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Ahtruct-Thc purpo~c of thii paper is to pmwt a ncw char- 
actcrization of thc set of all intcrrals (and of thc mrrcsponding 
set of fumy numbers). This characttrimtion is  bawd on m r a l  
natural pmpcrtics uscCol in mathematical modcling; thc main 
of  thew properties is thc ncccPgity to bc able to combinc (fmc) 
w c r a l  pi- of knowlcdgc. 

1. INTERvAI. UNCERTAINTY AND INTERvAI. 
COMPUTATIONS: A B R I E F  REMINDER 

Why intervals: a practical explanation. One of the main 
source of information about the physical world is  measure- 
ments; see, e.g., 1201. Measurements are never 1009R accurate. 
As a result, the result F of the measurement is, in general, 
different from the (unknown) actual value x of the desired 
quantity. The difference Ax def 33 - x &ween the measured 
and the actual values is usually called a mneosurement error. 

The manufacturers of a measuring device usually provide 
us with an u p p r  h u n d  A for the (absolute value of) ~ s i h l e  
errors, i-e., with a bound A for which we guarantee that 
lAxl 5 A. The need for such a bound comes from the very 
nature of a measurement process: if no such hound is provided, 
this means that the difference between the (unknown) actual 
value x and the ohserved value Z can be as large as  pxsible. 
In other words, if we measure, say, a temperature to be 100, 
in reality, this temperature could be > lo3 or even > lo6 - 
such an uncertainty is reasonable for a guess but not for a 
measurement. 

Since the (ahsolute value of the) mwurement  error Ax = 
5 - x is bounded by the given hound A, we can therefore 
guarantee that the actual (unknown) value of the desired 
quantity helongs to the interval [Z - A, Z + A]. For example, 
if the measured value of the temperature is i = 100 and the 
u p p r  h u n d  on the measurement error is A = 10% then we 
can guarantee that the actual value of the temprature x must 
be within the interval [I00 - 10,100 + 101 = [go, 1101. 

we know the probability distributions for measurement errotu; 
AX,. 

In practice, we can determine the desired probabilities of 
different values of Ax, hy comparing the results of measuring 
with this instrument with the results of measuring the same 
quantity by a standard (much more =curate) rneawring instru- 
ment. Since the standard measuring instrument is  much more 
accurate than the one use, the difference h tween  thee  two 
measurement results is practically equal to the measurement 
error; thus, the empirical distrihution of this difference is  close 
to the desired probability distribution for measurement error. 

Interval approach to measurement uncertainty. As we 
have mentioned, in many practical situations, we d o  know 
the probabilities of different values of the measurement error* 
There are two cases, however. when this determination is  not 
done: 

First is the case of cutting-edge measurements, e.g., 
measurements in fundamental science. When a Hubble 
telescope detects the light from a distant galaxy, there is 
no "standard" (much more accurate) telescope floating 
nearby that we can use to calibrate the Huhhle: the 
Hubble telescope is the hest we have. 
The second case is the case of measurements on the 
shop floor. In this case, in principle, every sensor can be 
thoroughly calibrated, but sensor -libration is so costly 
- usually costing ten times more than the sensor itself - 
that manufacturers rarely do it. 

In both cases, we have no information a b u t  the probabilities 
of Ax; the only information we have is the upper b u n d  on 
the measurement error. 

In this case, after prfonning a measurement and getting a 
measurement result Z, the only information that we have about 
the actual value x of the measured quantity is  that it belongs 
to the interval x = [f - A, f + A]. 

Traditional probabilistic approach to dexribing mea- Why indircct mcasurcmcnts. In the previous text, we con- 
mrement uncertainty. In many practical situations, wc not s i d e d  an ideali7ed situation when we can directly measure 
only know the interval [-A, A] of possible values of the the value of the d e s i d  quantity. 
measurement error; we also know the pmhbility of different In many real-life situations, we are intere~ted in the value of 
values Ax within this interval [20], [21], [23]. This knowledge a physical quantity y that is difficult or impassible to measure 
underlies the traditional engineering approach to estimating directly. Examples of such quantities are the distance to a star 
the m r  of indirect measurement, in which we assume that and the amount of oil in a given well. Since we cannot measure 
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