STEPS 1-5 AND 26-32 ARE IMPLEMENTATIONS OF OPPOSITION-BASED INITIALIZATION AND OPPOSITION-BASED GENERATION JUMPING,

RESPECTIVELY.

/* Opposition-Based Population Initialization */
1. Generate uniformly distributed random population P0;
2. for (i = 0 ; i < Np ; i + +)
3. for (j = 0 ; j < D ; j + +)
4. OP0i,j = aj + bj − P0i,j ;
5. Select Np fittest individuals from set the {P0, OP0} as initial population P0;

/* End of Opposition-Based Population Initialization */

6. while ( BFV > VTR and NFC < MAXNFC )
7. {
8. for (i = 0 ; i < Np ; i + + )
9. {
10. Select three parents Pa, Pb, and Pc randomly from current population where i 6= a 6= b 6= c;
11. Vi = Pa + F × (Pb − Pc);
12. for (j = 0 ; j < D ; j + + )
13. {
14. if (rand(0, 1) < Cr)
15. Ui,j = Vi,j ;
16. else
17. Ui,j = Pi,j ;
18. }
19. Evaluate Ui;
20. if (f(Ui) ≤ f(Pi))
21. P ′

i = Ui;
22. else
23. P ′

i = Pi;
24. }
25. P = P ′;

/* Opposition-Based Generation Jumping */
26. if (rand(0, 1) < Jr)
27. {
28. for (i = 0 ; i < Np ; i + +)
29. for (j = 0 ; j < D ; j + +)
30. OPi,j = MINp

j + MAXp
j − Pi,j ;

31. Select Np fittest individuals from set the {P, OP} as current population P ;
32. }

/* End of Opposition-Based Generation Jumping */

33. }

84

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



5

rate setting policies (constant values and time varyings)
are compared. The definition of the benchmark functions
and their global optimum(s) are listed in Appendix A.

B. Comparison Strategies and Metrics

In this study, three metrics, namely, number of func-
tion calls (NFC), success rate (SR), and success per-
formance (SP) [14] have been utilized to compare the
algorithms. We compare the convergence velocity by
measuring the number of function calls which is the
most commonly used metric in the literature [8]–[10],
[14]. A smaller NFC means higher convergence velocity.
The termination criterion is to find a value smaller than
the value-to-reach (VTR) before reaching the maximum
number of function calls MAXNFC. In order to minimize
the effect of the stochastic nature of the algorithms on
the metric, the reported number of function calls for each
function is the average over 50 trials.

The number of times, for which the algorithm suc-
ceeds to reach the VTR for each test function is mea-
sured as the success rate SR:

SR =
number of times reached VTR

total number of trials
. (8)

The average success rate (SRave) over n test functions
are calculated as follows:

SRave =
1
n

n∑
i=1

SRi. (9)

Both of NFC and SR are important measures in an op-
timization process. So, two individual objectives should
be considered simultaneously to compare competitors.
In order to combine these two metrics, a new measure,
called success performance (SP), has been introduced as
follows [14]:

SP =
mean (NFC for successful runs)

SR
. (10)

By this definition, the two following algorithms have
equal performances (SP=100):

Algorithm A: mean (NFC for successful runs)=50 and
SR=0.5,
Algorithm B: mean (NFC for successful runs)=100 and
SR=1.

SP is our the main measure to judge which algorithm
performs better.

C. Setting Control Parameters

Parameter settings for all conducted experiments are
as follows:
• Population size, Np = 100 [15]–[17]

• Differential amplification factor, F = 0.5 [13], [15],
[18]–[20]

• Crossover probability constant, Cr = 0.9 [13], [15],
[18]–[20]

• Maximum number of function calls, MAXNFC,
2 × 105 for f1, f2, f3, f5, f7, f8, f11; 5 × 105 for
f4, f9, f10, f13; 5× 104 for f6, f12, f14, f15

• Value to reach, VTR= 10−8 [14]
• Jumping rates (see Figure 1):

Jr(ODE) = 0.3 [8]–[10]
Jr(TVJR1) = 0.6× (MAXNFC−NFC

MAXNFC
)

Jr(TVJR2) = 0.6− 0.6× (MAXNFC−NFC
MAXNFC

)
Jr(ODE) = 0.6

D. Results

Results of applying DE, ODE (Jr = 0.3), ODE
(Jr = 0.6), ODE (TVJR1), and ODE (TVJR2) to
solve 15 test problems are given in Table II. The best
success performance for each function is highlighted in
boldface. The last rows of the table present the sum
(for NFCs and SPs) and the average success rates. We
can rank these algorithms as ODE (TVJR1) (best), ODE
(Jr = 0.3), ODE (Jr = 0.6), ODE (TVJR2), and DE
with the respect to the total success performance to
solve 15 problems. As we mentioned before, the success
performance is a measure which considers the number of
function calls and the success rate simultaneously and so
it can be utilized for a more reliable comparison of the
optimization algorithms. ODE (Jr = 0.6) presents the
lowest average success rate (0.89); while DE and ODE
(TVJR2) show the highest one (0.97).

Pair comparison of these algorithms are presented in
Table III. Given number in each cell shows on how many
functions the algorithm in the table’s row outperforms
the corresponding algorithm in the table’s column. The
last column of the table shows the total numbers (number
of cases which the algorithm can outperform other
competitors); by comparing these numbers we obtain
the following ranking result: ODE (TVJR1) (best), ODE
(Jr = 0.6), ODE (Jr = 0.3), ODE (TVJR2), and DE.
ODE (Jr = 0.6) and ODE (Jr = 0.3) have changed their
positions compared to the previous ranking. But, ODE
(TVJR1) still keeps the first position in both rankings.
Results for Jr = 0.3 and Jr = 0.6 confirm that the
constant higher jumping rate reduces the overall success
rate.

VI. CONCLUSION

In this paper, the time varying jumping rate for
opposition-based differential evolution was proposed and
two behaviorally reverse versions of them (linearly de-
creasing and increasing functions) were compared with
the constant settings (Jrave

and Jrmax
). The results

85

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



6

TABLE II

COMPARISON OF DE, ODE (Jr = 0.3), ODE (TVJR1), AND ODE (TVJR2). D: DIMENSION, NFC: NUMBER OF FUNCTION CALLS (AVERAGE OVER 50 TRIALS), SR: SUCCESS RATE, SP:

SUCCESS PERFORMANCE. THE LAST ROWS OF THE TABLE PRESENT THE SUM (FOR NFCS AND SPS) AND THE AVERAGE SUCCESS RATES. THE BEST SUCCESS PERFORMANCE FOR EACH CASE IS

HIGHLIGHTED IN boldface.

DE ODE (Jr = 0.3) ODE (TVJR1) ODE (TVJR2) ODE (Jr = 0.6)
F D NFC SR SP NFC SR SP NFC SR SP NFC SR SP NFC SR SP

f1 30 87748 1 87748 47716 1 47716 42300 1 42300 66305 1 66305 41260 1 41260
f2 30 96488 1 96488 53304 1 53304 45720 1 45720 72990 1 72990 46396 0.96 48329
f3 20 177880 1 177880 168680 1 168680 159775 1 159775 175460 1 175460 160720 1 160720
f4 10 328844 1 328844 65056 0.64 101650 59063 0.80 73829 136070 1 136070 121920 0.60 203200
f5 30 113428 1 113428 64920 0.75 86560 63594 0.90 70660 86235 1 86235 62828 0.90 69808
f6 30 25140 1 25140 8328 1 8328 6080 1 6080 14175 1 14175 5715 1 5715
f7 30 169152 1 169152 98296 1 98296 88355 1 88355 117095 1 117095 87617 0.90 97352
f8 30 101460 1 101460 70408 1 70408 65247 0.95 68681 82245 1 82245 62785 1 62785
f9 10 215260 0.56 384393 168470 0.76 221671 188440 0.65 289908 379660 0.60 632767 207690 0.35 593400
f10 30 385192 1 385192 369104 1 369104 389955 1 389955 360595 1 360595 395115 1 395115
f11 30 187300 1 187300 155636 1 155636 146795 1 146795 167685 1 167685 136180 1 136180
f12 30 41588 1 41588 23124 1 23124 20290 1 20290 29165 1 29165 20460 1 20460
f13 30 411164 1 411164 337532 1 337532 326350 1 326350 377425 1 377425 347010 0.75 462680
f14 10 19528 1 19528 15704 1 15704 14270 1 14270 17735 1 17735 13600 1 13600
f15 10 37824 1 37824 24260 1 24260 21400 1 21400 28710 1 28710 19735 1 19735∑

2397996 2567129 1670538 1781973 1637634 1764368 2111550 2364657 1729031 2330339
SRave 0.97 0.94 0.95 0.97 0.89

86

P
ro

ce
ed

in
g

s 
o

f 
th

e 
20

07
 IE

E
E

 S
ym

p
o

si
u

m
 o

n
 

F
o

u
n

d
at

io
n

s 
o

f 
C

o
m

p
u

ta
ti

o
n

al
 In

te
lli

g
en

ce
 (

F
O

C
I 2

00
7)



7

TABLE III

PAIR COMPARISON OF DE, ODE (Jr = 0.3), ODE (TVJR1), ODE (TVJR2), AND ODE (Jr = 0.6). THE LAST COLUMN SHOWS THE

TOTAL NUMBERS (NUMBER OF CASES WHICH THE ALGORITHM CAN OUTPERFORM OTHER COMPETITORS).

DE ODE (Jr = 0.3) ODE (TVJR1) ODE (TVJR2) ODE (Jr = 0.6) Total
DE - 0 1 1 3 5

ODE (Jr = 0.3) 15 - 2 12 4 33
ODE (TVJR1) 14 13 - 14 8 49
ODE (TVJR2) 14 3 1 - 3 21

ODE (Jr = 0.6) 12 11 7 12 - 42

confirm that the linearly decreasing jumping rate per-
forms better than constant settings and also than linearly
increasing policy. This means generation jumping in
the exploration time is more desirable than during ex-
ploitation. Because during the fine-tuning, we are faced
with shrunken search space and the jumping of the
individuals may not be advantageous. We know that there
is no exact border between exploration and exploitation
time. Hence, the gradual behavior for the decreasing and
increasing functions are proposed.

The proposed jumping rate function utilizes the max-
imum number of function calls (MAXNFC) which may
not be exactly known for some black-box optimization
problem; this can be regarded as a disadvantage for the
proposed method. Adaptive setting of the jumping rate
can be a desirable solution which will be a focus of our
research in future.

REFERENCES

[1] A.E. Eiben, R. Hinterding, Paramater Control in Evolutionary
Algorithms, IEEE Transactions on Evolutionary Computation,
Vol. 3, no. 2, pp. 124-141, 1999.

[2] S. Das, A. Konar, U.K. Chakraborty, Two Improved Differential
Evolution Schemes for Faster Global Search, Proceedings of the
2005 conference on Genetic and evolutionary computation, pp.
991-998, Washington, USA, 2005.

[3] H.R. Tizhoosh, Opposition-Based Learning: A New Scheme for
Machine Intelligence, Int. Conf. on Computational Intelligence
for Modelling Control and Automation (CIMCA-2005), Vol. I,
pp. 695-701, Vienna, Austria, 2005.

[4] H.R. Tizhoosh, Reinforcement Learning Based on Actions and
Opposite Actions, Int. Conf. on Artificial Intelligence and Ma-
chine Learning (AIML-2005), Cairo, Egypt, 2005.

[5] H.R. Tizhoosh, Opposition-Based Reinforcement Learning,
Journal of Advanced Computational Intelligence and Intelligent
Informatics, Vol. 10, No. 3, 2006.

[6] M. Shokri, H. R. Tizhoosh, M. Kamel, Opposition-Based Q(λ)
Algorithm, 2006 IEEE World Congress on Computational Intel-
ligence (IJCNN-2006), Vancouver, BC, Canada, pp. 646-653,
2006.

[7] M. Ventresca and H.R. Tizhoosh, Improving the Convergence of
Backpropagation by Opposite Transfer Functions, 2006 IEEE
World Congress on Computational Intelligence (IJCNN-2006),
Vancouver, BC, Canada, pp. 9527-9534, 2006.

[8] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-
Based Differential Evolution Algorithms, 2006 IEEE World
Congress on Computational Intelligence (CEC-2006), Vancou-
ver, BC, Canada, pp. 7363-7370, 2006.

[9] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-
Based Differential Evolution for Optimization of Noisy Prob-
lems, 2006 IEEE World Congress on Computational Intelligence
(CEC-2006), Vancouver, BC, Canada, pp. 6756-6763, 2006.

[10] S. Rahnamayan, H.R. Tizhoosh, M.M.A Salama, Opposition-
Based Differential Evolution, accepted at the Journal of IEEE
Transactions on Evolutionary Computation, Dec. 2006 .

[11] K. Price, An Introduction to Differential Evolution, In: D.
Corne, M. Dorigo, F. Glover (eds) New Ideas in Optimization,
McGraw-Hill, London (UK), pp. 79-108, 1999, ISBN:007-
709506-5.

[12] G.C. Onwubolu and B.V. Babu, New Optimization Techniques
in Engineering, Berlin ; New York : Springer, 2004.

[13] R. Storn and K. Price, Differential Evolution- A Simple and
Efficient Heuristic for Global Optimization over Continuous
Spaces, Journal of Global Optimization 11, pp. 341-359, 1997.

[14] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. -P. Chen, A.
Auger, S. Tiwari, Problem Definitions and Evaluation Criteria
for the CEC 2005 Special Session on Real-Parameter Opti-
mization, Technical Report, Nanyang Technological University,
Singapore And KanGAL Report Number 2005005 (Kanpur
Genetic Algorithms Laboratory, IIT Kanpur), May 2005.

[15] J. Brest, S. Greiner, B. Bošković, Marjan Mernik, Viljem Žumer,
Self-Adapting Control Parameters in Differential Evolution: A
Comparative Study on Numerical Benchmark Problems, ac-
cepted in IEEE Transactions on Evolutionary Computation.

[16] X. Yao, Y. Liu, and G. Lin, Evolutionary programming made
faster, IEEE Transactions on Evolutionary Computation, Vol. 3,
No. 2, p.82, Jul. 1999.

[17] C. Y. Lee and X. Yao, Evolutionary programming using muta-
tions based on the Lévy probability distribution, IEEE Trans-
actions on Evolutionary Computation, Vol. 8, No. 1, pp. 1-13,
Feb. 2004.

[18] J. Vesterstroem and R. Thomsen, A Comparative Study of
Differential Evolution, Particle Swarm Optimization, and Evo-
lutionary Algorithms on Numerical Benchmark Problems. Pro-
ceedings of the Congress on Evolutionary Computation (CEC-
2004), IEEE Publications, Vol. 2, pp. 1980-1987, 2004.

[19] M.M. Ali and A. Törn, Population set-based global optimization
algorithms: Some modifications and numerical studies, Comput.
Oper. Res., Vol. 31, No. 10, pp. 1703-1725, 2004.

[20] J. Liu and J. Lampinen, A fuzzy adaptive differential evolution
algorithm, Soft Computing-A Fusion of Foundations, Method-
ologies and Applications, Vol. 9, No. 6, pp. 448-462, 2005.

APPENDIX A. LIST OF BENCHMARK FUNCTIONS

• 1st De Jong

f1(X) =
n∑

i=1

xi
2,

with − 5.12 ≤ xi ≤ 5.12,

min(f1) = f1(0, ..., 0) = 0.

87

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



8

• Axis Parallel Hyper-Ellipsoid

f2(X) =
n∑

i=1

ixi
2,

with − 5.12 ≤ xi ≤ 5.12,

min(f2) = f2(0, ..., 0) = 0.

• Schwefel’s Problem 1.2

f3(X) =
n∑

i=1

(
i∑

j=1

xj)2,

with − 65 ≤ xi ≤ 65,

min(f3) = f3(0, ..., 0) = 0.

• Rastrigin’s Function

f4(X) = 10n +
n∑

i=1

(x2
i − 10 cos(2πxi)),

with − 5.12 ≤ xi ≤ 5.12,

min(f4) = f4(0, ..., 0) = 0.

• Griewangk’s Function

f5(X) =
n∑

i=1

x2
i

4000
−

n∏
i=1

cos(
xi√

i
) + 1,

with − 600 ≤ xi ≤ 600,

min(f5) = f5(0, ..., 0) = 0.

• Sum of Different Power

f6(X) =
n∑

i=1

|xi|(i+1),

with − 1 ≤ xi ≤ 1,

min(f6) = f6(0, ..., 0) = 0.

• Ackley’s Problem

f7(X) = −20 exp(−0.2

√
n∑

i=1
x2

i

n )− exp(

n∑
i=1

cos(2πxi)

n ) +
20 + e, with − 32 ≤ xi ≤ 32,
min(f7) = f7(0, ..., 0) = 0.

• Levy Function

f8(X) = sin2(3πx1) +
n−1∑
i=1

(xi − 1)2

(1 + sin2(3πxi+1)) + (xn − 1)(1 + sin2(2πxn)),
with − 10 ≤ xi ≤ 10,
min(f8) = f8(1, ..., 1) = 0.

• Michalewicz Function

f9(X) = −
n∑

i=1

sin(xi)(sin(ix2
i /π))2m,

with 0 ≤ xi ≤ π,m = 10,
min(f9(n=10)) = −9.66015.

• Zakharov Function

f10(X) =
n∑

i=1

x2
i + (

n∑
i=1

0.5ixi)2 + (
n∑

i=1

0.5ixi)4,

with − 5 ≤ xi ≤ 10,

min(f10) = f10(0, ..., 0) = 0.

• Schwefel’s Problem 2.22

f11(X) =
n∑

i=1

|xi|+
n∏

i=1

|xi|,

with − 10 ≤ xi ≤ 10,

min(f11) = f11(0, ..., 0) = 0.

• Step Function

f12(X) =
n∑

i=1

(bxi + 0.5c)2,

with − 100 ≤ xi ≤ 100,

min(f12) = f12(−0.5 ≤ xi < 0.5) = 0.

• Alpine Function

f13(X) =
n∑

i=1

|xi sin(xi) + 0.1xi|,

with − 10 ≤ xi ≤ 10,

min(f13) = f13(0, ..., 0) = 0.

• Exponential Problem

f14(X) = exp(−0.5
n∑

i=1

x2
i ),

with − 1 ≤ xi ≤ 1,

min(f14) = f14(0, ..., 0) = 1.

• Salomon Problem

f15(X) = 1− cos(2π ‖ x ‖) + 0.1 ‖ x ‖,

where ‖ x ‖=

√√√√ n∑
i=1

x2
i ,

with − 100 ≤ xi ≤ 100,

min(f15) = f15(0, 0, ..., 0) = 0.

88

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)


