
Behavioral Partitioning in a
Hierarchical Mixture of Experts using

K-Best-Experts Algorithm

Mahdi Milani Fard
ECE department, 

University of Tehran, Iran
m.milanifard@ece.ut.ac.ir 

Amir-Hossein Bakhtiary
ECE department, 

University of Tehran, Iran
a.bakhtiary@ece.ut.ac.ir

Abstract

In  recent  years  methods  for  combining  multiple  
experts (Multi Expert Systems, MES) have been used to  
solve different problems of classification and regression.  
In particular Hierarchical Mixture of Experts (HME) has  
been widely studied. This paper presents a novel method 
which  divides  the  problem  space  into  behaviorally  
portioned  subsets  using  K-Best-Experts  algorithm  and  
then uses the HME structure to assign an expert to each  
subset. The gates used in the HME structure are Support  
Vector Machines which are trained to route each problem 
to the best fitting expert. The method is implemented and  
tested on the DELVE1 framework and is compared with 
other similar methods.

Keywords:  Multi  Expert,  Hierarchical  Mixture  of  
Experts, Behavioral Partitioning

1. Introduction

In the last decade there has been a great deal of study 
on different aspects of Multi Expert Systems (MES). MES 
is  proved  to  produce  much  better  results  compared  to 
single  expert  systems  [1,2,4,6,7].  Many  works  have 
focused on the fusion mechanisms used to combine the 
results  of  different  experts  [10-17]  while  some  others 
focused on different partitioning mechanisms [7,8,9]. The 
experts  used in MES models  can be of  any type.  Most 
studies, however, have focused on classifier combination 
methods.

There  are  two  different  views  toward  MES.  Some 
methods  try  to  use  different  experts  with  different 
structures and learning parameters and train all of them on 
the  same domain.  Then they use fusion mechanisms to 
combine  the  results  of  different  experts  and  produce  a 
more confident result. This method is usually useful with 
classifiers where one can calculate the confidence level of 
each  expert.  With  enough  data  available,  statistical 
methods can be used in fusion of the results [10,15,16].

1 DELVE - Data for Evaluating Learning in Valid Experiments; 
developed at University of Toronto.

Some other works, on the other hand, try to divide the 
problem  space  into  smaller  subsets  and  then  use  a 
different expert for each subset [1,7,8,9]. Here, the experts 
might  be  homogeneous  or  heterogeneous.  This  paper 
deals with this type of MES.

Hierarchical  Mixtures  of  Experts  (HME)  are  among 
the most studied types of MES structures [3,4,5].  HME 
consists  of  a  tree  structure  system in  which leaves  are 
problem experts and internal nodes are combiners or gates 
(Figure 1).  Most HME systems use simple models both 
for experts and gates. A common choice is a Generalized 
Linear  Model  (GLIM)  which  is  a  linear  model  with  a 
single nonlinearity at the output:

)( xUfy ii = (1)

where iU  is a weight matrix and f  is a fixed continuous 
nonlinearity [3].

A gating node in an HME could be either a classifier or 
a  combiner  which  guides  the  selection  or  fusion 
mechanism  respectively.  Some  methods  use  a  simple 
weighted  sum  [1,3,12],  and  some  others  use  linear 
classifiers [1].
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Figure 1. Hierarchical Mixture of Experts
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Both experts  and gates are usually simple models to 
simplify  the  training  methods.  This  is  because  in  a 
conventional  HME,  the  parameters  of  the  experts  and 
gates  are  correlated  and  thus  cannot  be  adjusted 
separately.  Even  with simple GLIM experts  and GLIM 
gates,  the  equations  are  so  complicated  that  simple 
gradient descent is too slow for practical usage and might 
not  provide  good results  [3].  Various methods,  such as 
EM  algorithm  [3,4],  are  developed  to  overcome  this 
problem for simple structures. However with the simple 
models,  the  structure  has  a  limited  capacity  of 
generalization.

Even with simple learning models like GLIM’s, HME 
has shown to be quite useful. The results have shown that 
HME is among the best ensemble method developed for 
learning problems considering both the response time and 
the quality of the results [1].

Here we focus on an HME structure in which gates are 
general  selectors  (classifiers)  and  experts  are  general 
learning models. We use complex models both for experts 
and gates  and  provide  means to  train  them.  The  HME 
discussed here is used on regression problems, though it 
can be slightly altered to work on classification domain as 
well.

Unlike  other  methods  used  in  HME  structures,  the 
method presented in this paper tries to separate different 
steps of training for a regression problem. First  we use 
behavioral  partitioning to divide the problem space and 
train  the  experts  accordingly.  Then  we  use  a  greedy 
algorithm to create the hierarchy structure and finally we 
use SVM to train the gates.

One might argue that these steps are inherently related 
to  each  other  and  their  parameters  cannot  be  set 
separately.  Although  it  might  be  difficult  to  prove, 
behavioral  partitioning  seems  to  functionally  separate 
these  steps.  This  works  around  the  assumption  of  an 
optimum partitioning, which lets  us ignore  the relations 
between different steps.

2. Behavioral Partitioning in HME

A. Behavioral Partitioning
Here we use a method for dividing the problem space 

into subsets each of which is handled by a separate expert. 
Behavioral partitioning is used here as the main approach, 
which uses the results produced by the experts as a means 
to divide the problem space [7,9].

Here the K-Best-Expert algorithm (KBE) is used. KBE 
slightly  mimics  a  method  used  in  Vector  Quantization 
problem (VQ).

The algorithm is as follows:

1) Train each expert with a few random 
samples from the training data.

2) For each pair (x, y) in the training 
data:
a) Feed  x to all experts and get 

the result yi of each expert.
b) Find  the  k nearest  results  to 

the  target  y and  train  the 
corresponding  experts  with  the 
pair (x, y).

3) Repeat step 2 for n times.

Figure 2. K-Best-Experts algorithm

The  algorithm  starts  by  training  the  experts  with 
random samples. This will result in a set of semi trained 
experts all of which can then compete to handle different 
parts  of  the  input  space.  This  prevents  the  problem of 
dead  agents  with  behavioral  partitioning  [7,9].  The 
algorithm then simply uses each sample to train the k best 
fitting expert.  With  k bigger than 1, this introduces soft 
margins in the partitions.

As the process continues each expert gets trained in a 
subset of the problem space for which it  is best fit.  To 
prevent the problem of over-fitting we use early stopping 
method (not included in the above algorithm) by dividing 
the training data into two parts, one of which is used as 
the validation data for early stopping. This validation data 
is also used in the next steps of the training.

Although  we  have  not  trained  a  selector  here,  the 
problem space is implicitly divided into regions which are 
behaviorally separated. This method is used in a few other 
works and seems to produce good results [7,9].

In  KBE,  experts  can  be  thought  as  learning  agents, 
each trying to maximize its usage. The random bias at the 
beginning of the algorithm spreads these agents randomly 
in the problem space. The agents compete to produce the 
correct target value for each sample and the best k agents 
are awarded by letting them use the sample as the training 
data. If k in KBE is small, the agents are trained locally. 
However, if  k is a large number most agents are trained 
with the same data and the resulting system is no better 
than  a  single  agent  one.  Of  course  with  heterogeneous 
agents  and  for  classification  purposes,  this  might  be  a 
good choice [10,11,12]. 

B. Creating The Hierarchy
The next step  is  to  create  a  hierarchy for  the  HME 

structure.  The  idea  used  here  is  to  create  a  hierarchy 
which will result  in the minimum possibility of a  miss-
selection. For that, we need to create a structure in which 
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wrong decisions at the gates will result in the selection of 
fairly similar experts to the optimum one. We do this by 
placing similar experts next to each other in the hierarchy. 
Consequently,  even  if  the  gating  mechanism  does  not 
work properly, there is still a chance that a good expert is 
chosen.

The algorithm used here is in parts similar to the well-
known Huffman compression algorithm. The algorithm is 
as follows:

1) For each expert allocate a node (a 
leaf).

2) For each pair (x, y) find the 2 best 
experts and create a  relation link 
between the corresponding nodes.

3) While  there  are  more  than  one 
unmarked node left:
a) Find  the  pair  of  nodes  with 

maximum  number  of  links  and 
combine  them:  create  a  parent 
internal node (a gate) and place 
the  pair  under  this  node.  The 
links  are  then  moved  to  the 
parent node and the child nodes 
are marked.

Figure 3. Hierarchy creation algorithm

The  algorithm  first  creates  relation  links between 
experts trained in the last phase. These links are used as a 
measure of similarity between experts.  Large number of 
links indicates that the experts work on similar domains. 
So the algorithm tries to place such nodes next to each 
other in the hierarchy. The last step of the algorithm finds 
the most related nodes and combines them into an internal 
node which is a selector gate.

This simple greedy algorithm results in a tree structure 
in which the distance between heavily linked experts is 
minimized.  Although  this  does  not  give  an  optimum 
solution,  it  is  sufficient  for  its  application  in  HME 
structure.

C. Selection Mechanism 
The next step is to train the gates at the internal nodes 

of the HME structure. As we separated the expert training 
phase,  we  can  use  any  type  of  classifier  here.  Even 
complex models such as Support Vector Machines can be 
easily used and trained in such structure. Regardless of the 
type of  the classifier  we use,  the algorithm to train the 
gates is fairly simple:

1) For each pair (x,  y) find the best 
experts.

2) Identify the path from the root of 
the hierarchy to the best expert and 
train only the gates on the path to 
select the right choice.

Figure 4. Gate training algorithm

The  samples  here  could  be  only  the  validation  data 
from the first phase of training or the whole training data 
provided to the HME. By choosing the validation data as 
the input to this phase, we eliminate the chance of over-
training of the selectors.

Here only the gates on the path from root to the best 
experts are trained. The gate at the root node is trained 
with the all samples; whereas as the nodes in other levels 
are  only trained with small  portion of the data.  This is 
suitable as the selectors are trained only locally with the 
samples that their child experts are fit to work with. This 
works  around  the  idea  of  local  learning  algorithms 
[7,9,21,22]. However, this causes a problem if the input to 
the internal nodes is sparse and the training might not be 
possible.  This  is  a  common  problem  with  divide  and 
conquer algorithms, which is due to the fact the dividing 
the samples usually increases the variance of the data [3]. 
In  such cases, we might want to provide the sample to 
more  than  a  single  path,  from  the  root  to  the  k best 
experts.

If we use SVM as the selector gate, then we can gather 
the training data and train the SVM at the end with all the 
related samples. This would be a fast method as SVM is 
shown to be fast and reliable for selection mechanisms.

To ensure the performance of the algorithm we will do 
a brief study on the expected depth of an expert in the 
HME  hierarchy.  The  depth  of  an  expert  will  be  the 
number of selectors on the path from the root to the expert 
node. If the number if proportional to  log(n) where  n is 
the number of experts, then we could ensure that the there 
is a small number of selectors on the way, and thus there 
is a small chance of a miss-selection.

To compute the expected depth of an expert, we shall 
make an assumption about the way the algorithm works. 
We assume that in each step of the merging, it is equally 
likely  to  choose  any  pair  of  unmarked  nodes  in  the 
working set. We can especially use this assumption in a 
modification  of  the  algorithm  in  which  the  links  are 
weakened after a merge by reducing the number of links 
for the parent node.

Using the above assumption, we introduce a random 
variable  Di which  is  the  depth  of  the  expert  Ei in  the 
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hierarchy. We want to  find E[Di].  We use an indicator 
random variable Ii which is defined as follows:

} stepat  merged  treesof onein  is Expert { iEPI ii = (2)

In step i there are n-i nodes in the working set. One of 
these  nodes  is  the  root  to  the  sub-tree  which  contains 
expert  Ei.  Using  the  assumption  mentioned  above,  we 
calculate the probability that this node (a particular node 
among the n-i unmarked nodes) is selected in step i:
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Each time the tree containing exert Ei is selected in the 
merging step, Di is increased by one. So we could use the 
indicator random variable Ii to calculate Di:
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Using an integral approximation we get:

ò =»
n

i ndx
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1

)lg(212 (5)

This indicates that the expected depth of an expert is 
proportional  to  the  logarithm of  the  number  of  experts 
used  in  the  HME  structure,  which  further  proves  the 
efficiency of the algorithm. 

D. HME usage 
Now that  we have  trained  both  the  experts  and  the 

selector  gates,  we can use  the  HME for  the  regression 
problem. Given and input  x,  we first feed it  to the root 
element of the HME. As a selector, the root will choose 
one of its children as the desired one. Then we feed x to 
the chosen child and the process goes on, until we reach a 
leaf in HME which is a problem expert. Finally we use the 
selected expert to produce the final result.

It  is  important  to  notice  that  here  only  one  of  the 
experts is used for each problem. This is not the case for 
other models in which gates are combiners like the ones 
that  use  adding or  voting mechanisms in  the  gates  [1]. 
With complex models using combiner gates is not a good 
choice  as  it  may  need  all  the  experts  to  produce  the 
output,  which might need a  lot  of  computation or  may 
require parallel computing.

3. Implementation Results

The HME structure proposed here was implemented in 
C++ using the annie [23] and svmtl [24] libraries with a 3 
layer MLP neural networks for the experts and SVMc with 
RBF kernels as the selector gates. The implementation is a 
general purpose one and is intended to work well in the 
areas where there is a little knowledge about the problem 
domain.  The  work  is  tested  on  the  DELVE  [25] 
framework which provides a set of datasets and tools to 
test learning algorithms. DELVE is especially useful for 
comparison  purposes  and  statistical  analysis  of  results. 
For  regression  purpose,  it  provides  both  natural  and 
synthetic  test  cases.  For  each  test  case,  it  provides  a 
training set (a set of training pairs (x, y)) and a testing set, 
along which the method is tested to see how good it is to 
predict  the target  values.  Well  known learning methods 
have  been  developed  and  tested  on  DELVE  and  the 
results are easily available and can be used for comparison 
[1].

The work is tested on a few datasets of the DELVE 
framework. For different datasets, settings and parameters 
of  the experts  were chosen according to  the number of 
training samples and the problem size (Table 1). To test 
different aspects of the proposed method, a variation of 
the method with an optimum selection mechanism (OSM) 
is also tested.  OSM uses the actual target values in the 
selection  mechanism  and  returns  the  nearest  result  of 
experts to the target. This is not a real regression system, 
as  it  uses  the  result,  but  it’s  a  good  means  to  study 
different parts of the algorithm separately.

The system was tested on both natural  and synthetic 
test  cases  with  different  characteristics.  The  following 
datasets were used in the comparison [1]:

• boston: The Boston housing data contains information 
about  housing  in  the  Boston  Massachusetts  area 
collected by the United States Census Service.

• kin: The Kin family of data sets consists of different 
data sets which share the same model but which have 
different numbers of inputs and differing levels of noise 
and degrees of linearity. The model for the Kin family 
is a simulation of the forward dynamics of an 8 link all-
revolute robot arm. The task in all data sets is to predict 
the proximity of the end-effectors of the arm from a 
target.

DELVE  framework  provides  tools  to  find  the 
standardized  estimated  expected  loss  of  a  regression 
mechanism.  These  values  are  calculated  for  different 
methods  and can be  used  as  a  means to  compare  their 
performance.
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TABLE I
SYSTEM PARAMETERS FOR DIFFERENT DLEVE TEST CASES

INPU
T

OUTP
UT

SIZE 
OF 

TRAINI
NG 
SET

NUMB
ER OF 
EXPER

TS

K 
IN 
KB
E

INTERN
AL 

NODES 
IN MLP 
EXPERS

boston 8/1
32 4 2 5

64 8 2 5
128 10 2 5

kin-fm
linear 32/1

64 14 3 8

128 12 3 8
256 10 3 8

kin-nm
nonlinea

r
32/1

64 14 3 12

128 12 3 12
256 10 3 12

There  many  different  methods  implemented  on  the 
DELVE framework for the test  cases we chose for this 
paper.  We  chose  a  few methods  among them that  are 
closely related to the area we are working on [1]:

• kbe: K-Best-Expert Algorithm in HME structure
• osm: Optimal Selection Mechanism for KBE
• knn-cv-1:  K-Nearest-Neighbor  model  selected  by 

leave-one-out cross validation
• hme-el-1:  A  committee  of  hierarchical  mixtures-of-

experts trained by early stopping 
• mlp-ese-1:  A  committee  of  multi-layer  perceptions 

trained with early stopping
• lin-2: A generalized linear model for classification or 

regression in which the parameters were trained using 
the macopt [1] conjugate gradient

The results of the tests on the DELVE framework are 
summarized in Table I,II, III and IV. The values presented 
here  are   standardized  squared  error  loss (see 
DELVE[25]  for concrete  definition and the significance 
levels) for each learning method which is relatively a good 
measure for comparison between different methods. 

The  results  indicate  that  the  system  works  well  in 
problems with complex nonlinear behaviors. But for most 
test cases, it produces relatively poor results.

The OSM system, on the other hand, seems to highly 
outperform  all  the  tested  methods,  even  with  small 
number of experts.  This is not surprising as the method 
uses the target values to guide the selection. However, it 
also  shows  that  the  behavioral  partitioning  mechanism 
used  to  train  the  experts,  is  a  good  method  and  the 
problem lies  down on the selection mechanism used in 
KBE.

TABLE II
RESULTS ON THE BOSTON DATA SET

B
o
s
t
o
n
/
P
r
i
c
e

method 32 64 128

kbe 0.405 0.239 0.206

osm 0.124 0.061 0.027

knn-cv-1 0.522 0.425 0.344

mlp-ese-1 0.407 0.258 0.210

hme-el-1 0.322 0.210 0.162

lin-2 0.525 0.326 0.281

TABLE III
RESULTS ON THE KIN-32FM DATA SET

K
I
N
-
3
2
f
m
/
d
i
s
t

method 64 128 256

kbe 0.290 0.201 0.165

osm 0.021 0.016 0.011

knn-cv-1 0.705 0.618 0.544

mlp-ese-1 0.187 0.124 0.105

hme-el-1 0.272 0.181 0.136

lin-2 0.182 0.124 0.107

TABLE IV
RESULTS ON THE KIN32-NM DATA SET

K
I
n
-
3
2
N
M
/
d
i
s
t

method 64 128 256

kbe 1.112 0.898 0.803

osm 0.183 0.104 0.086

knn-cv-1 0.965 0.926 0.910

mlp-ese-1 0.936 0.886 0.813

hme-el-1 1.115 0.919 0.846

lin-2 1.444 1.001 0.847

KBE works poorly when the  size  of  training data  is 
small.  As  stated  before,  this  is  due  to  the  problem of 
sparse input data to the selector gates. Results on the kin-
32fm dataset (fairly linear problem with small noise) show 
that  KBE  also  works  poorly  on  a  system  with  linear 
behavior. Using liner (or generalized linear) experts might 
help overcome this problem. Though, it further shows that 
the overall performance of the system is not as good as the 
hme-el-1 method in terms of the errors on the datasets.
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4. Conclusion

The method introduced in this paper tries to overcome 
the  problems of  HME learning algorithm by separating 
different  learning  steps.  With  the  use  of  behavioral 
partitioning, there is no need to have the selection model 
trained  along  with  the  experts.  This  helps  simplify the 
learning methods and yet creates the chance to use more 
complex learning models both for experts and gates.

Although  there  are  many  well  established  concrete 
mathematical solutions to the training problems of HME 
structures, ad-hoc methods such as the one proposed here 
might be  useful  in domains  where  simple mathematical 
models do not suffice or their assumptions are not valid. 
Complex experts can highly improve the learning capacity 
of the system which might be needed in complex highly 
nonlinear problems. 

Although the implementation here uses homogeneous 
experts  at  the leaves  of  the hierarchy, the structure can 
hold  totally heterogeneous experts.  A mixture  of  linear 
experts and MLP neural networks might be useful if the 
problem shows non uniform behavior in different subsets 
of  the  problem space.  This  can be  seen as  an  obvious 
future  work  on  this  paper  which  needs  further 
considerations in the algorithms.

The behavioral partitioning method used here needs to 
be theoretically studied. This would generally be a game 
theory  problem  in  which  experts  compete  to  handle 
different subsets of the problem space. It should also be 
checked to see if there is a Nash Equilibrium point where 
the ensemble gets to a stable state [9].
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