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ABSTRACT

Statistical behavior of ensembles of nonlinearly coupled elements driven by external noise is studied
on the basis of nonlinear Fokker-Planck equations. The models incorporate two kinds of noise, the
Langevin noise and the colored noise introduced in the coupling strength, and time delays. Various
types of nonequilibrium phase transitions including Hopf bifurcations and transitions between limit
cycle and chaos are shown to occur as the noise level is changed.

I. INTRODUCTION

In recent years nonlinear phenomena involving noise
have been attracting much attention in wide areas of
science and technology because of their ubiquity and
potential applicability [1, 2]. The concept of noise,
indeed,plays an important role not only in statistical
physics and its related fields of physical science but
also in wider research areas of natural as well as social
sciences. In statistical mechanics, noise is often intro-
duced into dynamical equations for physical systems
in contact with a heat bath to study irreversible phe-
nomena such as relaxation processes to equilibrium
states. One then is led to deal with a stochastic pro-
cess such as the one described by a stochastic differ-
ential equation or Langevin equation, where mostly
Markovian approximations are considered for the sake
of convenience.

Noise playing the role of temperature is usually
viewed as deteriorating the degree of coherence or
order that is generated by a certain type of interac-
tions between elements in physical systems. A typical
example is thermodynamic phase transition phenom-
ena such as ferromagnetic-paramagnetic transitions,
where the spontaneous magnetization that occurs as
a result of ferromagnetic couplings between spins or
a certain nonlinear elements decreases to vanish, as
temperature is increased beyond the Curie tempera-
ture.

A favorable aspect of effects of noise arising from its
counterintuitive influences, however, is known to man-
ifest itself in nonlinear phenomena such as phase syn-
chronization of chaotic systems [6] and stochastic res-
onance [2, 4]. When a coupled system of two chaotic
oscillators is subjected to noise, a certain amount of
noise can assist the generating of phase synchroniza-
tion of chaos [6].

On the other hand, phenomena of stochastic reso-

nance are observed in such a way that noise can en-
hance the response of a nonlinear system to a weak
time-periodic signal under certain conditions [2, 3].
The stochastic resonance, which shows wide appli-
cability in engineering as well as biological sciences,
has often been studied on stochastic systems exhibit-
ing bistability. The degree of stochastic resonance is
known to be enhanced in coupled bistable systems
[5]. The mechanism underlying such enhancement can
be attributed to the occurrence of a phase transition
[2, 7].

Then studying effects of noise on coupled nonlinear
systems, especially on those exhibiting phase transi-
tions is of interest in various kinds of engineering ap-
plications. As is mentioned above, a typical type of
coupled nonlinear systems exhibiting phase transition
phenomena is that of stochastic bistable elements with
ferromagnetic couplings, where the concept of sponta-
neous symmetry breaking plays an important role.

To capture essential features of the spontaneous
symmetry breaking transitions, one conveniently uses
the so-called mean field model that incorporates all-
to-all couplings, which simplifies the matter consider-
ably:

dxi

dt
= xi − x3

i +
ε

N

N∑
j=1

(xj − xi) + fi(t)

i = 1, · · ·N (1)

where N represents the total number of bistable el-
ements, ε > 0 the mean field coupling strength, and
the Langevin forces satisfy 〈fi(t)fj(t)〉 = 2Dδ(t−t′)δij

(D > 0).
The N-body Fokker-Planck equation corresponding

to the set of Langevin equation (1) is a linear equation
in the probability density. It exhibits an ergodic prop-
erty of the system in accordance with the well known
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H-theorem that ensures convergence to a unique equi-
librium density [1].

Taking the limit N → ∞ first on the N-body master
equation drastically changes the ergodic properties of
the system to enable one to write down a single-body
nonlinear Fokker-Planck equation (hereafter referred
to NFPE) that is nonlinear in the probability density
[7–9]:

∂p

∂t
= − ∂

∂x

[(
(1 − ε) x − x3 + ε

∫
xpdx

)
p

]
+ D

∂2p

∂x2

(2)
The occurrence of phase transitions, which is a re-
sult of the competition between cooperative action due
to the interactions and dissipative action of thermal
noise, can be well described in terms of such NFPE. It
emerges as a direct consequence of applying the law of
large numbers based on the scheme of the mean field
coupling. Unlike the linear Fokker-Planck equation
the NFPE is no longer expected to exhibit ergodicity
and hence gives rise to the occurrence of bifurcations
of solutions.

According to the types of interactions taken and of
the basic structures of the system such as the degree
of freedom of the Langevin equations, a rich variety of
bifurcations , in general, may occur [10].

Incorporating nonlinear couplings to induce phase
transitions, instead of diffusive type couplings as taken
in the standard ferromagnetic model, will be of inter-
est, since such nonlinear couplings as a sigmoidal func-
tion are often dealt with in neural network models of
analog neurons [11].

Furthermore, systems with time delays are ubiqui-
tously found in the real world and have many appli-
cations in engineering problems [12, 15, 16]. Phase
transitions in stochastic delay systems, however, have
been less studied. In this article we deal with several
types of NFPEs, including a generalized NFPE corre-
sponding to stochastic delay differential equations, for
solvable models that incorporate nonlinear couplings
to study a variety of noise driven phenomena that are
brought about as a result of the occurrence of various
kinds of phase transitions.

II. THERMODYNAMIC TYPE PHASE
TRANSITIONS

We consider a system of N-elements coupled via
nonlinear global interactions subjected to white noise
whose dynamics is described by a set of Langevin
equations:

dxi

dt
= −xi +

N∑
j=1

JijV (xj) + fi(t) , i = 1 . . . N (3)

,where the Langevin noise fi(t) is given in the same
way as in eq.(1) and V (x) denotes an appropriate non-

linear function specifying the nonlinear couplings. We
assume boundedness of the V (x) such as in V (x) =
tanh(βx) and V (x) = sin(x) for the sake of simplicity.
The mean field coupling strengths Jij of interest may
be given either by the ferromagnetic type Jij = ε/N
or Jij = ε/N

∑p
μ=1 ξμ

i ξμ
j , which is often used as repre-

senting synapse efficacies based on the Hebb learning
rule in models of associative memory neural networks
with ξμ

i (= ±1, μ = 1 . . . p) representing memory pat-
terns.

Choosing a sigmoidal function for the V (x) leads
to network model equations of analog neurons, which
were extensively studied in the case without noise. In
particular, by taking the coupling strengths Jij with
the memory patterns ξμ

i analyzes of the properties of
associative memory models were conducted to quan-
titatively investigate behaviors of the retrieval state
that occurs as a result of phase transitions [11, 13, 14].

In the present paper, for the sake of simplicity, we
assume that V (x) is odd for the purpose of investigat-
ing the phenomenon of spontaneous symmetry break-
ing and that the coupling strengths take the form of
the ferromagnetic type : Jij = ε/N . When taking the
limit N → ∞ , the N-body Fokker-Planck equation
corresponding to eq. (3) reduces to the following sin-
gle body NFPE for the empirical probability density:

∂p

∂t
= − ∂

∂x
[{−x + εX(t)}p] + D

∂2p

∂x2
(4)

X(t) =
∫

V (x)p(x, t)dx (5)

It is noted that this equation has a characteristic fea-
ture that one can separate between the motions of the
first moment 〈x〉t and the second moment of the prob-
ability density around the mean, although the former
is affected by the latter via the term X(t) arising from
the couplings. Indeed, setting

x = 〈x〉t + z (6)

we have the time evolution equation for the mean:

d

dt
〈x〉t = −〈x〉t + εX(t) (7)

and for the probability density p̃(z, t):

∂p̃(z, t)
∂t

= − ∂

∂z
[−zp̃] + D

∂2p̃

∂z2
(8)

We see that long time behaviors of the system can
be described by the dynamics of the mean 〈x〉t, since
the linear Fokker-Planck equation of the O-U process
simply yields a Gaussian distribution for long times.
Assuming the initial condition p̃(z, t) = δ(z) one has

p̃(z, t) =
1√

2πS(t)
exp

(
− z2

2S(t)

)
(9)
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with S(t) = D
(
1 − e−2t

)
. Then X(t) is given as

X(t) =
∫

V (z + 〈x〉t) 1√
2πS(t)

exp
(
− z2

2S(t)

)
dz

(10)
As far as one considers the system to be started with

the initial condition p(x, t) = δ(x− x0), the time evo-
lution of the mean 〈x〉t can exhaustively be described
by the equations (7) and (10) with an initial condition
〈x〉t = x0.

Equilibrium solutions to eq.(7) is given by solving
〈x〉t=∞ = εX(t = ∞). Since 〈x〉t = 0 satisfies the
equation (7) with (10), we expand the nonlinear term
X(t) in eq.(7) with respect to 〈x〉t around 〈x〉t=∞ = 0
to obtain the approximated equation up to third order
of 〈x〉t:

d〈x〉t
dt

= −〈x〉t + ε〈x〉t
∫

V ′(z)p̃(z, t)dz

+
ε

6
〈x〉3t

∫
V (3)(z)p̃(z, t)dz (11)

Stability switch is seen to occur, as the noise intensity
D is varied, at the point D = Dc where Dc satisfies

−1 + ε

∫
V ′(z)p̃(z, t = ∞)dz = 0. (12)

In other words, while for

−1 + ε

∫
V ′(z)p̃(z, t = ∞)dz < 0,

〈x〉t=∞ = 0 is stable, for

−1 + ε

∫
V ′(z)p̃(z, t = ∞)dz > 0

the 〈x〉t=∞ = 0 loses its stability and the system un-
dergoing a pitchfork bifurcation exhibits nonzero value
of 〈x〉t. Then we have a ferromagnetic-paramagnetic
transition at D = Dc.

III. CONTROLLING LIMIT CYCLE AND
CHAOTIC ATTRACTORS WITH NOISE

The model based on the one- dimensional dynam-
ical elements in the preceding section can easily be
extended to a system of multi-dimensional dynamical
elements to study the occurrence of nonequilibrium
phase transitions. Such a model of interest with non-
linear couplings is given by the following set of coupled

Langevin equations [10]:

dx(i)

dt
= −b1x

(i)

+
N∑

j=1

J1V1

(
a11x

(j) + a12y
(j) + a13z

(j)
)

+ f
(i)
1 (t)

dy(i)

dt
= −b2y

(i)

+
N∑

j=1

J2V2

(
a21x

(j) + a22y
(j) + a23z

(j)
)

+ f
(i)
2 (t)

dz(i)

dt
= −b3z

(i)

+
N∑

j=1

J3V3

(
a31x

(j) + a32y
(j) + a33z

(j)
)

+ f
(i)
3 (t),

i = 1 . . . N (13)

〈f (i)
k (t)f (j)

l (t′)〉
= 2Dkδ(t − t′)δijδkl (Dk > 0), b1, b2, b3 > 0,(14)

,where akl and bk are constants, and Vk representing
nonlinear couplings is assumed to be bounded func-
tions as before . We assume the mean field coupling
strengths Jk to be given by

Jk =
1
N

(
εk + ε

(i)
k

)
k = 1 . . . 3 (15)

where εk are constants, and ε
(i)
k represent appropri-

ately defined colored noise in the coupling strength.
For simplicity we take ε

(i)
1 = ε

(i)
2 = 0 and assume the

Ornstein-Uhlenbeck process for ε
(i)
3 :

d

dt
ε
(i)
3 = −γε

(i)
3 + f i

ε(t) (16)

〈f (i)
ε (t)f (j)

ε (t′)〉 = 2D4δ(t − t′)δij (γ > 0, D4 ≥ 0)

In the absence of noise, an appropriate parameter
setting for akl in eq.(13) yields limit-cycle or chaotic
oscillations. Introduction of any small amount of ex-
ternal noise (Dk > 0, k = 1, 2, 3) into the system
would bring about ergodicity of the stochastic sys-
tem to prevent oscillatory motions of averaged physi-
cal quantities from occurring, if N is finite. Taking the
thermodynamic limit N → ∞ transforms the above
set of equation into the NFPE describing the time
evolution of the empirical probability density [10]:

∂p(t, x, y, z, ε)
∂t

= − ∂

∂x
[(−b1x + ε1〈V1〉) p] − ∂

∂y
[(−b2y + ε2〈V2〉) p]

− ∂

∂z
[(−b3z + (ε3 + ε)〈V3〉) p] − ∂

∂ε
[−γεp]

+
(

D1
∂2

∂x2
+ D2

∂2

∂y2
+ D3

∂2

∂z2
+ D4

∂2

∂ε2

)
p (17)
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with

〈Vk〉
=

∫
V (ak1x + ak2y + ak3z) p(t, x, y, z, ε)dxdydzdε

(18)

The long time behavior of the solutions to the above
NFPE can be confirmed to be described by Gaus-
sian distributions, using an H-theorem [10]. Then
it suffices to evaluate the first and second moments
of the variables for an exhaustive description of the
macroscopic properties of the system for large times.
Choosing Vk(x) = sin(x) for simplicity and numer-
ically solving the resultant differential equation of
those moments [11], we observe the occurrence of bi-
furcation phenomena with a change in the noise levels
Dk > 0, k = 1, 2, 3, 4 for two cases: (1)D1 = D2 =
D3(= D), D4 = 0 and (2) D = 0, D4 > 0. Figure
1 depicts the variation of the largest Lyapunov ex-
ponent λM plotted against D in the case (1). As D
is increased from D = 0 , for which the system ex-
hibits chaotic oscillations, the system repeatedly un-
dergoes transitions from chaos to limit cycle as well
as those of the reverse direction to eventually set-
tle into fixed point type attractors. For sufficiently
large D the system exhibits the paramagnetic phase
that occurs with D passing through the ferromagnetic-
paramagnetic transition point Dp−F ≈ 0.337. In
the case (2), where the coupling noise D4 is present,
the system also repeatedly undergoes transitions from

FIG. 1: The largest Liapunov exponents λM plotted
against the noise strength D for the stochastic system
(13) with Vk(x) = sin x ( case(1) ). A positive value of
λM implies that the motion is chaotic. a11 = 1.0, a12 =
−1.0, a13 = 0.1, a21 = 1.0, a22 = 0.5, a23 = 0.1, a31 =
−3.0, a32 = 0.6, a33 = 0.93, D4 = 0, ε1 = ε2 = 1.55, ε3 =
3ε1, b1 = b2 = 1, b3 = 1 .

limit cycle to chaos and then to limit cycle before fi-
nally entering a chaotic phase, as is shown in Fig.2. It
is worth noting that no matter how large the value of
D4, the ultimate chaotic phase remains in existence.

IV. NONEQUILIBRIUM PHASE
TRANSITIONS IN NONLINEARLY COUPLED

STOCHASTIC SYSTEMS WITH TIME
DELAYS

We turn to consider a time delayed system given by
the following set of stochastic delay differential equa-
tions (SDDE)

dxi(t)
dt

= −b1xi(t) − b2xi(t − τ)

+
ε

N

N∑
j=1

V (xj(t − τV )) + fi(t), i = 1 . . . N

〈fi(t)fj(t′)〉 = 2Dδ(t − t′)δij (D ≥ 0) (19)

where the delay times τ ≥ 0 and τV ≥ 0 are intro-
duced, and b1 ≥ 0, b2 ≥ 0 and ε > 0 are constants.
We assume the initial condition to be appropriately
given for -Max {τ, τV } ≤ t ≤ 0.

Then the generalized NFPE corresponding to
eq.(19) that is obtained for the empirical probability
density p(x, t) in the thermodynamic limit N → ∞

FIG. 2: The largest Liapunov exponents λM plotted
against the noise strength D4 for the stochastic systems
(13) with Vk(x) = sin x ( case(2) ). aij(i, j = 1, · · · 3)
are the same as in Fig.1 and D = 0, ε1 = ε2 = 1.7, ε3 =
3ε1, b1 = b2 = 1, b3 = 2, γ = 0.2 .
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FIG. 3: Phase diagram on the time delay(τ) - noise
strength(D) plane for the delayed stochastic systems (19)
with Vk(x) = sin x, b1 = 1, b2 = 2, ε = 4 . The phase
boudary Dp denotes the onset of the ferromagnetic phase
via a pitchfork bifurcation and DH corresponds to a Hopf
bifurcation. D′

H denotes the occurrence of a subcritical
Hopf bifurcation that occurs on the branch of the nonzero
fixed point solution generated via an unstable pitch-fork
bifurcation. At D = DS the limit cycle oscillations under-
goes a saddle node type bifurcation to vanish with a finite
amplitude of oscillation. The oscillatory and ferromagnetic
phases coexist in the region DS < D < D′

H , leading to the
occurrence of a hysterisis phenomenon.

reads

∂p(x, t)
∂t

= b1
∂

∂x

(
xp

) − ∂

∂x

[
εp

∫
V (y)p(y, t − τV )dy

]

− ∂

∂x

[
p

∫
−b2yp(y, t − τ |x, t)dy

]

+D
∂2

∂x2
p (20)

where p(y, t− τ |x, t) represents the conditional proba-
bility density of X(t− τ) = y at time t− τ given that
X(t) = x at time t [15]. The equation for the first
moment 〈x(t)〉 is obtained as

d

dt
〈x(t)〉 = −b1〈x(t)〉 − b2〈x(t − τ)〉 + ε〈V (x(t − τV ))〉

(21)

where 〈V (x(t − τV ))〉 represents the average of V
with respect to p(x, t − τV ). For large times p(x, t)
can be expected to be Gaussian with mean 〈x(t)〉 and

variance σ2 , which is given by [16]

σ2 = D
b2 sin

(
τ
√

b2
2 − b2

1

)
+

√
b2
2 − b2

1√
b2
2 − b2

1

[
b1 + b2 cos

(
τ
√

b2
2 − b2

1

)] (22)

in the case of b1 < b2 ,with which we are concerned in
the present paper. In this case the delay time τ has
to satisfy

τ < τc =
cos−1(−b1

b2
)√

b2
2 − b2

1

,

because the second moment of the fluctuation under
the stationarity condition diverges to infinity as τ ap-
proaches τc. Setting V (x) = sin x leads to

〈V (x(t − τV ))〉 = exp
(
− σ2

2

)
sin[x(t − τV )] .

Assuming τV = 0 for simplicity, we solve eq.(21) for
various values of τ and D with b1, b2 and ε kept fixed.
We find not only fixed point type solutions but also
limit cycle type ones, which are summarized into the
phase diagram on the τ − D plane depicted in Fig.3.

When τ is fixed small, the system undergoes a pitch-
fork bifurcation as D is changed. When, on the other
hand, τ is larger than a certain value a Hopf bifur-
cation occurs for the system to settle into a limit cy-
cle type attractor below a critical value of DH . The
critical values of Dp and DH where 〈x〉 = 0 lose its
stability can be determined from the linear stability
analysis of eq.(21). We note that a hysterisis phe-
nomenon occurs between the oscillatory phase and the
ferromagnetic one.

V. CONCLUSION

We have shown that the NFPE approach is very
useful for studying the occurrence of various types
of phase transitions including nonequilibrium phase
transitions associated with limit cycle and chaotic at-
tractors in noisy coupled systems of large size. The re-
sults imply that noise can be employed to control the
dynamical behavior of nonlinear systems in a quali-
tative sense by generating transitions between several
types of attractors. Time delay has been found to play
an important role in the sense that types of attractors
expected to appear are determined by a combination
of delay τ and noise level D .
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