
Fuzzy Partial-Order Relations for Intervals and Interval Weighted
Graphs

Ping Hu
Computer Science Department

Conway, AR 72035
phu@uca.edu

www.cs.uca.edu

Chenyi Hu
Computer Science Department

Conway, AR 72035
chu@uca.edu

www.cs.uca.edu

Abstract
Weighted graphs have been broadly employed in various
kinds of applications. Weights associated with edges in a
graph are constants mostly in the literature. However, in
real world applications, these weights may vary within
ranges rather than fixed values. To model such kind of
uncertainty or variability, we propose interval-valued
weighted graphs in this study.

In solving practical graph applications such as finding
shortest paths and minimum spanning trees for interval
weighted graphs, it is necessary to be able to compare
interval valued weights. However, two general intervals
can not be ordered reasonably in binary logic. In this
paper, we establish fuzzy partial-order relations for
intervals. These relations are continuous, except only at a
single point in a special case. After studying the
properties of the fuzzy partial order relations, we applied
the interval partial order to extend well-known shortest
path and minimum spanning tree algorithms for interval
weighted graphs.

Keywords
Interval weighted graph, fuzzy partial-order relation for
intervals, interval shortest path and minimum spanning
tree

1. INTRODUCTION

1.1 A brief review of weighted graphs
In this paper, we study graphs whose weights are
intervals instead of constants used in the literature. In
order to do this, we briefly review fundamental concepts
of graph theory here. There is a very rich amount of
literature on graphs. The ‘theory of graphs’ named by J.
Sylvester (1814-1897) began with Euler's paper (1735)
describing the problem of the seven bridges of
Königsberg and was further developed by A. Cayley
(1821-1895), W. Hamilton (1805-1865) and others.

In general, a graph G consists of a set of vertices (V) and
a set of edges (E), i.e. G = (V, E). If the edges in the
graph do not have directions, G is an undirected graph.
Otherwise, it is a directed graph or digraph. A path of a
graph is a consecutive sequence of edges. G is connected
if for any two vertices A and B in a graph G there exists a
path in G such that one can travel between A and B. This
is only a sufficient but unnecessary condition for
connectivity if a graph is directed. G is weighted if for
every e ∈ E there is a weight we associated with e. These
weights can represent meaningful things such as distance,
cost, and others in applications. Therefore, weighted
graphs have been well studied and broadly applied in
solving real world applications. Graphs studied in this

paper are initially assumed to be positive weighted, and
connected, undirected as the sample in Figure 1. This
assumption is purely for the simplicity of our discussion.
As we will see later in this paper, results reported can be
extended to digraphs even with negative weights (without
negative cycles) as well.

Among typical applications of weighted graphs are
finding shortest paths, minimum spanning trees, and
others. Algorithms for finding shortest paths include
Dijkstra’s algorithm [8] (1959), Bellman-Ford algorithm
[2] (1958) and [9] (1962), and others. Algorithms that
find a minimum spanning tree include Kruskal’s
algorithm [16] (1956), Prim-Jarnik algorithm [19] (1957)
and Bor

�
vka’s algorithm [5] (1926). All of these

algorithms require the order relationship of real numbers
to determine optimal solutions. Figure 1 below is a
sample connected weighted graph with six vertices and
eleven undirected edges. The shortest path from A to F is
weighted six as A →C →E → F. The edges AC, CB,
CE, ED, and EF form the minimum spanning tree of the
graph with total weight 12.

Figure 1: A weighted graph

1.2 Motivations of this study
We have noticed that in the current literature weights
associated with edges are constants in a weighted graph.
However, in real world applications, due to some kinds of
uncertainties, weights associated with edges often vary
within ranges rather than fixed constants. Here are few
examples. Travel time (driving or flight) between A and
B may not be exactly two hours but between an hour and
50 minutes and two hours five minutes mostly. The
available bandwidth of a network connection may be
75-80% during a given time period. The price of a stock
during a day can be between $8.08 -$8.88. To better
model the variability of weights in a graph, instead of
using constants, we represent weights as intervals. An
interval [a, b] is the set of all real numbers between its

4
1

5
7

2

6
2 3

9

3

8

A
C

D

B

E F

120

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

lower (left) and upper (right) bounds a and b provided
that a, b∈ ℜ, and a � b. When a = b, the interval is trivial
and is the same as a real number. In the rest of this paper,
we use boldfaced letters to represent intervals. The left
and right endpoints of an interval are denoted with
subscripts L and R. For example, a = [aL, aR] is an
interval whose left and right endpoints are aL and aR,
respectively.

The rest of this paper is organized as the follow. Section
2 defines interval weighted graph and a brief review of
related concepts in interval computing. In section 3, we
present a binary operator (and its dual) between two
intervals; and then prove that the operator and its dual
form fuzzy partial order relationships for intervals.
Properties of the fuzzy partial order relations are also
presented in the section. In sections 4 and 5, we apply the
fuzzy partial order relationship to study algorithms that
find shortest paths and minimum spanning trees for
interval weighted graphs, respectively. We conclude this
paper with section 6.

2. INTERVAL WEIGHTED GRAPHS AND
INTERVAL COMPUTING

2. 1 Interval weighted graphs
As mentioned in the previous section, we study graphs
with interval valued weights in this paper. We define the
concept of interval weighted graph as the follow:

Definition 1: A graph G = {V, E} is an interval weighted
graph if for each edge e ∈ E there is an interval weight we

associated with it.

As an example, Figure 2 below is an interval weighted
graph.

Figure 2: An interval weighted graph

Here we would like to clarify that the concept of interval
weighted graph is completely different from the term
interval graph in the existing literature.

The concept of interval graph is a type of intersection
graph introduced by Benzer in [3] (1959). In 1964,
Gilmore and Hoffman defined interval graph [11] as: “A
graph G is an interval graph if and only if every
quadrilateral in G has a diagonal and every odd cycle in
Gc (G’s complementary graph) has a triangular chord.” In
[10] (1985), Fishburn stated: “It [interval graph] refers a
graph (X, ∼) whose points can be mapped into intervals

in a linearly ordered set such that, for all distinct x and y,
x ∼ y if and only if the intervals assigned to x and y have
a nonempty intersection.” In other words, interval
graph is a special type of graph such that the orders of its
vertices satisfy the above specified conditions but nothing
involving the weights of the edges.

The term interval weighted graph that we have defined
here means only that the weights associated with edges
are interval valued. In other words, the order of vertices
is not in the consideration of studying interval weighted
graphs in this paper.

2.2 Interval arithmetic

To study interval weighted graphs, we need interval
computing proposed by Moore [17] in 1950’s. As
mentioned previously in this paper, an interval is a set of
real numbers defined as:

a = [aL, aR] = {x ∈ ℜ | aL � x � aR}.

The left and right endpoints aL, aR of the interval a on the
real line are also called the lower and upper limits of the
interval, respectively. We say that a is a non-negative
interval if aL ≥ 0. In addition to the left-right endpoints
representation, an interval a can also be represented by its
midpoint m (a) together with its radius r (a), where m (a)
= (aL + aR)/2 and r (a) = (aR - aL)/2. It is easy to see that a
= [aL, aR] = [m(a) – r(a), m(a) + r(a)]. If the radius of a is
zero, i.e. aL = aR, then a is a trivial interval the same as an
ordinary real number.

Interval arithmetic has been defined by Moore [17] as an
approach of putting bounds on rounding errors in
mathematical computation and thus obtaining reliable
results. Where classical arithmetic defines operations on
numbers, interval arithmetic defines a set of operations
on intervals. The basic binary arithmetic operations for
two intervals, a = [aL, aR] and b = [bL, bR], are:

a + b = [aL + bL, aR + bR]

a - b = [aL - bR, aR - bL]

 a * b = [min (aLbL, aLbR, aRbL, aRbR), max(aLbL,
aLbR, aRbL, aRb)]

 a / b = [min(aL/bL, aL/bR, aR/bL, aR/bR), max(aL/bL,
aL/bR, aR/bL, aR/bR)] provided that 0 ∉ b.

These arithmetic operations can be represented in terms
of midpoints and radiuses of a and b as well. Here are
simple examples of interval arithmetic operations:

Example 2: Let a = [1, 2] and b = [3, 4] be two
intervals. Then:

a + b = [4, 6], a - b = [-3, -1],

a * b = [3, 8], and a / b = [1/4, 2/3].

There is a very large amount of literature on interval
analysis far beyond the scoop of this paper. Interested
readers may check the comprehensive website [14]
maintained by Professor Kreinovich to find more
information about interval computing.

[5, 7]

[3, 5]

[8, 10] [4, 6]

[1, 3]

[2, 4]
[6, 8]

[7, 9]

[2, 4]
A

C

D

B

E F

[3, 5]
[9, 11]

121

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

3. A FUZZY PARTIAL-ORDER RELATIONSHIP
FOR INTERVALS

3.1 Incomparability of intervals in binary logic

In studying shortest paths and spanning trees of a
weighted graph, one needs an ordering relationship to
compare distances and/or total weights. For any two
given real numbers x and y, the statement ‘x is less than
y’ can be either true or false depending on their positions
on the real line. The ordering relation of two real
numbers can be presented perfectly in classical binary
logic. However, for two nonempty intervals a and b, the
relation ‘a is less than b’ can be fairly complicated. In [1]
(1983), Allen listed 13 possible casess for the temporal
relationships of two time intervals without quantification.
Instead of listing all of the 13 cases, we use Figures 3-5
to illustrate three of them.

 Figure 3: Disjoint intervals

In Figure 3, intervals a and b are disjoint. Since ∀ a ∈ a
and ∀ b ∈ b, a < b, one can say that ‘a is less b’ is true
without any hesitations. For example, if a = [2, 4] and b
= [5, 9] then ‘a is less than b’. This is what has been
widely accepted in [1] and others.

Figure 4: Partially overlapping intervals a and b

However, in Figures 4 and 5, there are some a ∈ a, and b
∈ b, such that a < b; and there are also some a’ ∈ a, and
b’ ∈ b, such that a’ < b’.

Figure 5: Nested intervals a and b

Therefore, the statement ‘a is less than b’ cannot be
simply represented in traditional binary logic anymore
since it is true under a certain degree and false in another
degree depending on their relative positions. It is fuzzy
indeed.

Here we would also like to point it out that, in [10]
(1985), Fishburn defined a concept of interval order. The
concept was for a special kind of partially ordered set
defined as: “A partially ordered set (X,p) is an interval
order precisely when its points x, y, … can be mapped
into intervals in a linearly ordered set, such as (ℜ, <),
such that, for all x and y in X, x p y if and only if the
interval assigned to x completely proceeds the interval
assigned to y.” From this definition we can clearly see
that the concept of interval order is not for ordering
intervals but for a special kind of partially ordered set.
The purpose of reviewing this concept is for studying the
order of vertices in interval graphs.

In studying temporal relationship of time intervals [1],
Allen needs only qualitative relationship of two time
intervals. In [18] Nguyen and et al investigated points in
intervals via a probabilistic approach without ordering
intervals. However, in studying interval weighted graphs,
we need a quantitative relationship for intervals. After
thorough searches on the internet, we have not found
quantitative comparisons for intervals. Since intervals are
incomparable in binary logic in general as we described
previously, it calls for a fuzzy order relation for
comparing intervals. We can then quantitatively compare
two intervals with fuzzy memberships.

3.2 Fuzzy partial-order relations for intervals

In [24] (1965), Zadeh proposed fuzzy logic for statements
that can be both true and false in certain degrees. He
further defined the concept of fuzzy membership to
quantitatively describe the degree of the belief.

In [6] (2006), Collins and Hu initially investigated
interval ordering relationship quantitatively in terms of
fuzzy membership for the Game theory. However, the
definition of the ordering is in the context for matrix
games only. Through recent professional communication
with Dr. Dubois, we enhance the initial interval ordering
relationship in much rigorous mathematical terms. Prior
to the formal definition, we describe the general idea
informally first.

Let us start with Figure 3 where ‘a is less than b’ without
any questions. Let us imagine that the interval a holds
itself and moves right toward b. Before the right endpoint
of a meets the left endpoint of b, i.e. aR < bL, a is always
less than b. At the moment the two endpoints meet, i. e.
aR = bL, all points in a are less than all points in b except
the single common point. Therefore, it is reasonable to
believe that a is still less than b. Let a continue its right
movement, then a and b partially overlapped as
illustrated in Figure 4. As long aL < bL and aR < bR,
except the overlap [bL, aR], all points in a are less than
points in b. Also, any point x in the overlap [bL, aR] is in
both a and b. A point x is not less than itself. Therefore, it
is reasonable to believe that a is still less than b.

In the above discussion we believe ‘a is less than b’ for
both cases illustrated in Figures 3 and 4. However, they
represent different cases that one has no overlap but the
other has. Therefore, we should distinguish them. In fact
Fishburn implicitely distinguished them with less than

b
a

a
b

a b

122

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

and weakly less than in [10] for cases illustrated in Figure
3 and 4, respectively. In this paper, we say that a is less
than b in Figure 3 with fuzzy membership one. And, the
fuzzy membership of ‘a is less than b’ illustrated in
Figure 4 as 1- to indicate the fact that a is weakly less
than b. One posible way to describe the weakness is to
consider the overlap portion of the intervals.

Now, let us continue to hold a, and move it towards the
right. With the assumption that the radius of a is less than
that of b, i.e. r (a) < r (b), a will be inside b completely
when and after the left endpoints of a and b overlaps (aL

= bL) and before the right endpoint of a moves outside of
b (aR < bR). To keep the continuity, we say that a is still
less than b weakly provided aL = bL and aR < bR.
However, when aL > bL and aR = bR, i. e. the right
endpoints are aligned and a part of b is less than a, the
membership of ‘b is less than a’ should be one (actually
1-) according to our discussion the above. Hence, the
statement ‘a is less than b’ should have the membership
zero.

Continuing with the assumption that the radius of a is
less than that of b, we need a membership function for
the statement ‘a is less than b’ that returns one when aL =
bL and aR < bR, and zero when aL > bL and aR = bR. We
want the membership changes from 1 to 0 continuously.
When a ⊂ b and r (b) - r (a) > 0, the function

f(a, b) = (bR - aR)/2[r(b) – r(a)]

= (bR - aR)/[(bR - bL) - (aR - aL)]

satisfies the requirements. Hence, we use it to measure
the degree of ‘a is less than b’, when a moves from aL =
bL and aR < bR, to aL > bL and aR = bR. The fuzzy
membership continuously changes from one to zero
gradually. Notice the fact that when the midpoints of a
and b overlap, i. e. m (a) = m (b), then f (a, b) returns
0.5.

In the above discussion, we have assumed that r (a) < r
(b). If not, when r (b) < r (a), by reversing the names of
both a and b, the above arguments valid too. We now
consider the case of r (a) = r (b). All of the above
discussions are valid except that the function f (a, b) =
(bR - aR) / 2[r (b) – r (a)] is undefined since r (b) – r (a) =
0. However, the function is only used when aL = bL and
after. In the case of aL = bL and r (a) = r (b), a and b are
actually overlapped completely hence their midpoints as
well. Let c be an interval whose radius is less than b. If
we keep the midpoints of c and b overlap and let the
radius of c approach that of a. The fuzzy membership of
‘c is less than b’ is 0.5 persistently. Hence, its limit is 0.5
as c approach that of a. Therefore, the fuzzy membership
of ‘a is less than b’ is 0.5 when r (a) = r (b) and aL = bL.
It is reasonable that an interval is equally less and greater
than itself with fuzzy membership 0.5. Here we need to
point out the fact that there is one and only one
discontinuity in the above discussion entirely. That
appears when r (a) = r (b) and aL = bL. The membership
has a gap between 1, when r (a) < r (b) and aL = bL, and
0.5.

By summarizing the above discussion, we define a fuzzy
relationship for two intervals a and b in terms of fuzzy
membership as the follow:

Definition 3: Let a = (aL, aR) and b = (bL, bR) be two
intervals, and p be a binary interval operator for them.
Then, a p b returns the fuzzy membership for the
statement ‘a is less than b’ as:

Note: The definition above also works when a and b are
trivial intervals. When both of them are trivial intervals,
i.e. aL = aR and bL= bR, the definition returns 1 if aR < bL,
and 0.5 if aL = bL. It is in consistent with the ordering
relation of real numbers. When only one of them is trivial,
say a is trivial, the definition returns appropriate fuzzy
memberships as well.

Definition 3 implies the Corollary below:

Corollary 1: Let a and b be two intervals. Then

(i) (a p b) = 0.5 iff m (a) = m (b);

(ii) (a p b) > 0.5 iff m (a) < m (b);

(iii) (a p b) < 0.5 iff m (a) > m (b).

Proof:

(i) ⇒

Let (a p b) = 0.5. If a = b, we have m(a) = m(b). If
a ≠ b, then by Definition 3, bR - aR = r (b) – r (a) =
(bR - bL)/2 – (aR - aL)/2. Hence bR - aR = aL - bL.
Therefore, bL + bR = aL + aR and m (a) = m (b).

⇐

Assume m (a) = m (b). If a = b, from Definition 3, (a
p b) = 0.5. If a ≠ b, then bL + bR = aL + aR. Hence
bR - aR = aL - bL= r (b) – r (a). Therefore, (a p b) =
0.5.

(ii) ⇒

Let (a p b) > 0.5.

If (a p b) = 1 then aR < bL Since m (a) � aR and bL

� m (b), we have m (a) < m (b).

If (a p b) = 1-, then aL � bL � aR < bR. Hence, we
have aL + aR < bL + bR. This implies m (a) < m (b).

Otherwise, (a p b) = (bR - aR) / 2[r (b) – r (a)] >
0.5 implies bR - aR > r (b) – r (a), i.e. bR - aR > (bR -
bL)/2 – (aR - aL)/2. Hence, bL + bR > aL + aR and m (a)
< m (b).

⇐

1 if aR < bL

1- if aL � bL � aR < bR and r (a)> 0

R R(b - a)

2[r (b) - r (a)]
 if bL �aL<aR � bR, and r (b) > r (a)

0.5 if r (b) = r (a) and aL = bL

123

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Assume m (a) < m (b). Then, aL + aR < bL + bR

implies bR - aR > r (b) – r (a). If bL � aL <aR � bR and
r(b) > r (a), then (a p b) = (bR - aR) / 2[r (b) – r (a)]
> 0.5. Otherwise, (a p b) = 1 or 1-.

(iii) ⇒

Let (a p b) < 0.5. Then, we have bR - aR < r (b) – r
(a), i.e. bR - aR < (bR - bL)/2 – (aR - aL)/2. Hence, we
have aL + aR > bL + bR. This implies m (a) > m (b).

⇐

Assume m (a) > m (b). Then, aL + aR > bL + bR

implies bR - aR < r (b) – r (a). Hence (a p b) = (bR -
aR) / 2[r (b) – r (a)] < 0.5. �

As the duality of the above discussion, we can define ‘a
is greater than b’ as the follow:

Definition 4: Let a = (aL, aR) and b = (bL, bR) be two
intervals, and f be a binary interval operator that
returns the fuzzy membership of the statement ‘a is
greater than b’ as (a f b) = 1 – (a p b).

Similarly, we have the corollary below:

Corollary 2: Let a and b be two intervals. Then

(i) (a f b) = 0.5 iff m (a) = m (b);

(ii) (a f b) > 0.5 iff m (a) > m (b);

(iii) (a f b) < 0.5 iff m (a) < m (b).

In binary logic, a relation R on a set X is a partial order
iff (a) ∀ x ∈ X, xRx ⇒ false (inreflexive), and (b) ∀ x, y,
z ∈ X, (xRy, yRz) ⇒ xRz (transitive) then R is a partial
order relation on X.

We now define the concepts of fuzzy inreflexibility and
fuzzy transitivity for a fuzzy relation as the follow.

Definition 5: A fuzzy relation R on a set X is fuzzily
inreflexive if ∀ x ∈ X, xRx = 0.5; R is fuzzily transitive
∀ x, y, z ∈ X, if xRy > 0.5 and yRz > 0.5 then xRz > 0.5.
If R is both fuzzily inreflexive and transitive, then R is a
fuzzy partial order relation.

Theorem 1: The binary interval operators p and f are
fuzzy partial order relations.

Proof:

From Definition 3, it is obvious that (a p a) = 0.5
since r (a) = r (a) and aL = aL. Therefore, the binary
operator p is fuzzily inreflexive.

Let a, b and c be nontrivial intervals. From Corollary 1
we have (a p b) > 0.5 ⇒ m (a) < m (b) and (b p c)
> 0.5 ⇒ m (b) < m (c). The midpoints of intervals are
just real numbers. Hence (a p b) > 0.5 and (b p c)
> 0.5 imply m (a) < m (c). Therefore, the binary
operator p is fuzzily transitive. Hence, it is a fuzzy
partial order.

Similarly, the binary interval operator f is a fuzzy
partial order. �

We have now established fuzzy partial orders for intervals.
Definitions 3 and 4 provide quantitative methods to find the

exact fuzzy memberships for ordering two intervals. From
Corollaries 1 and 2, we can see that if the fuzzy membership
is greater (or less) than or equal to 0.5 is in fact determined
by their midpoints only.

We use a few examples to complete this section:

For the two nested intervals a = [0, 4] and b = [1, 3],
the fuzzy memberships for ‘a is less than b’ and ‘a is
greater than b’ are both 0.5 since their midpoints
overlap.

Let a = [0, 4] and b = [2, 4], then ‘a is less than b’ has
a fuzzy membership of one minus while the fuzzy
membership for ‘a is greater than b’ is zero.

For the intervals b = [0, 5] and a = [1, 3], ‘a is less than
b’ has a fuzzy membership of 2/3 while the fuzzy
membership of ‘a is greater than b’ is 1/3.

4. CRISP AND FUZZY SHORTEST PATHS FOR
INTERVAL WEIGHTED GRAPHS

In this section, we study shortest paths for interval
weighted graphs by applying the fuzzy partial order
relations for intervals defined in the previous section.
Among the algorithms of finding shortest paths,
Dijkstra’s algorithm [8] (1959) is probably the most
well-known. It finds the shortest paths from one vertex to
the rests in a connected, undirected graph with a growing
‘cloud’. In this section, we extend Dijkstra’s algorithm
for interval weighted graphs first and then others. For the
readers’ convenience, we provide the pseudocode for
Dijkstra’s algorithm from [13] below.

 As we can see in the Dijkstra’s algorithm, the most
critical step is to compare the distance labels of D[u] + w
(u, z) and D[z] after their initialization. Whenever D[u] +
w (u, z) < D[z], we update D[z] by D[u] + w (u, z) in the
priority Q. This is called edge relaxation. Only the edge
with minimum distance is added in to form a shortest
path consequently.

With the partial order relationship defined in the previous
section for intervals, we can modify the above Dijkstra’s
algorithm for interval weighted graphs with interval

Algorithm: DijkstraShortestPath (G, v)

Input: A simple undirected graph G with nonnegative
edge weights, and a vertex v of G.

Output: A label D[u] for each vertex u of G, such
that D[u] is the distance from v to u in G.

for all u∈G.vertices()
 if u = v, D[u] ← 0
 else D[u] ← ∞

Let a priority queue Q contain all
vertices of G using the D labels as keys

while ¬ Q.isEmpty()
 u←Q.removeMin()

∀ vertex z adjacent to u and z ∈ Q do
 {perform relaxation on the edge(u, z)}
 if D[u] + w(u, z) < D[z] then

 D[z] ←D[u] + w(u, z)
 {change the key of vertex z in Q

with D[z]}
return the label D[u] of each vertex of G

124

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

comparisons. The only modification that needs to be
made for the interval Dijkstra’s algorithm is that in each
step of the edge relaxations, we need to find the fuzzy
membership for the label D[z] being the least. We then
select the interval edge, which makes D[z] being the
least with the maximum membership, into Dijkstra’s
‘cloud’. The maximum can be obtained with the ‘drastic
sum’ operation or others in fuzzy logic [23] and [24]. Let
us make the following comments to distinguish two kinds
of shortest paths in an interval weighted graph:

• (Strong crisp and crisp shortest paths) If all edges
of a path brought into Dijkstra’s ‘cloud’ have fuzzy
memberships one or one minus to be the least weight,
then we say that the path is the shortest crisp (or
strongly crisp if in fact the memberships are all one
but minus). For example, the shortest paths of the
interval weighted graph G in Figure 2 from A to C, E,
F, are strongly crisp. The shortest path from A → C
has an interval weight [2, 4]. The shortest path from
A → C → E has an interval weight [3, 7]; and
A →C → E →F has an interval weight [6, 12].

• (Fuzzy shortest paths) Otherwise, shortest paths
found are fuzzy. During the generation of a fuzzy
shortest path, a vertex is introduced through the edge
relaxation. Edge relaxations are done through
interval comparisons. Hence, a sequence of fuzzy
memberships comes along with the construction of
the path.

We now can define the fuzzy membership of a fuzzy
shortest path as the follow:

Definition 6: Let P be a fuzzy shortest path from a vertex
A to B produced with the interval Dijkstra’s algorithm
and μe be the fuzzy membership of an edge e ∈ P at the
time it brought in the ‘cloud’ of being the least D[z] for
all other edges in E\P. Then the fuzzy membership of the
fuzzy shortest path P is νP = min μe for all e ∈ P.

The above definition comes from the ‘drastic product’ in
fuzzy logic [23] and [24]. Of course one may use
bounded difference, Einstein product, Hamacher product,
or others to define the fuzziness of a fuzzy shortest path
depending on ones preference. However, if there is a
shortest path from A to B with membership greater than
0.5 in an interval weighted graph then it is the only fuzzy
shortest path from A to B with membership greater than
0.5. We state it as a theorem below with a proof.

Theorem 2: In an interval weighted graph, if P is a fuzzy
shortest path from A to B with membership greater than
0.5 then it is the only path from A to B with membership
greater than 0.5.

Proof:

Let P and P’ be two distinct shortest paths from A to B
and both have membership greater than 0.5 as
illustrated in Figure 6. Without loss of generality, we
assume CD and CK are the first different edges
between P and P’. As we defined, the fuzzy
membership of the fuzzy shortest path is the least
element in E\P. So when the algorithm choose CD as

an edge of P it must has compared with CK, that means
D[D] p D[K] is greater than 0.5. Hence, D[K]
p D[D] is less than 0.5 according to Definition 4.
Therefore, the membership of P’ being a shortest path
is less than 0.5. This is a contradiction. Hence P and
P’ are identical.

Figure 6: The uniqueness of a shortest path with

Theorem 2 implies the uniqueness of interval shortest
path with fuzzy membership greater than 0.5. However, it
should be pointed out that if the fuzzy membership of
interval shortest path is close to 0.5 then it may not be
helpful in practice at all. Hence, one may want to use a
predetermined level α ∈ [0.5, 1] for the minimum
allowable fuzzy membership for to be generated shortest
paths. If one sets the α value too high in applications,
then the interval Dijkstra’s algorithm may generate no
shortest paths at all.

We use an example in Figure 7 to summarize the above
discussion.

Example: As illustrated in Figure 7 below, we apply the
extended interval Dijkstra’s algorithm with the drastic
sum in the literature of operations of fuzzy sets,. The
shortest path from A to F is AC – CB – BE – EF with a
fuzzy membership 0.8.

If we use α > 0.9 then the interval Dijkstra’s algorithm
generates no shortest paths from A to F.

Figure 7: Fuzzy shortest path in an interval weighted graph

As we know the partial order relationship ‘less than’ of
real numbers plays the fundamental role in all currently
available shortest path algorithms. Therefore, by using
the interval fuzzy partial order relationship we defined,
we may extend other existing shortest path algorithms as
well.

[3, 5]

[4, 6]
[5, 7]

[4, 6]

[1, 4]
[2, 8]

[3, 5]

[3, 4]
A

C

D

B

E F

[9, 11]

[2, 4]

[8, 10]

P

A
C

D

K E

B

F

P’

125

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

In the classical Dijkstra’s algorithm it is assumed that
there are no negative-weight edges in a graph. By
assuming edges are directed and no negative-weight
cycles, the Bellman-Ford algorithm [2] finds shortest
paths of a graph even with negative weighted edges. The
pseudo code below is from [13]

If we use the interval partial order for the statement if r

< getDistance(z)in the algorithm above, we can apply
it directly for interval weighted graphs. Similarly these
extended algorithms may produce crispy and/or fuzzy
shortest paths. We can similarly extend other shortest
path algorithms for interval weighted digraphs as well.

5. MINIMUM SPANNING TREE FOR INTERVAL
WEIGHTED GRAPHS

In connected graph G = (V, E), one may remove some
edges to form a sub-graph G’ = (V, E’) with the same
number of vertices but less number of edges. If G’ is in
fact a tree T, then it is called a spanning tree of G. If G is
weighted, then among all of its spanning trees the one
with the minimum total weight is called the minimum
spanning tree (MST) of G.

The first algorithm that finds a minimum spanning tree
was developed by Czech scientist Bor

�
vka in 1926 [5].

Its purpose was to find efficient electrical coverage of
Bohemia. Other algorithms to find MST include
Kruskal's MST algorithm [16] (1956) and Prim-Jarnik’s
MST algorithm [19] (1957). Most MST algorithms, if not
all, take the greedy approach. Hence, sorting is often
required according to given partial ordering relations.
The partial order relations we developed in section 3 of

this paper can be applied to extend these algorithms to
find minimum spanning trees for interval weighted
graphs. As an example, we extend the Kruskal’s MST
algorithm for interval weighted graphs. For reader’s
convenience, we copy the Kruskal’s MST algorithm in
pseudo code from [13] as the above.

In the above algorithm the most critical step is to
construct a priority queue, Q, using the weights of edges
as the key. The fuzzy binary interval operator p is a
fuzzy partial order for intervals as we proved in Theorem
1. Therefore, to extend the MST algorithm, the only thing
we need to do is to apply the fuzzy partial order relation
to form a priority queue according to the interval weights
associated with the edges.

Let us use a heap to implement the priority queue. Then,
the interval weighted edges are stored in a balanced
binary tree. We denote the interval weighted edge stored
in the node m of the binary tree as em. Let i be a node of
the binary tree, and j and k be its immediate children.
Then, to ensure the heap condition both ei p ej and ei

p ek should be at least 0.5. Hence, the interval in the
root r is the least interval in terms of the fuzzy partial
order in Definition 3. Let us use m and n to denote the
two immediate children of r. Then, the fuzzy membership
for er being the least interval in the heap can be
reasonably defined as σr = min {er p em, er p en}
which is no less than 0.5.

With the heap implementation for the extended Kruskal’s
algorithm, the number of down heaps for each re-heap is
at most log M, where M is the number of edges of the
interval weighted graph. Hence, the overall asymptotic
complexity of the extended Kruskal’s algorithm is still O
(M log M).

We now discuss the fuzzy membership of the generated
MST by removing interval weighted edges from the root
of the heap consecutively. There should be total |V| -1
interval edges de-queued from the root such that each of
them has its own fuzzy membership of the least interval
in the heap before the de-queue operation. Of course, if
for every de-queued interval edge its fuzzy membership
of being the least intervals is one or one minus then the
interval MST is crisp. Otherwise, let μT denote the fuzzy
membership of the minimum spanning tree. One idea is
to define μT = min σr. However, it can be misleading.
Assume there are two interval weights that are equal or
have the same midpoints and both of them are ‘short’
enough to be able to make the root in the heap and to be
included in the MST. The fuzzy membership of 0.5 for
the tree would not make any sense. Another approach is
to define μT = max σr. However, this maybe misleading
as well since any single crisp comparison will result in a
crisp MST.

Both μT = min σr and μT = max σr that are most
commonly used in fuzzy logic can be misleading so we
need reasonable alternatives. In applications, one may
want to output the fuzzy memberships as well when
perform the de-queue operations. By observing their
behavior, one may have a better sense of the fuzziness of
the generated MST. Another approach is to use the fuzzy
membership of the last edge de-queued from the heap

Algorithm: KruskalMST (G)

for each vertex v in G do
 define a Cloud(v) of {v}
let Q be a priority queue.
 Insert all edges into Q using their
 weights as the key

T ∅∅∅∅
while T has fewer than n-1 edges do
 edge e = Q.removeMin()
 Let u, v be the endpoints of e

if Cloud(v) ≠ Cloud(u) then
 Add edge e to T
 Merge Cloud(v) and Cloud(u)

return T

Algorithm BellmanFord(G, s)
for all v ∈ G.vertices()

 if v = s
 setDistance(v, 0)
 else

 setDistance(v, ∞)
 for i ← 1 to n-1 do

for each e ∈ G.edges()
 {relax edge e}
 u ← G.origin(e)
 z ← G.opposite(u,e)
 r ← getDistance(u)+ weight(e)
 if r < getDistance(z)
 setDistance(z,r)

126

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

when generating an MST by interval extended Kruskal’s
algorithm.

Similarly, we can extend other available MST algorithms
for interval weighted graphs. We finish this section with
an example of interval MST.

Example: As G in Figure 7, we find a minimum
spanning tree of G with extended interval Kruskal’s
algorithm. The MST is formed by AC, CB, BE, ED, EF
with its total interval weight is [13, 24].

6. Conclusion and future work
In this paper, we have introduced interval-valued weights
to model the uncertainty and variability in weighted
graphs. In order to study application algorithms for
interval weighted graphs, we have defined continuous
(except at a single point for two equal intervals) binary
interval operators that can quantitatively describe if one
interval is less than or greater than another. We proved
that the operators in fact form fuzzy partial order
relationship for intervals. By applying the partial order
relationship, we have extended application algorithms
that find shortest paths and minimum spanning tree for
interval weighted graphs. These can be directly applied to
handle interval valued uncertainties in decision making
systems modeled by weighted graphs.

Our work here is just an initial investigation on interval
weighted graphs. We have searched the internet
extensively for ‘interval weighted graph’ in the literature
but not very successfully. The relationship of intervals
was first studied by Allen [1] (1983). His study was
mainly for temporal properties described as 13 cases.
Another close match was Fishburn’s work on interval
orders and interval graphs [10] in 1985. However, the
purpose of that study was mainly for ordering vertices in
a graph but not for interval weighted edges at all.

The theoretic results on interval fuzzy partial order
relations can have more potential applications in dealing
with systems with interval valued uncertainties other than
interval weighted graphs. We are working on other
applications, and report our results on scheduling tasks on
flow networks with temporal uncertainty in [14].

Acknowledgement: This research is partially supported
by NSF Grant CCF-0202042.

Authors of this paper appreciate the insight comments
from Dr. D. Dubois on our previous work. By studying
his comments we have been able to present the fuzzy
partial order relationship for intervals in much clearer
terms in this paper.

REFERENCES

[1] Allen, J. F. Maintaining Knowledge about Temporal
Intervals, Communication of the ACM, Vol. 26,
pp.832-843, 1983.

[2] Bellman, R. On a Routing Problem, in Quarterly of
Applied Mathematics, 16(1), pp.87-90, 1958.

[3] Benzer, S. On the topology of the genetic fine
structure. Proc. Nat. Acad. Sci. USA, 45,
pp.1607-1620, 1959.

[4] Booth, K. S. and Lueker, G. S. Testing the
consecutive ones property, interval graphs, and

graph planarity using PQ-tree algorithms, J.
Comput. Syst. Sci., 13, pp. 335-379, 1976.

[5] Bor
�

vka, O. On a certain minimal problem,1926
[6] Collins, D. and Hu, C. Fuzzily Determined Interval

Matrix Games, Forging New Frontiers: Fuzzy
Pioneers II, edited by M. Nikravesh, J. Kacprzyk and
L. Zadeh, in press, 2006.

[7] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and
Stein, C. Introduction to Algorithms, Second Edition.
MIT Press and McGraw-Hill, Section 23.2:
pp.567–574, 2001.

[8] Dijkstra, E. W. A note on two problems in connexion
with graphs. Numerische Mathematik, Vol. 1, pp.
269-271, 1959

[9] Ford, L. R., Fulkerson, D. R. Flows in Networks,
Princeton University Press, 1962.

[10] Fishburn, P. C. Interval Orders and Interval
Graphs: A study of Partially Ordered Sets, Wiley,
New York, 1985.

[11] Gilmore, P. C. and Hoffman, A. J. A
characterization of comparibility graphs and
interval graphs, Canadian Journal of Mathematics,
16, pp.539-548, 1964.

[12] Golumbic, M. C. Algorithmic Graph Theory and
Perfect Graphs, Academic Press, 1980.

[13] Goodrich, M. and Tamassia, R. Algoritm Design,
John Wiley & Sons, 2002.

[14] Hu, P., Deallar M., and Hu, C. Task scheduling on
flow networks with temporal uncertainty, Proc. of
IEEE 2007 Symposium on Foundations of
Computational Intelligence, Honolulu, HI, 2007.

[15] Interval Computations,
http://www.cs.utep.edu/interval-comp/main.html

[16] Kruskal, J. B. On the shortest spanning subtree and
the traveling salesman problem, Proceedings of the
American Mathematical Society 7, pp.48–50, 1956.

[17] Moore, R. E. Method and Application of Interval
Analysis, SIAM, Philadelphia.

[18] Nguyen, H., Kreinovich, V. and Longpre, L. Dirty
Pages of Logarithm Tables, Lifetime of the
Universe, and (Subjective) Probabilities on Finite
and Infinite Intervals, Reliable Computing, 10,
No. 2, pp. 83-106, 2004.

[19] Prim, R. C. Shortest connection networks and some
generalizations, Bell System Technical Journal, 36,
pp. 1389–1401, 1957.

[20] Sengupta, J. Optimal Decision Under Uncertainty,
Springer. New York. 1981.

[21] Wagman, D., Schneider, M., Shnaider, E. On the use
of interval mathematics in fuzzy expert systems,
International Journal of Intelligent Systems, 9, pp.
241-259, 1994.

[22] West, D. B. Introduction to graph theory, Prentice
Hall, Inc., Upper Saddle River, NJ, 1996.

[23] Yan, J. and Langari, R. Fuzzy Logic: Intelligence,
Control and Information, Prentice-Hall, 1999.

[24] Zadeh, L. Fuzzy sets, Information Control, 8, pp.
338-353, 1965.

127

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

