
Behavioral Partitioning in a
Hierarchical Mixture of Experts using

K-Best-Experts Algorithm

Mahdi Milani Fard
ECE department,

University of Tehran, Iran
m.milanifard@ece.ut.ac.ir

Amir-Hossein Bakhtiary
ECE department,

University of Tehran, Iran
a.bakhtiary@ece.ut.ac.ir

Abstract

In recent years methods for combining multiple
experts (Multi Expert Systems, MES) have been used to
solve different problems of classification and regression.
In particular Hierarchical Mixture of Experts (HME) has
been widely studied. This paper presents a novel method
which divides the problem space into behaviorally
portioned subsets using K-Best-Experts algorithm and
then uses the HME structure to assign an expert to each
subset. The gates used in the HME structure are Support
Vector Machines which are trained to route each problem
to the best fitting expert. The method is implemented and
tested on the DELVE1 framework and is compared with
other similar methods.

Keywords: Multi Expert, Hierarchical Mixture of
Experts, Behavioral Partitioning

1. Introduction

In the last decade there has been a great deal of study
on different aspects of Multi Expert Systems (MES). MES
is proved to produce much better results compared to
single expert systems [1,2,4,6,7]. Many works have
focused on the fusion mechanisms used to combine the
results of different experts [10-17] while some others
focused on different partitioning mechanisms [7,8,9]. The
experts used in MES models can be of any type. Most
studies, however, have focused on classifier combination
methods.

There are two different views toward MES. Some
methods try to use different experts with different
structures and learning parameters and train all of them on
the same domain. Then they use fusion mechanisms to
combine the results of different experts and produce a
more confident result. This method is usually useful with
classifiers where one can calculate the confidence level of
each expert. With enough data available, statistical
methods can be used in fusion of the results [10,15,16].

1 DELVE - Data for Evaluating Learning in Valid Experiments;
developed at University of Toronto.

Some other works, on the other hand, try to divide the
problem space into smaller subsets and then use a
different expert for each subset [1,7,8,9]. Here, the experts
might be homogeneous or heterogeneous. This paper
deals with this type of MES.

Hierarchical Mixtures of Experts (HME) are among
the most studied types of MES structures [3,4,5]. HME
consists of a tree structure system in which leaves are
problem experts and internal nodes are combiners or gates
(Figure 1). Most HME systems use simple models both
for experts and gates. A common choice is a Generalized
Linear Model (GLIM) which is a linear model with a
single nonlinearity at the output:

)(xUfy ii = (1)

where iU is a weight matrix and f is a fixed continuous
nonlinearity [3].

A gating node in an HME could be either a classifier or
a combiner which guides the selection or fusion
mechanism respectively. Some methods use a simple
weighted sum [1,3,12], and some others use linear
classifiers [1].

Expert Expert

Gate

x x

x
Expert Expert

Gate

x x

x

Gate

x

y

Figure 1. Hierarchical Mixture of Experts

106

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

Both experts and gates are usually simple models to
simplify the training methods. This is because in a
conventional HME, the parameters of the experts and
gates are correlated and thus cannot be adjusted
separately. Even with simple GLIM experts and GLIM
gates, the equations are so complicated that simple
gradient descent is too slow for practical usage and might
not provide good results [3]. Various methods, such as
EM algorithm [3,4], are developed to overcome this
problem for simple structures. However with the simple
models, the structure has a limited capacity of
generalization.

Even with simple learning models like GLIM’s, HME
has shown to be quite useful. The results have shown that
HME is among the best ensemble method developed for
learning problems considering both the response time and
the quality of the results [1].

Here we focus on an HME structure in which gates are
general selectors (classifiers) and experts are general
learning models. We use complex models both for experts
and gates and provide means to train them. The HME
discussed here is used on regression problems, though it
can be slightly altered to work on classification domain as
well.

Unlike other methods used in HME structures, the
method presented in this paper tries to separate different
steps of training for a regression problem. First we use
behavioral partitioning to divide the problem space and
train the experts accordingly. Then we use a greedy
algorithm to create the hierarchy structure and finally we
use SVM to train the gates.

One might argue that these steps are inherently related
to each other and their parameters cannot be set
separately. Although it might be difficult to prove,
behavioral partitioning seems to functionally separate
these steps. This works around the assumption of an
optimum partitioning, which lets us ignore the relations
between different steps.

2. Behavioral Partitioning in HME

A. Behavioral Partitioning
Here we use a method for dividing the problem space

into subsets each of which is handled by a separate expert.
Behavioral partitioning is used here as the main approach,
which uses the results produced by the experts as a means
to divide the problem space [7,9].

Here the K-Best-Expert algorithm (KBE) is used. KBE
slightly mimics a method used in Vector Quantization
problem (VQ).

The algorithm is as follows:

1) Train each expert with a few random
samples from the training data.

2) For each pair (x, y) in the training
data:
a) Feed x to all experts and get

the result yi of each expert.
b) Find the k nearest results to

the target y and train the
corresponding experts with the
pair (x, y).

3) Repeat step 2 for n times.

Figure 2. K-Best-Experts algorithm

The algorithm starts by training the experts with
random samples. This will result in a set of semi trained
experts all of which can then compete to handle different
parts of the input space. This prevents the problem of
dead agents with behavioral partitioning [7,9]. The
algorithm then simply uses each sample to train the k best
fitting expert. With k bigger than 1, this introduces soft
margins in the partitions.

As the process continues each expert gets trained in a
subset of the problem space for which it is best fit. To
prevent the problem of over-fitting we use early stopping
method (not included in the above algorithm) by dividing
the training data into two parts, one of which is used as
the validation data for early stopping. This validation data
is also used in the next steps of the training.

Although we have not trained a selector here, the
problem space is implicitly divided into regions which are
behaviorally separated. This method is used in a few other
works and seems to produce good results [7,9].

In KBE, experts can be thought as learning agents,
each trying to maximize its usage. The random bias at the
beginning of the algorithm spreads these agents randomly
in the problem space. The agents compete to produce the
correct target value for each sample and the best k agents
are awarded by letting them use the sample as the training
data. If k in KBE is small, the agents are trained locally.
However, if k is a large number most agents are trained
with the same data and the resulting system is no better
than a single agent one. Of course with heterogeneous
agents and for classification purposes, this might be a
good choice [10,11,12].

B. Creating The Hierarchy
The next step is to create a hierarchy for the HME

structure. The idea used here is to create a hierarchy
which will result in the minimum possibility of a miss-
selection. For that, we need to create a structure in which

107

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

wrong decisions at the gates will result in the selection of
fairly similar experts to the optimum one. We do this by
placing similar experts next to each other in the hierarchy.
Consequently, even if the gating mechanism does not
work properly, there is still a chance that a good expert is
chosen.

The algorithm used here is in parts similar to the well-
known Huffman compression algorithm. The algorithm is
as follows:

1) For each expert allocate a node (a
leaf).

2) For each pair (x, y) find the 2 best
experts and create a relation link
between the corresponding nodes.

3) While there are more than one
unmarked node left:
a) Find the pair of nodes with

maximum number of links and
combine them: create a parent
internal node (a gate) and place
the pair under this node. The
links are then moved to the
parent node and the child nodes
are marked.

Figure 3. Hierarchy creation algorithm

The algorithm first creates relation links between
experts trained in the last phase. These links are used as a
measure of similarity between experts. Large number of
links indicates that the experts work on similar domains.
So the algorithm tries to place such nodes next to each
other in the hierarchy. The last step of the algorithm finds
the most related nodes and combines them into an internal
node which is a selector gate.

This simple greedy algorithm results in a tree structure
in which the distance between heavily linked experts is
minimized. Although this does not give an optimum
solution, it is sufficient for its application in HME
structure.

C. Selection Mechanism
The next step is to train the gates at the internal nodes

of the HME structure. As we separated the expert training
phase, we can use any type of classifier here. Even
complex models such as Support Vector Machines can be
easily used and trained in such structure. Regardless of the
type of the classifier we use, the algorithm to train the
gates is fairly simple:

1) For each pair (x, y) find the best
experts.

2) Identify the path from the root of
the hierarchy to the best expert and
train only the gates on the path to
select the right choice.

Figure 4. Gate training algorithm

The samples here could be only the validation data
from the first phase of training or the whole training data
provided to the HME. By choosing the validation data as
the input to this phase, we eliminate the chance of over-
training of the selectors.

Here only the gates on the path from root to the best
experts are trained. The gate at the root node is trained
with the all samples; whereas as the nodes in other levels
are only trained with small portion of the data. This is
suitable as the selectors are trained only locally with the
samples that their child experts are fit to work with. This
works around the idea of local learning algorithms
[7,9,21,22]. However, this causes a problem if the input to
the internal nodes is sparse and the training might not be
possible. This is a common problem with divide and
conquer algorithms, which is due to the fact the dividing
the samples usually increases the variance of the data [3].
In such cases, we might want to provide the sample to
more than a single path, from the root to the k best
experts.

If we use SVM as the selector gate, then we can gather
the training data and train the SVM at the end with all the
related samples. This would be a fast method as SVM is
shown to be fast and reliable for selection mechanisms.

To ensure the performance of the algorithm we will do
a brief study on the expected depth of an expert in the
HME hierarchy. The depth of an expert will be the
number of selectors on the path from the root to the expert
node. If the number if proportional to log(n) where n is
the number of experts, then we could ensure that the there
is a small number of selectors on the way, and thus there
is a small chance of a miss-selection.

To compute the expected depth of an expert, we shall
make an assumption about the way the algorithm works.
We assume that in each step of the merging, it is equally
likely to choose any pair of unmarked nodes in the
working set. We can especially use this assumption in a
modification of the algorithm in which the links are
weakened after a merge by reducing the number of links
for the parent node.

Using the above assumption, we introduce a random
variable Di which is the depth of the expert Ei in the

108

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

hierarchy. We want to find E[Di]. We use an indicator
random variable Ii which is defined as follows:

} stepat merged treesof onein is Expert { iEPI ii = (2)

In step i there are n-i nodes in the working set. One of
these nodes is the root to the sub-tree which contains
expert Ei. Using the assumption mentioned above, we
calculate the probability that this node (a particular node
among the n-i unmarked nodes) is selected in step i:

ininin
in

in

in

I i -
=

--=

÷÷ł

ö
ççŁ

æ -

÷÷ł

ö
ççŁ

æ --

= 2

2
)1)((

1

2

1
1

(3)

Each time the tree containing exert Ei is selected in the
merging step, Di is increased by one. So we could use the
indicator random variable Ii to calculate Di:

ååå
=

-

=

-

=

=
-

==
n

i

n

i

n

i
ii iin

ID
1

1

0

1

0

122
(4)

Using an integral approximation we get:

ò =»
n

i ndx
x

D
1

)lg(212 (5)

This indicates that the expected depth of an expert is
proportional to the logarithm of the number of experts
used in the HME structure, which further proves the
efficiency of the algorithm.

D. HME usage
Now that we have trained both the experts and the

selector gates, we can use the HME for the regression
problem. Given and input x, we first feed it to the root
element of the HME. As a selector, the root will choose
one of its children as the desired one. Then we feed x to
the chosen child and the process goes on, until we reach a
leaf in HME which is a problem expert. Finally we use the
selected expert to produce the final result.

It is important to notice that here only one of the
experts is used for each problem. This is not the case for
other models in which gates are combiners like the ones
that use adding or voting mechanisms in the gates [1].
With complex models using combiner gates is not a good
choice as it may need all the experts to produce the
output, which might need a lot of computation or may
require parallel computing.

3. Implementation Results

The HME structure proposed here was implemented in
C++ using the annie [23] and svmtl [24] libraries with a 3
layer MLP neural networks for the experts and SVMc with
RBF kernels as the selector gates. The implementation is a
general purpose one and is intended to work well in the
areas where there is a little knowledge about the problem
domain. The work is tested on the DELVE [25]
framework which provides a set of datasets and tools to
test learning algorithms. DELVE is especially useful for
comparison purposes and statistical analysis of results.
For regression purpose, it provides both natural and
synthetic test cases. For each test case, it provides a
training set (a set of training pairs (x, y)) and a testing set,
along which the method is tested to see how good it is to
predict the target values. Well known learning methods
have been developed and tested on DELVE and the
results are easily available and can be used for comparison
[1].

The work is tested on a few datasets of the DELVE
framework. For different datasets, settings and parameters
of the experts were chosen according to the number of
training samples and the problem size (Table 1). To test
different aspects of the proposed method, a variation of
the method with an optimum selection mechanism (OSM)
is also tested. OSM uses the actual target values in the
selection mechanism and returns the nearest result of
experts to the target. This is not a real regression system,
as it uses the result, but it’s a good means to study
different parts of the algorithm separately.

The system was tested on both natural and synthetic
test cases with different characteristics. The following
datasets were used in the comparison [1]:

• boston: The Boston housing data contains information
about housing in the Boston Massachusetts area
collected by the United States Census Service.

• kin: The Kin family of data sets consists of different
data sets which share the same model but which have
different numbers of inputs and differing levels of noise
and degrees of linearity. The model for the Kin family
is a simulation of the forward dynamics of an 8 link all-
revolute robot arm. The task in all data sets is to predict
the proximity of the end-effectors of the arm from a
target.

DELVE framework provides tools to find the
standardized estimated expected loss of a regression
mechanism. These values are calculated for different
methods and can be used as a means to compare their
performance.

109

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE I
SYSTEM PARAMETERS FOR DIFFERENT DLEVE TEST CASES

INPU
T

OUTP
UT

SIZE
OF

TRAINI
NG
SET

NUMB
ER OF
EXPER

TS

K
IN
KB
E

INTERN
AL

NODES
IN MLP
EXPERS

boston 8/1
32 4 2 5

64 8 2 5
128 10 2 5

kin-fm
linear 32/1

64 14 3 8

128 12 3 8
256 10 3 8

kin-nm
nonlinea

r
32/1

64 14 3 12

128 12 3 12
256 10 3 12

There many different methods implemented on the
DELVE framework for the test cases we chose for this
paper. We chose a few methods among them that are
closely related to the area we are working on [1]:

• kbe: K-Best-Expert Algorithm in HME structure
• osm: Optimal Selection Mechanism for KBE
• knn-cv-1: K-Nearest-Neighbor model selected by

leave-one-out cross validation
• hme-el-1: A committee of hierarchical mixtures-of-

experts trained by early stopping
• mlp-ese-1: A committee of multi-layer perceptions

trained with early stopping
• lin-2: A generalized linear model for classification or

regression in which the parameters were trained using
the macopt [1] conjugate gradient

The results of the tests on the DELVE framework are
summarized in Table I,II, III and IV. The values presented
here are standardized squared error loss (see
DELVE[25] for concrete definition and the significance
levels) for each learning method which is relatively a good
measure for comparison between different methods.

The results indicate that the system works well in
problems with complex nonlinear behaviors. But for most
test cases, it produces relatively poor results.

The OSM system, on the other hand, seems to highly
outperform all the tested methods, even with small
number of experts. This is not surprising as the method
uses the target values to guide the selection. However, it
also shows that the behavioral partitioning mechanism
used to train the experts, is a good method and the
problem lies down on the selection mechanism used in
KBE.

TABLE II
RESULTS ON THE BOSTON DATA SET

B
o
s
t
o
n
/
P
r
i
c
e

method 32 64 128

kbe 0.405 0.239 0.206

osm 0.124 0.061 0.027

knn-cv-1 0.522 0.425 0.344

mlp-ese-1 0.407 0.258 0.210

hme-el-1 0.322 0.210 0.162

lin-2 0.525 0.326 0.281

TABLE III
RESULTS ON THE KIN-32FM DATA SET

K
I
N
-
3
2
f
m
/
d
i
s
t

method 64 128 256

kbe 0.290 0.201 0.165

osm 0.021 0.016 0.011

knn-cv-1 0.705 0.618 0.544

mlp-ese-1 0.187 0.124 0.105

hme-el-1 0.272 0.181 0.136

lin-2 0.182 0.124 0.107

TABLE IV
RESULTS ON THE KIN32-NM DATA SET

K
I
n
-
3
2
N
M
/
d
i
s
t

method 64 128 256

kbe 1.112 0.898 0.803

osm 0.183 0.104 0.086

knn-cv-1 0.965 0.926 0.910

mlp-ese-1 0.936 0.886 0.813

hme-el-1 1.115 0.919 0.846

lin-2 1.444 1.001 0.847

KBE works poorly when the size of training data is
small. As stated before, this is due to the problem of
sparse input data to the selector gates. Results on the kin-
32fm dataset (fairly linear problem with small noise) show
that KBE also works poorly on a system with linear
behavior. Using liner (or generalized linear) experts might
help overcome this problem. Though, it further shows that
the overall performance of the system is not as good as the
hme-el-1 method in terms of the errors on the datasets.

110

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

4. Conclusion

The method introduced in this paper tries to overcome
the problems of HME learning algorithm by separating
different learning steps. With the use of behavioral
partitioning, there is no need to have the selection model
trained along with the experts. This helps simplify the
learning methods and yet creates the chance to use more
complex learning models both for experts and gates.

Although there are many well established concrete
mathematical solutions to the training problems of HME
structures, ad-hoc methods such as the one proposed here
might be useful in domains where simple mathematical
models do not suffice or their assumptions are not valid.
Complex experts can highly improve the learning capacity
of the system which might be needed in complex highly
nonlinear problems.

Although the implementation here uses homogeneous
experts at the leaves of the hierarchy, the structure can
hold totally heterogeneous experts. A mixture of linear
experts and MLP neural networks might be useful if the
problem shows non uniform behavior in different subsets
of the problem space. This can be seen as an obvious
future work on this paper which needs further
considerations in the algorithms.

The behavioral partitioning method used here needs to
be theoretically studied. This would generally be a game
theory problem in which experts compete to handle
different subsets of the problem space. It should also be
checked to see if there is a Nash Equilibrium point where
the ensemble gets to a stable state [9].

111

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

References

[1] Waterhouse, S.R., “Classification and regression
using mixtures of experts”, Ph.D., Thesis,
Department of Engineering, Cambridge University,
1997.

[2] G. Valentini and F. Masulli, “Ensembles of learning
machines”, In M. Marinaro and R. Tagliaferri,
editors, 13th Italian Workshop on Neural Nets,
volume 2486 of Lecture Notes in Computer Science,
pages 3--22. Springer-Verlag, 2002.

[3] Jordan, MI, & Jacobs, RA, “Hierarchical mixtures of
experts and the EM algorithm”, Neural Computation,
1994, 6, 181-214.

[4] Hinton, G. E., B. Sallans and Z. Ghahramani, “A
hierarchical community of experts”, In: Learning in
Graphical Models (M. I. Jordan, Ed.). 1998, pp.
479-- 494. Kluwer Academic Publishers.

[5] M.I. Jordan and L. Xu, “Convergence results for the
EM approach to mixtures of experts architectures”,
Neural Networks, 8:1409--1431, 1995.

[6] R. P. W. Duin, “The combining classifier: to train or
not to train?”, In Proc. of the 16th Intl. Conf. on
Pattern Recognition - ICPR 2002.

[7] Mahdi Keramati, “Competitive Behavioral
Partitioning of the Input Space for Local Experts”,
ECE Symp, University of Tehran, 2003

[8] R. Sun and T. Peterson, “Automatic partitioning for
multi-agent reinforcement learning”, From Animals
to Animats: Proceedings of the International
Conference of Simulation of Adaptive Behavior
(SAB'2000). Paris, France. MIT Press, Cambridge,
MA. 2000.

[9] Mahdi Milani Fard, “A Coevolutionary Competitive
Multi-expert System for Image Compression with
Neural Networks”, In Proc of IEEE Intl. Conf. on
Engineering of Intelligent Systems, Pakistan, 2006.

[10] L.I. Kuncheva, “A Theoretical Study on Six
Classifier Fusion Strategies”, IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 24, no. 2, pp.
281-286, Feb. 2002.

[11] Huang, Y.S., Suen, C.Y., “A Method of Combining
Multiple Classifiers: A Neural Network Approach”,
ICPR94(418-420). BibRef 9400

[12] Giorgio Fumera, Fabio Roli, “A Theoretical and
Experimental Analysis of Linear Combiners for
Multiple Classifier Systems”, IEEE Trans. Pattern
Anal. Mach. Intell. 27(6): 942-956 (2005)

[13] Giacinto, Roli F. Dynamic classifier selection based
on multiple classifier behavior. Pattern Recognition,
2001,34 (9)

[14] Marco F. Duarte and Yu-Hen Hu, “Decision Fusion
in Collaborative Sensor Networks”

[15] Ludmila I. Kuncheva, “Switching between selection
and fusion in combining classifiers: an experiment”,
IEEE Transactions on Systems, Man, and
Cybernetics, Part B 32(2): 146-156 (2002)

[16] Kittler, J.V., Alkoot, F.M, “Sum versus vote fusion
in multiple classifier systems”, PAMI(25), No. 1,
January 2003, pp. 110-115.

[17] Luigi P. et-al, “Optimizing the Error/Reject Trade-
Off for a Multi-Expert System Using the Bayesian
Combining Rule”, SSPR/SPR 1998: 716-725

[18] Yea S. Huang, Ching Y. Suen, “A Method of
Combining Multiple Experts for the Recognition of
Unconstrained Handwritten Numerals”, IEEE Trans.
Pattern Anal. Mach. Intell. 17(1): 90-94 (1995)

[19] V. Petridis, et-al, “A Bayesian Multiple Models
Combination Method for Time Series Prediction”,
Journal of Intelligent and Robotic Systems, v.31 n.1-
3, p.69-89, May -July 2001

[20] Matthias Rychetsky, et-al, “Application of
Hierarchical Mixture of Experts Networks to Engine
Knock Detection”, 5th European Congress on
Intelligent Techniques and Soft Computing,
September 08. - 11, 1997

[21] Dietrich Wcttschcrcck and Thomas Dicttcrich,
“Locally adaptive nearest neighbor algorithms”, In
Advances in Neural Information Processing Systems
6, pages 184-191, San Mateo, CA, 1994. Morgan
Kaufmann.

[22] Bottou, L., & Vapnik, “Local learning algorithms”,
Neural computation, 4(6), 888900.

[23] ANNIE – Artificial Neural Network Library.
http://annie.sourceforge.net/

[24] LIBSVMTL - a Support Vector Machine Template
Library.
http://lmb.informatik.uni-freiburg.de/lmbsoft/libsvmtl/

[25] DELVE - Data for Evaluating Learning in Valid
Experiments. Developed at University of Toronto.
http://www.cs.toronto.edu/~delve/

112

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

