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Abstract— This article presents a large-scale analysis of a
distributed sensing model for systemized and networked sensors.
In the system model, a data center acquires binary information
from a bunch of L sensors which each independently encode
their noisy observations of an original bit sequence, and transmit
their encoded sequences to the data center at a combined data
rate R, which is strictly limited. Supposing that the sensors
use independent quantization techniques, we show that the
performance can be evaluated for any given finite R when the
number of sensors L goes to infinity. The analysis shows how the
optimal strategy for the distributed sensing problem changes at
critical values of the data rate R or the noise level p.

I. INTRODUCTION

Some influential company laboratories world wide, include
Intel Research, is actively exploring the potential of large-scale
sensor networks. They typically work with the community and
industry collaborators of their own, and this global trend is
already demonstrating the potential of this new technology.
Potential future markets include transportation and shipping,
fire fighting and rescue operations, home automation and
more [1]. Still, for all the promise, it is often difficult to
integrate the individual components of a sensor network in
a smart way. Although we see many breakthroughs in com-
ponent devices, advanced software, and power managements,
system-level understanding of the emerging technology is still
weak. It requires a shift in our notion of “what to look for”. It
requires a study of collective behavior and resulting trade-offs.
This is the issue that we address in this article. We demonstrate
the usefulness of adopting new approaches by considering the
following scenario.

Consider that a data center is interested in the data sequence,
{X(t)}∞t=1, which cannot be observed directly. Therefore,
the data center deploys a bunch of L sensors which each
independently encodes its noisy observation of the sequence,
{Yi(t)}∞t=1, without sharing any information, i.e., the sensors
are not permitted to communicate and decide what to send to
the data center beforehand. The data center collects separate
samples from all the L sensors and uses them to recover
the original sequence. However, since {X(t)}∞t=1 is not the
only pressing matter which the data center must consider, the
combined data rate R at which the sensors can communicate
with it is strictly limited. A formulation of decentralized
communication with estimation task, the “CEO problem”,

was first proposed by Berger and Zhang [2], providing a
new theoretical framework for large scale sensing systems.
In this outstanding work, some interesting properties of such
systems have been revealed. If the sensors were permitted
to communicate on the basis of their pooled observations,
then they would be able to smooth out their independent
observation noises entirely as L goes to infinity. Therefore, the
data center can achieve an arbitrary fidelity D(R), where D(·)
denotes the distortion rate function of {X(t)}. In particular,
the data center recovers almost complete information if R
exceeds the entropy rate of {X(t)}. However, if the sensors
are not allowed to communicate with each other, there does
not exist a finite value of R for which even infinitely many
sensors can make D arbitrarily small [2].

In this article, we introduce a new analytical model for a
massive sensing system with a finite data rate R. More specif-
ically, we assume that the sensors use a class of quantization
methods for rate distortion coding [3], while the data center
recovers the original sequence by using optimal “majority
vote” estimation under the separate decoding condition [4].
We consider the distributed sensing problem of deciding the
optimal number of sensors L given the combined data rate R.
Our asymptotic analysis successfully provides the performance
of the whole sensing system when L goes to infinity, where
the data rate for an individual sensor information vanishes.
Here, we exploit statistical methods which have recently been
developed in the field of disordered statistical systems, in
particular, the spin glass theory.

The article is organized as follows. In Section II, we
introduce a system model for the sensor network. Section III
summarizes the results of our approach, where the following
section provides the outline of our analysis. Conclusions are
given in the last section.

II. SYSTEM MODEL

Let P (x) be a probability distribution common to {X(t)} ∈
X , and W (y|x) be a stochastic matrix defined on X × Y ,
with Y denotes the common alphabet of {Yi(t)}, where i =
1, · · · , L and t ≥ 1. In the general setup, we assume that the
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instantaneous joint probability distribution in the form

Pr[x, y1, · · · , yL] = P (x)
L∏

i=1

W (yi|x)

for the temporally memoryless source {X(t)}∞t=1. Here, the
random variables Yi(t) are conditionally independent when
X(t) is given, and the conditional probabilities W [y i(t)|x(t)]
are identical for all i and t. In this article, we impose the
binary assumptions to the problem, i.e., the data sequence
{X(t)} and its noisy observations {Yi(t)} are all assumed
to be binary sequences. Therefore, the stochastic matrix can
be parameterized as

W (y|x) =

{
1 − p (x = y)
p (x �= y)

,

where p ∈ [0, 1/2] represents the observation noise. Note also
that the alphabets have been selected as X = Y . Furthermore,
for simplicity, we also assume that P (x) = 1/2 always holds,
implying that a purely random source is observed [Fig. 1].

x −→ W
sensor

−→ yi

Fig. 1. Distributed sensing tasks for sensor i

At the encoding stage, a sensor i encodes a block yi =
[yi(1), · · · , yi(n)]T of length n from the noisy observation
{yi(t)}∞t=1, into a block zi = [zi(1), · · · , zi(m)]T of length
m defined on Z. Hereafter, we take the Boolean representation
of the binary alphabet X = {0, 1}, therefore Y = Z = {0, 1}
as well. Let ŷi be a reproduction sequence for the block, and
we have a known integer m < n. Then, making use of a
Boolean matrix Ai of dimensionality n × m, we are to find
an m bit codeword sequence zi = [zi(1), · · · , zi(m)]T which
satisfies

ŷi = Aizi (mod 2) , (1)

where the fidelity criterion

D =
1
n

dH(yi, ŷi) (2)

holds [3]. Here the Hamming distance dH(·, ·) is used for
the distortion measure. Note that we have applied modulo-
2 arithmetic for the additive operation in (1). Let A i be
characterized by K ones per row and C per column. The
finite, and usually small, numbers K and C define a particular
generator matrix Ai. The data center then collects the L
codeword sequences, z1, · · · , zL. Since all the L codewords
are of the same length m, the combined data rate will be
R = L × m/n. Therefore, in our scenario, the data center
deploys exchangeable sensors with fixed quality reproductions,
ŷ1, · · · , ŷL [Fig. 2].

yi −→ f

encoder

−→ zi −→ g

decoder

−→ ŷi

Fig. 2. Independent communications tasks for sensor i

Lastly, the tth symbol of the estimate, x̂ =
[x̂(1), · · · , x̂(n)]T , is to be calculated by optimal majority
vote [5],

x̂(t) =

{
0 (ŷ1(t) + · · ·+ ŷL(t) ≤ L/2)
1 (ŷ1(t) + · · ·+ ŷL(t) > L/2)

. (3)

Therefore, overall performance of the system can be measured
by the expected bit error frequency for decisions by (3), Pe =
Pr[x �= x̂] [Fig. 3].

{ŷi}L
i=1 −→ V

estimator

−→ x̂

Fig. 3. Collective estimation tasks for the data center

In this article, we consider two limit cases of decentraliza-
tion levels; (1) The extreme situation of L → ∞, and (2) the
case of L = R. The former case means that the data rate for
an individual sensor information vanishes, while the latter case
results in the transmission without quantization techniques. In
general, it is difficult to determine which level is optimal for
the estimation, i.e., which scenario results in the smaller value
of Pe. Indeed, by using some quantization methods, such as
the vector quantization, the data center could use as many
sensors as possible for a given R. However, the quality of the
individual reproduction would be less informative. The best
choice seems to depend largely on R, as well as p.

III. MAIN RESULTS

For simplicity, we consider the following two solvable
cases; K = 1 for C ≥ K and the complicated case of K = 2.
Let p be a given observation noise level, and R the finite real
value of a given combined data rate. Letting L → ∞, we find
the expected bit error frequency to be

Pe(p, R) =
∫ −(1−2p)cg

√
R

−∞
dr N(0, 1) (4)

with the constant value

cg =

{
1 (K = 1)
1√
2

[√
α

2 + 2 ln 2√
α

−
(√

α
2 − σ2√

α

)
〈tanh2 x〉π(x)

]
(K = 2)

(5)

where the rescaled variance σ2 = α 〈x̂2〉π̂(x̂) and the first step
RSB enforcement

− 1
2

+
2
α

ln 2

+
(

1
2
− σ2

α

)
〈tanh2 x (1 + 2x csch x sech x)〉π(x) = 0
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Fig. 4. P
(dB)
e (p,R) for K = 1. (a) Narrow band case with R =

1,2, and, 10. (b) Broadband case with R = 100,500,and,1000. The critical
value of pc converges to the point 0.5.

holds. Here N(X, Y ) denotes the normal distribution with the
mean X and the variance Y . The rescaled variance σ2 and the
scale invariant parameter α is determined numerically, where
we use the following notations.

〈 · 〉π(x) =
∫ ∞

−∞

dx√
2πσ2

exp
[
− x2

2σ2

]
( · ) ,

〈 · 〉π̂(x̂) =
∫ +1

−1

dx̂√
2πσ2

(1 − x̂2)−1 exp
[
−(tanh−1 x̂)2

2σ2

]
( · ) .

Therefore, it is straightforward to evaluate (4) with (5) for
given parameters, p and R.

For a given finite value of R, we see what happens to the
quality of the estimate when the noise level p varies. Fig. 4 and
Fig. 5 shows the typical behavior of the bit error frequency,
Pe(p, R), in decibel (dB), where the reference level is chosen
as

P (0)
e (p, R) =

⎧⎪⎨
⎪⎩
∑(R−1)/2

l=0

(
R
l

)
(1 − p)lpR−l, (R is odd)∑R/2−1

l=0

(
R
l

)
(1 − p)lpR−l

+1
2

(
R

R/2

)
(1 − p)R/2pR/2 (R is even)

(6)

for a given integer R. The reference (6) denotes Pe for the
case of L = R, i.e., the case when the sensors are not allowed
to compress their observations. Here, in decibel, we have

P (dB)
e (p, R) = 10 log

Pe(p, R)

P
(0)
e (p, R)

,

where the log is to base 10. Note that the zero level in
decibel occurs when the measured error frequency Pe(p, R)
is equal to the reference level. Therefore, it is also possible
to have negative levels, which would mean an expected bit
error frequency much smaller than the reference level. In the
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Fig. 5. P
(dB)
e (p,R) for K = 2. (a) Narrow band case with R =

1,2, and, 10. (b) Broadband case with R = 100,500,and, 1000. The critical
value of pc converges to the point 0.165.

case of small combined data rate R, the narrow band case,
the numerical results in Fig. 4 (a) and Fig. 5 (a) show that the
quality of the estimate is sensitive to the parity of the integer
R. In particular, the R = 2 case has the lowest threshold level
pc beyond which the L → ∞ scenario outperforms the L = R
scenario, while the R = 1 case does not have such a threshold.
In contrast, if the bandwidth is wide enough, the difference of
the expected bit error probabilities in decibel, P

(dB)
e (p, R),

is proved to have quite different qualitative characteristics as
shown in Fig. 4 (b) and Fig. 5 (b). The critical value of pc

converges to the point 0.5 in the case of K = 1, while it seems
to have nontrivial value of pc = 0.165 in the case of K = 2.

IV. STATISTICS OF COLLECTIVE ESTIMATION

Since the predetermined matrices A1, · · · , AL are selected
randomly, it is quite natural to say that the instantaneous series,
defined by ŷ(t) = [ŷ1(t), · · · , ŷL(t)]T , can be modeled using
the Bernoulli trials. Here, the reproduction problem reduces to
a channel model, where the stochastic matrix is defined as

W (ŷ|x) =

{
q (x = ŷ)
1 − q (x �= ŷ)

, (7)

where q denotes the quality of the reproductions, i.e., Pr[x �=
ŷi] = 1 − q for i = 1, · · · , L. Letting the channel model
(7) for the reproduction problem be valid, the expected bit
error frequency can be well captured by using the cumulative
probability distributions

Pr[x �= x̂]

=

{
B(L−1

2 : L, q), (L is odd)

B(L
2 − 1 : L, q) + 1

2 b(L
2 : L, q) (L is even)

(8)

91

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



with

B(L′ : L, q) =
L′∑
l=0

b(l : L, q) ,

b(l : L, q) =
(

L

l

)
ql(1 − q)L−l ,

where an integer l be the total number of non-flipped elements
in ŷ(t), and the second term (1/2)b(L/2 : L, q) represents
random guessing with l = L/2. Note that the reproduction
quality q can be easily obtained by the simple algebra q =
pD + (1− p)(1− D), where D is the distortion with respect
to coding.

Lastly, by using the cumulative probability distribution (8),
we get

Pe =
L/2∑
l=0

(
L

l

)
ql(1 − q)L−l

∼
∫ L/2

0

dr N(Lq, Lq(1 − q)) .

(9)

It is easy to see that (9) can be converted to a standard
normal distribution by changing variables to [6]

r̃ =
r − Lq√
Lq(1 − q)

,

so

dr̃ = dr/
√

Lq(1 − q) ,

yielding the general formula

Pe ∼
∫ r̃g

−√
L

dr̃ N(0, 1) (10)

with

r̃g =2
√

L(1 − 2p)
(

D − 1
2

)
. (11)

Since the error probability (10) is given by a function of
D, we need to derive an analytical solution for the quality
D in the limit L → ∞, keeping R finite. In this approach,
we apply the method of statistical mechanics to evaluate the
typical performance of the separate decoding [3].

V. METHOD OF STATISTICAL PHYSICS

As a first step, we translate the Boolean alphabets Z =
{0, 1} to the “Ising” ones, S = {+1,−1}. Consequently, we
need to translate the additive operations, such as, zi(s)+zi(s′)
(mod 2) into their multiplicative representations, σ i(s) ×
σi(s′) ∈ S for s, s′ = 1, · · · , m. Similarly, we translate the
Boolean yi(t)s into the Ising Ji(t)s. For simplicity, we omit
the subscript i, which labels the L agents, in the rest of this
section. Following the prescription of Sourlas [7], we examine
the Gibbs-Boltzmann distribution

Pr[σ] =
exp [−βH(σ|J)]

Z(J)
(12)

with the partition function

Z(J) =
∑
σ

e−βH(σ|J) ,

where the Hamiltonian of the Ising system is defined as

H(σ|J) = −
∑

s1<···<sK

As1...sK J [t(s1, . . . , sK)]σ(s1) . . . σ(sK ) .

(13)

The observation index t(s1, . . . , sK) specifies the proper value
of t given the set s1, . . . , sK , so that it corresponds to the
parity check equation (1). Here the elements of the symmetric
tensor As1...sK , representing dilution, is either zero or one
depending on the set of indices (s1, . . . , sK). Since there are
C non-zero elements randomly chosen for any given index s,
we find

∑
s2,...,sK

Ass2...sK = C . The code rate is R/L =
K/C because a reproduction sequence has C bits per index
s and carries K bits of the codeword. It is easy to see that
the Hamiltonian (13) is counting the reproduction errors, [1−
J [t(s1, . . . , sK)] · σ(s1) . . . σ(sK )]/2.

Moreover, according to the statistical mechanics, we can
easily derive the observable quantities using the per-bit free
energy defined as

f = − 1
βn

〈ln Z(J)〉A,J (14)

which carries all information about the statistics of the sys-
tem. Here, β denotes an inverse temperature for the Gibbs-
Boltzmann distribution (12), and 〈·〉A,J represents the config-
urational average. Therefore, we have to average the logarithm
of the partition function Z(J) over the given distribution
〈·〉A,J after the calculation of the partition function.

A. Case of K = 1
Obviously, the simple case of K = 1 does not induce

frustrations in the system. Indeed, the case corresponds to
a naive vector quantization scheme, in which the encoding
as well as decoding only requires easy calculations. In the
analytical point of view, we may resort to straightforward and
simple calculations for evaluating such a free energy; we do
not require any strange ‘tricks’.

Using the set M(s) = {t|t s.t. ats = 1} with A = (ats),
we can rewrite (14) as

f = − 1
βn

〈
ln

⎡
⎣∑

σ

exp

⎛
⎝β

m∑
s=1

∑
t∈M(s)

J(t) · σ(s)

⎞
⎠
⎤
⎦〉

M,J

.

(15)

Since we know that the realizations of J(t)s is independent
with respect to the t, the function is reduced to the expression:

f = − L

βR

〈
ln

[ ∑
σ=±1

exp
(
βJ̄ · σ)

]〉
J̄

, (16)

where the corresponding models are characterized by only the
one-body interactions J̄s. In parallel with the random walk
statistics, we will impose here the ‘mean-field’ approximation
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for J̄ such that J̄ ≈ √
L/R. This approximation enables us

to write the average free energy as simple as

f = − L

βR
ln

[
2 cosh

(
β

√
L

R

)]
. (17)

Lastly, one can invoke the general relation D = (1 + f)/2 to
find the average distortion:

D =
1
2

[
1 +

tanh(β
√

L/R)√
L/R

]
(18)

with the optimal condition of β → ∞. Therefore, it is easy to
obtain

D =
1
2

+
1
2

√
R

L
. (19)

Inserting (19) into (11) in the definite integral (10), we can
easily see (4) holds.

B. Case of K = 2

To perform a similar program in the more complicated case
of K = 2, the replica trick is now used [8]. The theory
of replica symmetry breaking can provide the free energy
resulting in the expression for the general Ks [3]

f = − 1
βn

[
ln cosh β − K 〈ln [1 + tanh(βx) tanh(βx̂)]〉π(x),π̂(x̂)

+
1
2

〈 ∑
J=±1

ln

[
1 + tanh(βJ)

K∏
l=1

tanh(βxl)

]〉
π(x)

+
C

K

〈
ln

∑
σ=±1

C∏
l=1

[1 + σ tanh(βx̂l)]

〉
π̂(x̂)

]
,

(20)

where 〈·〉π(x) denotes the averaging over p(xl)s and so on.
The variation of (20) by π(x) and π̂(x̂) under the condition
of normalization gives the saddle point condition

π(x) =

〈
δ

[
x −

C−1∑
l=1

x̂l

]〉
π̂(x̂)

,

π̂(x̂) =

〈
1
2

∑
J=±1

δ [x̂− μ(x1, . . . , xK−1; J)]

〉
π(x)

,

(21)

where

μ(x1, . . . , xK−1; J) =
1
β

tanh−1

[
tanh(βJ)

K−1∏
l=1

tanh(βxl)

]
.

The stability of the solution (21) is well investigated in [9] in
the context of examining the effect of ‘diluted’ interactions in
spin glasses [10].

We now focus on the case of K = 2. Applying the central
limit theorem to π(x) [6], we get

π(x) =
1√

2πCσ2
e−

x2

2Cσ2 , (22)

where σ2 is the variance of π̂(x̂). Here the resulting distribu-
tion (22) is a even function. The leading contribution to μ is
then given by μ(x; J) ∼ J · tanh(βx) as β goes to zero; The
expression is valid in the asymptotic region L 
 1 for a fixed
R. Then, the formula for the delta function yields [11]

π̂(x̂) =

〈
δ

[
x − 1

β
tanh−1 x̂

] ∣∣∣∣ρ′
(

1
β

tanh−1 x̂; x̂
)∣∣∣∣

−1
〉

π(x)

=
(1 − x̂2)−1√

2πβ2Cσ2
exp

[
−(tanh−1 x̂)2

2β2Cσ2

]
,

(23)

where we have used

ρ(x; x̂) = x̂ − tanh(βx) .

Therefore, we have

σ2 = 〈x̂2〉π̂(x̂)

=
∫ +1

−1

dx̂√
2πβ2Cσ2

x̂2

1 − x̂2
exp

[
−(tanh−1 x̂)2

2β2Cσ2

]

for given β2C . Inserting (22), (23) into (20), we get

f = −β

2
− R

β
ln 2 +

1 − 2σ2

2
β
〈
tanh2 x̃

〉
π̃(x̃)

with

π̃(x̃) =
1√

2πβ2Cσ2
e
− x̃2

2β2Cσ2 ,

where we rewrite x̃ = βx. The theory of replica symmetry
breaking tells us that relevant value of β should not be smaller
than the “freezing point” βg , which implies the vanishing
entropy condition:

∂f

∂β
= − 1

2
+

2
β2

gC
ln 2

+
1 − 2σ2

2
〈
tanh2 x̃ (1 + 2x̃ csch x̃ sech x̃)

〉
π̃(x̃)

= 0 .

Accordingly, it is convenient for us to define a scaling invariant
parameter α = β2

gC , and to rewrite the variance σ̃2 = ασ2

for simplicity. Introducing these newly defined parameters, the
above results could be summarized as follows. Given R and
L, we find

f =

√
R

L

[
−1

2

√
α

2
− ln 2

√
2
α

+
√

α

2

(
1
2
− σ̃2

α

)
〈tanh2 x̃〉π̃(x̃)

]

with

σ̃2 = α 〈x̂2〉π̂(x̂) ,

where the condition

− 1
2

+
2
α

ln 2

+
(

1
2
− σ̃2

α

)〈
tanh2 x̃ (1 + 2x̃ csch x̃ sech x̃)

〉
π̃(x̃)

= 0

(24)
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holds [12]. Here we denote

〈 · 〉π̃(x̃) =
∫ ∞

−∞

dx̃√
2πσ̃2

exp
[
− x̃2

2σ̃2

]
( · ) ,

〈 · 〉π̂(x̂) =
∫ +1

−1

dx̂√
2πσ̃2

(1 − x̂2)−1 exp
[
−(tanh−1 x̂)2

2σ̃2

]
( · ) .

Note that the relation D = (1+f)/2 holds at the vanishing
entropy condition (24) [3]. Finally, we obtain the main result
(4) in Section III in the limit L → ∞, when we use proper
notations for the variables and the name of the function.

VI. CONCLUSION

This article provides a system-level perspective for large-
scale sensor networks. The decentralized sensing problem
argued in this article was first addressed by Berger and
his collaborators. In the present work, we imposed strict
restrictions for the decoding stage to give a practical scheme
to analyze a class of low-complexity quantization methods in
the given finite data rate. Surprisingly, our results show the
existence of threshold level of noise of which the optimal
levels of decentralization changes. Future work includes the
theoretical derivation of the threshold level p c where R goes
to infinity, as well as the implementation problem.
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