1-4244-0703-6/07/$20.00 ©2007 IEEE

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Why Intervals? Why Fuzzy Numbers?
Towards a New Justification

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, Texas 79968, USA
Email: vladik @utep.edu

Abstract— The purpose of this paper is to present a new char-
acterization of the set of all intervals (and of the corresponding
sct of fuzzy numbers). This characterization is based on several
natural properties uscful in mathematical modcling; the main
of these propertics is the necessity to be able to combine (fusc)
several picces of knowledge.

I. INTERVAL UNCERTAINTY AND INTERVAIL
COMPUTATIONS: A BRIEF REMINDER

Why intervals: a practical explanation. One of the main
source of information about the physical world is measure-
ments: see, e.g., [20]. Measurements are never 100% accurate.
As a result, the result T of the measurement is, in general,
different from the (unknown) actual value = of the desired
quantity. The difference Az ' 7 — 2 between the measured
and the actual values is usually called a measurement error.

The manufacturers of a measuring device usually provide
us with an upper bound A for the (absolute value of) possible
errors, i.e., with a bound A for which we guarantee that
|Az| < A. The need for such a bound comes from the very
nature of a measurement process: if no such bound is provided,
this means that the difference between the (unknown) actual
value = and the observed value = can be as large as possible.
In other words, if we measure, say, a temperature to be 100,
in reality, this temperature could be > 10* or even > 10°
such an uncertainty is reasonable for a guess but not for a
measurement.

Since the (absolute value of the) measurement error Ax =
# — x is bounded by the given bound A, we can therefore
guarantee that the actual (unknown) value of the desired
quantity belongs to the interval [& — A, & + A]. For example,
if the measured value of the temperature is & = 100 and the
upper hound on the measurement error is A = 10, then we
can guarantee that the actual value of the temperature = must
be within the interval [100 — 10, 100 + 10] = [90, 110].

Traditional probabilistic approach to describing mea-
surement uncertainty. In many practical situations, we not
only know the interval [—A, A] of possible values of the
measurement error; we also know the prohability of different
values Az within this interval [20], [21], [23]. This knowledge
underlies the traditional engineering approach to estimating
the error of indirect measurement, in which we assume that

we know the probability distributions for measurement errors
A.I,‘_:,

In practice, we can determine the desired probabilities of
different values of Az; by comparing the results of measuring
with this instrument with the results of measuring the same
quantity by a standard (much more accurate) measuring instru-
ment. Since the standard measuring instrument is much more
accurate than the one use, the difference between these two
measurement results is practically equal to the measurement
error; thus, the empirical distribution of this difference is close
to the desired probability distribution for measurement error.

Interval approach to measurement uncertainty. As we
have mentioned, in many practical situations, we do know
the probabilities of different values of the measurement error.
There are two cases, however, when this determination is not
done:

o First is the case of cutting-edge measurements, e.g.,
measurements in fundamental science. When a Hubble
telescope detects the light from a distant galaxy, there is
no “standard™ (much more accurate) telescope floating
nearby that we can use to calibrate the Hubble: the
Hubble telescope is the best we have.

e The second case is the case of measurements on the
shop floor. In this case, in principle, every sensor can he
thoroughly calibrated, but sensor calibration is so costly

usually costing ten times more than the sensor itself
that manufacturers rarely do it.

In both cases, we have no information about the probabilities
of Az; the only information we have is the upper hound on
the measurement error.

In this case, after performing a measurement and getting a
measurement result Z, the only information that we have about
the actual value = of the measured quantity is that it belongs
to the interval x = [z — A,z + A].

Why indirect measurements. In the previous text, we con-
sidered an idealized situation when we can directly measure
the value of the desired quantity.

In many real-life situations, we are interested in the value of
a physical quantity  that is difficult or impossible to measure
directly. Examples of such quantities are the distance to a star
and the amount of oil in a given well. Since we cannot measure
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y directly, a natural idea is to measure y indirectly. Specifi-
cally, we find some easier-to-measure quantities x,...,T,
which are related to y by a known relation y = f(x1,...,2,);
this relation may be a simple functional transformation, or
complex algorithm (e.g., for the amount of oil, numerical
solution to an inverse problem). Then, to estimate y, we first
measure the values of the quantities x,...,z,. and then
we use the results Tq,..., T, of these measurements to to
compute an estimate i for y as y = f(Zy,...,T,):

For example, to find the resistance R, we measure current
I and voltage V. and then use the known relation R = V/I
to estimate resistance as R =V /1.

Computing an estimate for y based on the results of direct
measurements is called data processing; data processing is the
main reason why computers were invented in the first place,
and data processing is still one of the main uses of computers
as number crunching devices.

Comment. In this paper, for simplicity, we consider the case
when the relation between z; and y is known exactly; in some
practical situations, we only known an approximate relation
between z; and y.

Why interval computations. As we have mentioned, mea-
surements are never 100% accurate; as a result, the measured
values T; are, in general, different from the (unknown) actual
values z; of the measured quantities.

In particular, in the case of interval uncertainty, after we
performed a measurement and got a measurement result Z;, the
only information that we have about the actual value z; of the
measured quantity is that it belongs to the interval x; = [7; —
A;, Z; + A;]. In such situations, the only information that we
have about the (unknown) actual value of y = f(z1,...,2,)
is that y belongs to the range y = |y, 7| of the function f over
the box x; X ... X X,: B
Ty € Xp )

y = |E‘§| - {f("l"ls'-'r:’rﬂ)|xl € X1y

The process of computing this interval range based on the
input intervals x; is called interval computations; see, e.g., [5],
(61, [17].

Possibility of linearization. In many practical situations, the
dependence y flay, .. xz,) of the desired quantities y
on the uncertain parameters z; is reasonably smooth, and
the measurement uncertainty Az; is relatively small. In such
cases, we can safely linearize the dependence of y on ;.
Specifically, since the function f(zy,...,x,) is reasonably
smooth, and the inputs z; = Z; — Az; differ only slightly from
the known value A;, we can thus ignore quadratic and higher
order terms in the expansion of f and approximate the function

[, in the vicinity of the approximate values (Z1,...,%,), by
its linear terms:
.}r(-’rla v 33:!:.) = .}r(-;l - A.’I-‘l,. . s;’En. - A:I"n-) ~ g_ Ay‘
where ot
A?f (: €1 A:.":1 b Cn - Aﬂ:n.-:
. - - a
ydcrf(‘q’ll_‘---rirn)r CidCf_f

dxz;

Linearization: resulting formula. One can easily show that
when each of the variables Az; takes possible values from
the interval [—A;, A;], then the largest possible value of the
linear combination Ay is

A |C]|'AI |"'I|C"|'An.‘

and the smallest possible value of dy is —A. Thus, in this ap-
proximation, the interval of possible values of Ay is [-A, A],
and the desired interval of possible values of y is [y—A, y+A].

IT. INTERVAL UNCERTAINTY AND INTERVAL,
COMPUTATIONS: TRADITIONAI. CHALLENGES

A. First Challenge: Non-Linearity

In some practically important cases, non-linear terms
cannot be ignored. In the previous text, we assumed that the
measurement errors are small and therefore, terms quadratic in
these errors can be ignored. This assumption is often justified:
for example, if a measurement accuracy is 3%, then its square
is 0.03° & 0.1% < 3% and therefore, can indeed be safely
ignored.

In some practical situations, however, quadratic and higher
order terms can no longer be ignored. For example, if the
measurement accuracy is Ax =~ 30%, then the square of Ax
is 2z 10% — no longer much smaller than Az,

Need to take non-linearity into account. It is therefore
desirable to design new interval estimation techniques that
would take the corresponding quadratic, cubic, elc., terms into
account.

Difficulty. In general, the above problem is computationally
difficult: even for quadratic functions, in general, computing
the exact bound in case of interval uncertainty is an NP-hard
problem [13], [22].
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Successes. Getting reasonable interval estimates for y for non-
linear functions under interval uncertainty is one of the main
directions of interval computations [5], [6]. Researchers have
designed several useful algorithms, and have successfully used
these algorithms in numerous practical applications.

B. Second Challenge: Partial Information About Probabilities
Situation. So far, we have described two extreme situations:

« the case where we have a complete information on which
values x; (or Az;) are possible, and what the frequencies
of different possible values are; in this text, we call this
case probabilistic uncertainty:

« the case where we only know the range of possible values
of z; (or Az;), and we do not have any information
about the frequencies at all; we call this case interval
uncertainty.

In many real-life cases, we have an intermediate situation:
we have some (partial) information about the frequencies
(probabilities) of different values of z; (or Ax;), but we do
not have the complete information about these frequencies.

Algorithms and successes. The partial information can be rep-
resented as bounds [£(x), £'(z)] on the (unknown) cumulative
distribution function F'(z) (such hounds are called p-boxes),
as hounds on moments, etc.

In many such situations, there exist efficient algorithms for
processing such uncertainty, and many practical applications
of these algorithms: see, e.g., [2], [10], [11], [12]. [14], [24]
and references therein,

ITI. INTERVAL UNCERTAINTY AND INTERVAL
COMPUTATIONS: A NEW CHAILLENGE

Description of a new challenge: first approximation. In this
paper, we discuss the following new challenge.

We have mentioned that since the measurement error Az
& —x is bounded by the manufacturer’s bound A, we can guar-
antee that possible values of the measured physical quantity
belong to the interval [# — A, & + AJ. But are all values from
this interval possible?

In other words, is the set X of all possible values of the
desired quantity equal to this interval — or is it a proper subset
of this interval?

More accurate formulation of the new challenge. Usually,
the literal answer to the above question is “no”™. The reason
for that is as follows: The manufacturer’s bound is often an
overestimate, because it is difficult to estimate A precisely,
and so the manufacturer, because of his desire to guarantee
the accuracy, prefers to give an upper estimate for this bound.
Because of that, the actual set X is usually smaller than the
interval [7 — A, 7+ A

Assume now that we know the exact upper bound A, for
the error. This means that all possible values of x bhelong to
an interval [ — Ao, &+ A, or, that the set X is a subset of
this interval. Then our question is: is X equal to this interval?
Le., is the set X an interval?

Computational aspect of the new challenge. In some cases,
the set X may not be an interval. Then, we must somehow
approximate it. What family of sets should we use for this
approximation?

IV. WHAT Is KNOWN ABOUT THIS NEW CHALILENGE:
DESCRIPTION AND LIMITATIONS

There are several results which justify the use of intervals.

A. Limit Approach

Description. Some results justify intervals along the same
lines as normal distributions are justified in statistics:

o if we have many small independent errors, then, due to
the Central Limit Theorem, the distribution for their sum
is close to Gaussian;

« similarly, due to a special limit theorem, if the measure-
ment error Az is a sum of several small errors, each of
which independently takes values in some set X, then
the set of possible values for their sum is close to an
interval; see, e.g.. [9].

Limitations. This approach works well if we have already
eliminated large error components and all remaining compo-
nents of the measurement error are relatively small.

In many practical situations, we may still have error com-

ponents which are much larger than others. In this case, the
ahove approach does not work.

B. Consistency Approach

Description. Another justification of intervals come from the
fact that intervals describe not only measurement uncertainty,
but also uncertainty related to expert estimates. In such esti-
mates, it is important to be able to check consistency.

If several experts present their estimates of possible values
of the desired quantity z in term of intervals [z;,T;], then
checking consistency of this knowledge is easy: it is sufficient
to check that all these intervals have a non-empty intersection,
i.e., that maxz; < minZ;. It turns out that intervals are the

2

only sets for which such a feasible algorithm for checking
consistency is possible; see. e.g., [15]. [16].

Limitations. Expert estimates are sometimes educated
guesses. As a result, the corresponding intervals do not neces-
sarily contain the actual value of the desired quantity. Hence,
these intervals may be (and often are) inconsistent.

In contrast, intervals coming from measurements are guar-
anteed to contain the actual values. For such intervals, there
is always a non-empty intersection — because the actual value
belongs to this intersection.

Of course, we may have inconsistent intervals, but this
would simply mean that one of the measuring instrument has
broken down. Detecting such a breakdown is an important
practical problem, but it is such a rare event but we do not
want to make it a foundation of our treatment of measurement-
related uncertainty.
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C. Invertibility Approach

Description. In standard arithmetic, if we, e.g., accidentally
add a wrong number y to the preliminary result z, we can
undo this operation by subtracting y from the result = + y.
It turns out that a similar possibility to invert (undo) addition
holds for intervals (although in case of intervals, we cannot
simply undo addition by subtracting ¥ from the sum).

Tt also turns out that if we add a single set that is not an in-
terval, we lose invertibility. Thus, the invertibility requirement
leads to a new characterization of the class of all intervals;
see, e.g., [1], [8].

Limitations. For Al-type applications, when we explore pos-
sible data processing algorithms, it makes sense to try some
algorithm and then “undo™ it.

In data processing, the algorithm is usually well know
and well established. So, while computer breakdowns do
occur, and it is important to be able to recover from them,
these hreakdowns are rather rare events. Hence — similarly to
the consistency approach — we do not want to make these
events a foundation of our treatment of measurement-related
uncertainty.

D. Summary

In short, the existing justifications of intervals are not fully
helpful for measurement-related uncertainty. It is therefore
desirable to come up with a new more convincing justification.

This is what we will do in this paper.

V. FROM SET AND INTERVAL UNCERTAINTY TO FUzZY
SETS AND Fuz7y NUMBERS
Need for fuzzy values. In many real life situations, we cannot
directly measure the values z,. .., z,. Instead, we only have
the expert’s estimates of these values. Instead of operations
with real numbers, we thus have to perform operations with
these estimates.

Expert estimates are usually formulated in terms of words
of natural language (e.g., “x is approximately equal to 17). In
order to apply computer operations to such estimates, we must
first describe them in computer-understandable (numerical)
terms.

One of the most natural ways to describe the expert’s
uncertain (“fuzzy™) knowledge about a quantity X is to
describe, for each real number x., our degree of belief that =
is a possible value of the quantity X. This degree of belief is
usually denoted by px (), and the corresponding description
is called a fuzzy ser (see. e.g., [7], [19]).

If we know the fuzzy sets that correspond to different
inputs X1, ..., X,. then we will be able, using the well-known
Zadeh’s extension principle [7], [19]. to describe the fuzzy set
Y, i.e., in other words, to describe, for each real number y, how
possible it is that this number is the actual value of Y. This
description is very informative, but in many real-life situations
(like in the oil example) we are not so much interested in this
“fine structure™ of our beliefs as in making a simple decision
of what values of ¥ are possible and what values are not.

To make such a “binary” (“yes-no”) decision, we must select
some threshold degree of belief o € (0, 1] and separate all
possible real numbers y into two groups:

o For some real numbers ¥, our degree of helief that ¥
is a possible value of Y exceeds (or is equal to) the
threshold o (puy (y) = o). We assume that such values y
are possible for Y,

« For some other values y, our degree of belief that  is
a possible value of Y is smaller than the threshold «
(py(y) < a). We assume that such values y are not
possible for Y.

The set of all y selected as possible is called the a—cut of the
corresponding fuzzy set and denoted by “Y.

This necessity to make a decision leads to the following
natural alternative representation of a fuzzy set: to describe a
fuzzy set X, for every o € (0,1], we describe the set “X
of all the values that will be assumed possible if take o as a
threshold. This family of sets { ® X} is monotonic (*X C #X
if o« > /3), and completely describes the original fuzzy set.

Operations on fuzzy sets. The above representation of a fuzzy
set as a family of its a—cuts is a natural background for
defining operations on fuzzy sets, in particular, operations that
correspond to standard arithmetic operations.

In order to define the result X oY of applying an operation
o (e.g., addition, subtraction, multiplication, etc.) to fuzzy sets
X and Y, let us fix a threshold o and find out what values
of X oY are possible for this particular threshold. For this
threshold, only values from “ X are possible values of X, and
only values from ®Y are possible values of Y. By applying
the operation o to all possible pairs z € “X and y € Y, we
get the set of all possible values of X o Y. In other words,
the ao—cut “(X oY) of the desired fuzzy set X oY has the
following form ([7], Section 4.4):

(XeoY)={zoy|ze “X,ye °Y}.
In particular, for addition (o = +), we have

X +Y)={z+y|lze “X,ye Y}

Comment. Under certain reasonable conditions, this definition
is equivalent to the more standard one, that stems from the
extension principle [3]. [4], [18].

Fuzzy sets used in data processing. In different situations,
different fuzzy sets are possible; for example, we sometimes
only know that the value of a certain quantity X is “large”.
The greater the value z, the greater our degree of belief that
this = is large, so the corresponding a—cuts are semi-infinite
intervals.

Such knowledge is possible; however, for data processing,
such vague information is practically useless. Since in this
paper, we are only interested in data processing applications,
we will therefore restrict ourselves only to the fuzzy sets in
which for every a, the a—cut is bounded.
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There is one more property that is natural to assume: if
the values =0, 23 2" are all possible, and the
sequence z®) converges o a certain number x, then no matter
how accurately we compute x, we will always find a number
) that is indistinguishable from = and possible. Therefore,
it is natural to assume that this limit value z is also possible. In
other words, it s natural to assume that every a—cut contains
all its limit points, i.e., that it is a closed set.

Combining these two conditions, we arrive at the assump-
tion that each a—cut is bounded and closed. On the real line,
bounded and closed sets are exactly compact sets, so, we will
call the fuzzy sets with such a—cuts compact fuzzy sets.

Fuzzy numbers. An important particular case of a compact
fuzzy set is a fuzzy number in which each a—cut is a (closed)
interval.

In fuzzy data processing, mainly fuzzy numbers are used;
however, more general fuzzy sets are also sometimes needed:
For example, if for some quantity =, with some degree of
belief o, we know that 2> belongs to the interval [1,4], and
we know nothing about the sign of x, then the corresponding
a—cut (set of possible values of ) is not an interval, but a
union of two disjoint intervals [—2, —1] U[L,2].

Justification of fuzzy numbers. There are some papers
which justify fuzzy numbers. For example, in [1], the above
invertibility justification of intervals has been extended to a
justification of fuzzy numbers. However, this justification has
the same limitation as the above justification of intervals. We
therefore need a new more convincing justification.

VI. TOWARDS A NEW JUSTIFICATION OF INTERVALS AND
Fuzzy NUMBERS

In this section, we provide a new justification of intervals —
and thus, of fuzzy numbers as fuzzy sets for whom all a-cuts
are intervals.

A. Motivations

Reminder: we are looking for a measurement-related
justification. As we have mentioned, there are already exist
justifications of intervals which are mainly oriented towards
expert estimates. In this paper, we are therefore mainly inter-
ested in a measurement-related justification.

We are looking for a family of bounded closed sets. In the
measurement case, the set of possible values of a quantity is
always guarantee to be contained in an interval [T — A, T+ A].
Thus, any set X of possible values of a quantity must be a
subset of an interval — i.e., it must be a hounded set.

Similarly to the fuzzy case, we can also argue that it is
sufficient to consider closed sets X. Thus, we are looking for
a family of bounded closed sets.

Need to fuse several measurement results. If we are not
satisfied with the accuracy of a single measurement, then it is
natural to perform additional measurements.

After each measurement, we have a set X of possible
values of this quantity which are consistent with the result of

this measurement. The (unknown) actual value of the desired
quantity must belong to this set X.

After several measurements, we have several set
XU X2 ...,X*F We know that the desired value =
must belong to each of these sets. Thus, the set of possible
values x is the intersection of all these sets.

In other words, our family of sets must be closed under
intersection.

Need for data processing. As we have mentioned, we are
often interested not in the values of the directly measured
quantities x1, ..., &y, but rather in the value of some quantity
y= flz1,...,20).
In the linearized case, the dependence between Ay = y—y
T
and Az; = Z; — x; take a form Ay = 3~ ¢; - Az;. Hence, the
‘ . . i=1
dependence of ¥ on z; is also linear:
T T
def — ~
Y= ¥yo ZC:' -x;, where yo = y; — Z(-‘f - T
i=1 i=1
Once we know the sets Xi,..., X, of possible values of
Ty,...,&n, then the set Y of possible values of Y takes the
form

i
Y Yo Z ci-xiir € Xq,...,0n € X,

i=1

This set is called a Minkowski linear combination of the sets
Xi,..., X, and is denoted by yo + ¢ - Xy + ... + ¢, - Xp.

In other words, our family of sets must be closed under
Minkowski linear combination.

Possibility to represent the set of values in a computer. We
want to be able to represent these sets inside a computer. Inside
a computer, we can represent only finitely many parameters.
Thus, it is reasonable to require that our family of sets must
be a finite-parametric family X (aq,. .., a,), i.e., the result of
a continuous mapping of a subset of R™ into the class of all
sets.

On the class of all bounded closed sets, there is a natural
metric — Hausdorff metric dy (X,Y). This metric is defined
as the smallest £ > 0 for which X is contained in the &-
neighborhood of ¥ and Y is contained in the -neighborhood
of X, i.e., for which

Vee XAy eV (dzy) <e)&VyeYdre X (dz,y) < =),

where d(z,y) = |z — y| is the standard distance between the
points on the real line.

Thus, we require that the mapping that describes our family
is continuous in terms of the (topology corresponding to) the
Hausdorff metric.

Closed family of sets. Similarly to the requirement that each
set from the family is closed, the family must also be closed
in the sense of the Hausdorff metric.

Now, we are ready to formulate our main result.
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B. Main Result

Definition. We say that a family of bounded closed subsets
of R is finite-dimensional if for some integer n, this family is
an image of a subset of R" under some continuous mapping
(continuous in the sense of Hausdorff metric on the set of all
closed bounded sets).

Theorem. Let F be a non-empty closed finite-dimensional

family of bounded closed sets of R which is closed under

intersection and Minkowski linear combination. Then, F is
either the family of all one-point sets or the family of all
intervals.

Comment. Thus, if we exclude the case when all the values
are known exactly, we get a new justification for intervals.

Proof.

1°. Let us first consider the case when F contains only 1-point
sets. Let us prove that in this case, the family F coincides with
the family of all 1-point sets.

Indeed, let X = {x} € F be any set from the family F. Due
to closeness under Minkowski linear combination, the family
JF contains sets yo + X for all yo € R. In particular, for every
&’ € R, we can take yo = ' — & and conclude that {z'} € F.
Thus, F is the family of all possible 1-point sets.

29, Let us consider the case when not all sets from JF are
1-point sets. In this case, F contains a set X with at least two
points. For this set, inf X < sup X.

Let us prove that the family J contains a set Y with inf ¥
Oand sup¥ = 1.

Indeed, we can take ¥ = yy + ¢+ X, with yg = —inf X
and ¢ = 1/(sup X — inf X').

Since every set from F is closed, the set ¥ contains its own
inf and sup, so {0,1} C V.

3°. Let us prove that the family F contains the interval [0, 1].

Indeed, let Y be the set from Part 2 of this proof. For every
m, the family F contains the set

1 1
Yin def . Y+...4+— Y (m times).
m m

Every element of V,, has the form (y; + ... + ) /m,
where y; € Y. Since infY 0 and supY 1, every
element from Y is between O and 1. Thus, every element
from Y, is also between 0 and 1. By taking values =; = 0
and 1, we conclude that {0,1/m,2/m,...,1} € ¥,. Thus,
{0,1/m,2/m,...,1} C Y,, C [0,1]. When m — oo, we
have {0,1/m,2/m,...,1} — [0,1], thus Y¥,,, — [0, 1]. Since
F is a closed family, we thus conclude that [0, 1] € F.

4°. Let us prove that the family J contains an arbitrary interval
[a, b], with a < b,

Indeed, due to closeness under Minkoswki linear combina-
tion, the family F contains a+ (b—a) - [0, 1], which is exactly
[a, B].

5°. We have just proven that the family F contains all
intervals. To complete our proof, it is sufficient to show that
it does not contain any set which is not an interval. We will
prove this by reduction to a contradiction. Let us assume that
the family F contains a set S which is not an interval.

5.1°. Let us first prove that the family F contains a 2-point
set.

Indeed, since the set S is not an interval, this means that
there exists an element sy € [inf S,sup S| for which s € S.
Let

st % inf{s € §:s> s0}

and

s~ sup{s € §:s < so}.

Since S is a closed set, it contains both s~ and s*. By defini-

tion of s~ and s, the set S cannot contain any elements from

the open interval (s=,s"). Thus, SN [s7,s7] = {s7,sT}.
According to Part 4 of our proof, the family F contains

the interval [s~,sT]. Since the family F is closed under

intersection, it contains SN [s ,s"] ={s ,s"}.

5.2°. Let us first prove that the family J contains an arbitrary
2-point set {a, b}, with a < b.

This conclusion follows from the fact that {a,b} = yo +
c-{s7,s"}, where yo and ¢ > 0 are solutions to the system
of linear equations @ = yg +¢-s~ and b = yo + - s™, ie.,
c=(b—a)/(st —s )andyo=a—c-s".

5.3%. Let us now get the desired contradiction.

Let n be the dimension of the family F. From Part 5.2 of
this proof, it follows that for every ¢ = 0,1,2,..., we have
{0,2%} € F. Since the family F is closed under Minkowski

linear combination, we conclude that for every co, ..., c,, we
have
Clcoy- - cn) 00,2 +¢1-{0,2' 1. . +c,-{0,27} € F.

For ¢; =~ 1, all these sets are different: each coefficient ¢;
can be determined from the value ¢; - 28 € Cco,...,en)s
and these values (for ¢; &~ 1) are all different. Thus, we
have a subfamily C(cq,. .., ¢, ) which is determined by n + 1
parameters cg, ..., Cy.

So, we have a non-degenerate (n+ 1)-dimensional family of
sets within the family F — which contradicts to our assumption
that the family JF is n-dimensional. This contradiction proves
that the family J cannot contain a set which is not an interval
and thus, coincides with the family of all intervals.

The theorem is proven,

VII. CONCILUSION

In this paper, after reviewing interval uncertainty, we present
computational challenges associated with interval uncertainty.
After this, we describe several approaches to fuzzy sets and
fuzzy numbers, and explain the intrinsic connection hetween
interval computations, interval uncertainty, fuzzy sets, and
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fuzzy numbers. This connection is then used to provide a new
justification of intervals and fuzzy numbers.

This justification is based on several natural properties
useful in mathematical modeling; the main of these properties
is the necessity to be able to combine (fuse) several pieces of
knowledge.

The first type of fusion is related to the fact that in many
practical situations, we have two (or more) different pieces of
knowledge about the value of the same quantity. In the crisp
case, cach piece of knowledge can be described by a set of all
the values which are consistent with this knowledge. In this
case, the actual (unknown) value of the quantity belongs to
the intersection of the corresponding sets. Thus, the class F
of all the sets which are used to describe uncertainty must be
closed under intersection,

The second type of fusion comes from the fact that in many
practical situations, we have partial knowledge about two or
more different quantities xy, ..., z,, and we want to describe
the resulting knowledge about a quantity ¥ which is related to
Zy,...,T, by a known dependence y = f(x,...,z,). In the
simplest case when the dependence f is linear, we conclude
that the class F must be closed under the corresponding set
operation — which is called Minkowski linear combination.

It turns out that the class of all intervals is, in effect, the
only class which is closed under intersection and Minkowski
linear combination; thus, in the furzzy case, the class of
fuzzy numbers can be similarly justified. So, we provide a
new theoretic foundation for computationally merging interval
computation and fuzzy logic in computational intelligence.
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