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Abstract
Weighted graphs have been broadly employed in various 
kinds of applications. Weights associated with edges in a 
graph are constants mostly in the literature. However, in 
real world applications, these weights may vary within 
ranges rather than fixed values. To model such kind of 
uncertainty or variability, we propose interval-valued 
weighted graphs in this study.  

In solving practical graph applications such as finding 
shortest paths and minimum spanning trees for interval 
weighted graphs, it is necessary to be able to compare 
interval valued weights. However, two general intervals 
can not be ordered reasonably in binary logic. In this 
paper, we establish fuzzy partial-order relations for 
intervals. These relations are continuous, except only at a 
single point in a special case. After studying the 
properties of the fuzzy partial order relations, we applied 
the interval partial order to extend well-known shortest 
path and minimum spanning tree algorithms for interval 
weighted graphs.  

Keywords
Interval weighted graph, fuzzy partial-order relation for 
intervals, interval shortest path and minimum spanning 
tree 

1. INTRODUCTION 

1.1 A brief review of weighted graphs  
In this paper, we study graphs whose weights are 
intervals instead of constants used in the literature. In 
order to do this, we briefly review fundamental concepts 
of graph theory here. There is a very rich amount of 
literature on graphs. The ‘theory of graphs’ named by J. 
Sylvester (1814-1897) began with Euler's paper (1735) 
describing the problem of the seven bridges of 
Königsberg and was further developed by A. Cayley 
(1821-1895), W. Hamilton (1805-1865) and others.  

In general, a graph G consists of a set of vertices (V) and 
a set of edges (E), i.e. G = (V, E). If the edges in the 
graph do not have directions, G is an undirected graph. 
Otherwise, it is a directed graph or digraph. A path of a 
graph is a consecutive sequence of edges. G is connected 
if for any two vertices A and B in a graph G there exists a 
path in G such that one can travel between A and B. This 
is only a sufficient but unnecessary condition for 
connectivity if a graph is directed. G is weighted if for 
every e ∈ E there is a weight we associated with e. These 
weights can represent meaningful things such as distance, 
cost, and others in applications. Therefore, weighted 
graphs have been well studied and broadly applied in 
solving real world applications. Graphs studied in this 

paper are initially assumed to be positive weighted, and 
connected, undirected as the sample in Figure 1. This 
assumption is purely for the simplicity of our discussion. 
As we will see later in this paper, results reported can be 
extended to digraphs even with negative weights (without 
negative cycles) as well. 

Among typical applications of weighted graphs are 
finding shortest paths, minimum spanning trees, and 
others. Algorithms for finding shortest paths include 
Dijkstra’s algorithm [8] (1959), Bellman-Ford algorithm 
[2] (1958) and [9] (1962), and others. Algorithms that 
find a minimum spanning tree include Kruskal’s 
algorithm [16] (1956), Prim-Jarnik algorithm [19] (1957) 
and Bor

�
vka’s algorithm [5] (1926). All of these 

algorithms require the order relationship of real numbers 
to determine optimal solutions. Figure 1 below is a 
sample connected weighted graph with six vertices and 
eleven undirected edges. The shortest path from A to F is 
weighted six as A →C →E → F. The edges AC, CB, 
CE, ED, and EF form the minimum spanning tree of the 
graph with total weight 12. 

Figure 1: A weighted graph 

1.2 Motivations of this study  
We have noticed that in the current literature weights 
associated with edges are constants in a weighted graph. 
However, in real world applications, due to some kinds of 
uncertainties, weights associated with edges often vary 
within ranges rather than fixed constants. Here are few 
examples. Travel time (driving or flight) between A and 
B may not be exactly two hours but between an hour and 
50 minutes and two hours five minutes mostly. The 
available bandwidth of a network connection may be 
75-80% during a given time period. The price of a stock 
during a day can be between $8.08 -$8.88. To better 
model the variability of weights in a graph, instead of 
using constants, we represent weights as intervals. An 
interval [a, b] is the set of all real numbers between its 
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lower (left) and upper (right) bounds a and b provided 
that a, b∈ ℜ, and a � b. When a = b, the interval is trivial
and is the same as a real number. In the rest of this paper, 
we use boldfaced letters to represent intervals. The left 
and right endpoints of an interval are denoted with 
subscripts L and R. For example, a = [aL, aR] is an 
interval whose left and right endpoints are aL and aR, 
respectively.  

The rest of this paper is organized as the follow. Section 
2 defines interval weighted graph and a brief review of 
related concepts in interval computing. In section 3, we 
present a binary operator (and its dual) between two 
intervals; and then prove that the operator and its dual 
form fuzzy partial order relationships for intervals. 
Properties of the fuzzy partial order relations are also 
presented in the section. In sections 4 and 5, we apply the 
fuzzy partial order relationship to study algorithms that 
find shortest paths and minimum spanning trees for 
interval weighted graphs, respectively. We conclude this 
paper with section 6. 

2. INTERVAL WEIGHTED GRAPHS AND 
INTERVAL COMPUTING  

2. 1 Interval weighted graphs  
As mentioned in the previous section, we study graphs 
with interval valued weights in this paper. We define the 
concept of interval weighted graph as the follow:  

Definition 1: A graph G = {V, E} is an interval weighted 
graph if for each edge e ∈ E there is an interval weight we

associated with it.  

As an example, Figure 2 below is an interval weighted 
graph. 

Figure 2: An interval weighted graph 

Here we would like to clarify that the concept of interval 
weighted graph is completely different from the term 
interval graph in the existing literature.  

The concept of interval graph is a type of intersection 
graph introduced by Benzer in [3] (1959). In 1964, 
Gilmore and Hoffman defined interval graph [11] as: “A 
graph G is an interval graph if and only if every 
quadrilateral in G has a diagonal and every odd cycle in 
Gc (G’s complementary graph) has a triangular chord.” In 
[10] (1985), Fishburn stated: “It [interval graph] refers a 
graph (X, ∼) whose points can be mapped into intervals 

in a linearly ordered set such that, for all distinct x and y, 
x ∼ y if and only if the intervals assigned to x and y have 
a nonempty intersection.”  In other words, interval 
graph is a special type of graph such that the orders of its 
vertices satisfy the above specified conditions but nothing 
involving the weights of the edges.  

The term interval weighted graph that we have defined 
here means only that the weights associated with edges 
are interval valued. In other words, the order of vertices 
is not in the consideration of studying interval weighted 
graphs in this paper.   

2.2 Interval arithmetic  

To study interval weighted graphs, we need interval 
computing proposed by Moore [17] in 1950’s.  As 
mentioned previously in this paper, an interval is a set of 
real numbers defined as: 

a = [aL, aR] = {x ∈ ℜ | aL � x � aR}. 

The left and right endpoints aL, aR of the interval a on the 
real line are also called the lower and upper limits of the 
interval, respectively. We say that a is a non-negative 
interval if aL ≥ 0. In addition to the left-right endpoints 
representation, an interval a can also be represented by its 
midpoint m (a) together with its radius r (a), where m (a) 
= (aL + aR)/2 and r (a) = (aR - aL)/2. It is easy to see that a
= [aL, aR] = [m(a) – r(a), m(a) + r(a)]. If the radius of a is 
zero, i.e. aL = aR, then a is a trivial interval the same as an 
ordinary real number.

Interval arithmetic has been defined by Moore [17] as an 
approach of putting bounds on rounding errors in 
mathematical computation and thus obtaining reliable 
results. Where classical arithmetic defines operations on 
numbers, interval arithmetic defines a set of operations 
on intervals. The basic binary arithmetic operations for 
two intervals, a = [aL, aR] and b = [bL, bR], are: 

a + b = [aL + bL, aR + bR] 

a - b = [aL - bR, aR - bL] 

 a * b = [min (aLbL, aLbR, aRbL, aRbR ), max(aLbL, 
aLbR, aRbL, aRb)]  

 a / b = [min(aL/bL, aL/bR, aR/bL, aR/bR), max(aL/bL, 
aL/bR, aR/bL, aR/bR)] provided that 0 ∉ b.  

These arithmetic operations can be represented in terms 
of midpoints and radiuses of a and b as well. Here are 
simple examples of interval arithmetic operations: 

Example 2:  Let a = [1, 2] and b = [3, 4] be two 
intervals. Then:  

a + b = [4, 6], a - b = [-3, -1],  

a * b = [3, 8], and a / b = [1/4, 2/3]. 

There is a very large amount of literature on interval 
analysis far beyond the scoop of this paper. Interested 
readers may check the comprehensive website [14] 
maintained by Professor Kreinovich to find more 
information about interval computing. 
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3. A FUZZY PARTIAL-ORDER RELATIONSHIP 
FOR INTERVALS 

3.1 Incomparability of intervals in binary logic  

In studying shortest paths and spanning trees of a 
weighted graph, one needs an ordering relationship to 
compare distances and/or total weights. For any two 
given real numbers x and y, the statement ‘x is less than 
y’ can be either true or false depending on their positions 
on the real line. The ordering relation of two real 
numbers can be presented perfectly in classical binary 
logic. However, for two nonempty intervals a and b, the 
relation ‘a is less than b’ can be fairly complicated. In [1] 
(1983), Allen listed 13 possible casess for the temporal 
relationships of two time intervals without quantification. 
Instead of listing all of the 13 cases, we use Figures 3-5 
to illustrate three of them.  

        Figure 3: Disjoint intervals  

In Figure 3, intervals a and b are disjoint. Since ∀ a ∈ a
and ∀ b ∈ b, a < b, one can say that ‘a is less b’ is true 
without any hesitations. For example, if a = [2, 4] and b 
= [5, 9] then ‘a is less than b’. This is what has been 
widely accepted in [1] and others.  

Figure 4: Partially overlapping intervals a and b 

However, in Figures 4 and 5, there are some a ∈ a, and b 
∈ b, such that a < b; and there are also some a’ ∈ a, and 
b’ ∈ b, such that a’ < b’.  

Figure 5: Nested intervals a and b 

Therefore, the statement ‘a is less than b’ cannot be 
simply represented in traditional binary logic anymore 
since it is true under a certain degree and false in another 
degree depending on their relative positions. It is fuzzy 
indeed.  

Here we would also like to point it out that, in [10] 
(1985), Fishburn defined a concept of interval order. The 
concept was for a special kind of partially ordered set 
defined as: “A partially ordered set (X,p ) is an interval 
order precisely when its points x, y, … can be mapped 
into intervals in a linearly ordered set, such as (ℜ, <), 
such that, for all x and y in X, x p  y if and only if the 
interval assigned to x completely proceeds the interval 
assigned to y.” From this definition we can clearly see 
that the concept of interval order is not for ordering 
intervals but for a special kind of partially ordered set. 
The purpose of reviewing this concept is for studying the 
order of vertices in interval graphs. 

In studying temporal relationship of time intervals [1], 
Allen needs only qualitative relationship of two time 
intervals. In [18] Nguyen and et al investigated points in 
intervals via a probabilistic approach without ordering 
intervals. However, in studying interval weighted graphs, 
we need a quantitative relationship for intervals. After 
thorough searches on the internet, we have not found 
quantitative comparisons for intervals. Since intervals are 
incomparable in binary logic in general as we described 
previously, it calls for a fuzzy order relation for 
comparing intervals. We can then quantitatively compare 
two intervals with fuzzy memberships.  

3.2 Fuzzy partial-order relations for intervals 

In [24] (1965), Zadeh proposed fuzzy logic for statements 
that can be both true and false in certain degrees. He 
further defined the concept of fuzzy membership to 
quantitatively describe the degree of the belief.  

In [6] (2006), Collins and Hu initially investigated 
interval ordering relationship quantitatively in terms of 
fuzzy membership for the Game theory. However, the 
definition of the ordering is in the context for matrix 
games only. Through recent professional communication 
with Dr. Dubois, we enhance the initial interval ordering 
relationship in much rigorous mathematical terms. Prior 
to the formal definition, we describe the general idea 
informally first. 

Let us start with Figure 3 where ‘a is less than b’ without 
any questions. Let us imagine that the interval a holds 
itself and moves right toward b. Before the right endpoint 
of a meets the left endpoint of b, i.e. aR < bL, a is always 
less than b. At the moment the two endpoints meet, i. e. 
aR = bL, all points in a are less than all points in b except 
the single common point. Therefore, it is reasonable to 
believe that a is still less than b. Let a continue its right 
movement, then a and b partially overlapped as 
illustrated in Figure 4. As long aL < bL and aR < bR, 
except the overlap [bL, aR], all points in a are less than 
points in b. Also, any point x in the overlap [bL, aR] is in 
both a and b. A point x is not less than itself. Therefore, it 
is reasonable to believe that a is still less than b.  

In the above discussion we believe ‘a is less than b’ for 
both cases illustrated in Figures 3 and 4. However, they 
represent different cases that one has no overlap but the 
other has. Therefore, we should distinguish them. In fact 
Fishburn implicitely distinguished them with less than 
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and weakly less than in [10] for cases illustrated in Figure 
3 and 4, respectively. In this paper, we say that a is less 
than b in Figure 3 with fuzzy membership one. And, the 
fuzzy membership of ‘a is less than b’ illustrated in 
Figure 4 as 1- to indicate the fact that a is weakly less 
than b. One posible way to describe the weakness is to 
consider the overlap portion of the intervals.    

Now, let us continue to hold a, and move it towards the 
right. With the assumption that the radius of a is less than 
that of b, i.e. r (a) < r (b), a will be inside b completely 
when and after the left endpoints of a and b overlaps (aL

= bL) and before the right endpoint of a moves outside of 
b (aR < bR). To keep the continuity, we say that a is still 
less than b weakly provided aL = bL and aR < bR. 
However, when aL > bL and aR = bR, i. e. the right 
endpoints are aligned and a part of b is less than a, the 
membership of ‘b is less than a’ should be one (actually 
1- ) according to our discussion the above. Hence, the 
statement ‘a is less than b’ should have the membership 
zero.  

Continuing with the assumption that the radius of a is 
less than that of b, we need a membership function for 
the statement ‘a is less than b’ that returns one when aL = 
bL and aR < bR, and zero when aL > bL and aR = bR. We 
want the membership changes from 1 to 0 continuously. 
When a ⊂ b and r (b) - r (a) > 0, the function  

f(a, b) = (bR - aR)/2[r(b) – r(a)]  

= (bR - aR)/[(bR - bL) - (aR - aL)] 

satisfies the requirements. Hence, we use it to measure 
the degree of ‘a is less than b’, when a moves from aL = 
bL and aR < bR, to aL > bL and aR = bR. The fuzzy 
membership continuously changes from one to zero 
gradually. Notice the fact that when the midpoints of a 
and b overlap, i. e. m (a) = m (b), then f (a, b) returns 
0.5.  

In the above discussion, we have assumed that r (a) < r 
(b). If not, when r (b) < r (a), by reversing the names of 
both a and b, the above arguments valid too. We now 
consider the case of r (a) = r (b). All of the above 
discussions are valid except that the function f (a, b) = 
(bR - aR) / 2[r (b) – r (a)] is undefined since r (b) – r (a) = 
0. However, the function is only used when aL = bL and 
after. In the case of aL = bL and r (a) = r (b), a and b are 
actually overlapped completely hence their midpoints as 
well. Let c be an interval whose radius is less than b. If 
we keep the midpoints of c and b overlap and let the 
radius of c approach that of a. The fuzzy membership of 
‘c is less than b’ is 0.5 persistently. Hence, its limit is 0.5 
as c approach that of a. Therefore, the fuzzy membership 
of ‘a is less than b’ is 0.5 when r (a) = r (b) and aL = bL. 
It is reasonable that an interval is equally less and greater 
than itself with fuzzy membership 0.5. Here we need to 
point out the fact that there is one and only one 
discontinuity in the above discussion entirely. That 
appears when r (a) = r (b) and aL = bL. The membership 
has a gap between 1, when r (a) < r (b) and aL = bL, and 
0.5.  

By summarizing the above discussion, we define a fuzzy 
relationship for two intervals a and b in terms of fuzzy 
membership as the follow:  

Definition 3: Let a = (aL, aR) and b = (bL, bR) be two 
intervals, and p be a binary interval operator for them. 
Then, a p b returns the fuzzy membership for the 
statement ‘a is less than b’ as: 

Note: The definition above also works when a and b are 
trivial intervals. When both of them are trivial intervals, 
i.e. aL = aR and bL= bR, the definition returns 1 if aR < bL, 
and 0.5 if aL = bL. It is in consistent with the ordering 
relation of real numbers. When only one of them is trivial, 
say a is trivial, the definition returns appropriate fuzzy 
memberships as well. 

Definition 3 implies the Corollary below:  

Corollary 1: Let a and b be two intervals. Then  

(i) (a p  b) = 0.5 iff m (a) = m (b); 

(ii) (a p  b) > 0.5 iff m (a) < m (b); 

(iii) (a p  b) < 0.5 iff m (a) > m (b). 

Proof: 

(i) ⇒

Let (a p b) = 0.5. If a = b, we have m(a) = m(b). If 
a  ≠ b, then by Definition 3, bR - aR = r (b) – r (a) = 
(bR - bL)/2 – (aR - aL)/2. Hence bR - aR = aL - bL. 
Therefore, bL + bR = aL + aR and m (a) = m (b).  

⇐

Assume m (a) = m (b). If a = b, from Definition 3, (a
p b) = 0.5. If a  ≠ b, then bL + bR = aL + aR. Hence 
bR - aR = aL - bL= r (b) – r (a). Therefore, (a p b) = 
0.5.   

(ii) ⇒

Let (a p b) > 0.5.  

If (a p b) = 1 then aR < bL Since m (a) � aR and bL 

� m (b), we have m (a) < m (b).  

If (a p b) = 1-, then aL � bL � aR < bR. Hence, we 
have aL + aR < bL + bR. This implies m (a) < m (b).  

Otherwise, (a p b) = (bR - aR) / 2[r (b) – r (a)] > 
0.5 implies bR - aR > r (b) – r (a), i.e. bR - aR > (bR - 
bL)/2 – (aR - aL)/2. Hence, bL + bR > aL + aR and m (a) 
< m (b). 

⇐

1           if aR < bL 

1-          if aL � bL � aR < bR and r (a)> 0 

R R(b  - a )

2[r (b) - r (a)]
    if bL �aL<aR � bR, and r (b) > r (a) 

0.5         if r (b) = r (a) and aL = bL
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Assume m (a) < m (b). Then, aL + aR < bL + bR

implies bR - aR > r (b) – r (a). If bL �  aL <aR � bR and 
r(b) > r (a), then (a p b) = (bR - aR) / 2[r (b) – r (a)] 
> 0.5. Otherwise, (a p b) = 1 or 1-.   

(iii) ⇒

Let (a p b) < 0.5. Then, we have bR - aR < r (b) – r 
(a), i.e. bR - aR < (bR - bL)/2 – (aR - aL)/2. Hence, we 
have aL + aR > bL + bR. This implies m (a) > m (b). 

⇐

Assume m (a) > m (b). Then, aL + aR > bL + bR

implies bR - aR < r (b) – r (a). Hence (a p b) = (bR - 
aR) / 2[r (b) – r (a)] < 0.5.  �

As the duality of the above discussion, we can define ‘a
is greater than b’ as the follow: 

Definition 4: Let a = (aL, aR) and b = (bL, bR) be two 
intervals, and f be a binary interval operator that 
returns the fuzzy membership of the statement ‘a is 
greater than b’ as (a f b) = 1 – (a p b). 

Similarly, we have the corollary below: 

Corollary 2: Let a and b be two intervals. Then  

(i) (a f b) = 0.5 iff m (a) = m (b); 

(ii) (a f b) > 0.5 iff m (a) > m (b); 

(iii) (a f b) < 0.5 iff m (a) < m (b). 

In binary logic, a relation R on a set X is a partial order 
iff (a) ∀ x ∈ X, xRx ⇒ false (inreflexive), and (b) ∀ x, y, 
z ∈ X, (xRy, yRz) ⇒ xRz (transitive) then R is a partial 
order relation on X.  

We now define the concepts of fuzzy inreflexibility and 
fuzzy transitivity for a fuzzy relation as the follow.  

Definition 5: A fuzzy relation R on a set X is fuzzily 
inreflexive if ∀ x ∈ X, xRx = 0.5; R is fuzzily transitive 
∀ x, y, z ∈ X, if xRy > 0.5 and yRz > 0.5 then xRz > 0.5. 
If R is both fuzzily inreflexive and transitive, then R is a 
fuzzy partial order relation. 

Theorem 1: The binary interval operators p and f are
fuzzy partial order relations.  

Proof:  

From Definition 3, it is obvious that (a p a) = 0.5 
since r (a) = r (a) and aL = aL. Therefore, the binary 
operator p is fuzzily inreflexive.  

Let a, b and c be nontrivial intervals. From Corollary 1 
we have (a p b) > 0.5 ⇒ m (a) < m (b) and (b p c) 
> 0.5 ⇒ m (b) < m (c). The midpoints of intervals are 
just real numbers.  Hence (a p b) > 0.5 and (b p c) 
> 0.5 imply m (a) < m (c). Therefore, the binary 
operator p is fuzzily transitive. Hence, it is a fuzzy 
partial order.  

Similarly, the binary interval operator f is a fuzzy 
partial order.   �

We have now established fuzzy partial orders for intervals. 
Definitions 3 and 4 provide quantitative methods to find the 

exact fuzzy memberships for ordering two intervals. From 
Corollaries 1 and 2, we can see that if the fuzzy membership 
is greater (or less) than or equal to 0.5 is in fact determined 
by their midpoints only.  

We use a few examples to complete this section:  

For the two nested intervals a = [0, 4] and b = [1, 3], 
the fuzzy memberships for ‘a is less than b’ and ‘a is 
greater than b’ are both 0.5 since their midpoints 
overlap.  

Let a = [0, 4] and b = [2, 4], then ‘a is less than b’ has 
a fuzzy membership of one minus while the fuzzy 
membership for ‘a is greater than b’ is zero.  

For the intervals b = [0, 5] and a = [1, 3], ‘a is less than 
b’ has a fuzzy membership of 2/3 while the fuzzy 
membership of ‘a is greater than b’ is 1/3. 

4. CRISP AND FUZZY SHORTEST PATHS FOR 
INTERVAL WEIGHTED GRAPHS 

In this section, we study shortest paths for interval 
weighted graphs by applying the fuzzy partial order 
relations for intervals defined in the previous section. 
Among the algorithms of finding shortest paths, 
Dijkstra’s algorithm [8] (1959) is probably the most 
well-known. It finds the shortest paths from one vertex to 
the rests in a connected, undirected graph with a growing 
‘cloud’. In this section, we extend Dijkstra’s algorithm 
for interval weighted graphs first and then others. For the 
readers’ convenience, we provide the pseudocode for 
Dijkstra’s algorithm from [13] below.  

 As we can see in the Dijkstra’s algorithm, the most 
critical step is to compare the distance labels of D[u] + w 
(u, z) and D[z] after their initialization. Whenever D[u] + 
w (u, z) < D[z], we update D[z] by D[u] + w (u, z) in the 
priority Q. This is called edge relaxation. Only the edge 
with minimum distance is added in to form a shortest 
path consequently. 

With the partial order relationship defined in the previous 
section for intervals, we can modify the above Dijkstra’s 
algorithm for interval weighted graphs with interval 

Algorithm: DijkstraShortestPath (G, v) 

Input: A simple undirected graph G with nonnegative 
edge weights, and a vertex v of G. 

Output: A label D[u] for each vertex u of G, such 
that D[u] is the distance from v to u in G. 

for all u∈G.vertices() 
  if u = v, D[u] ← 0 
  else D[u] ← ∞

Let a priority queue Q contain all 
vertices of G using the D labels as keys 

while ¬ Q.isEmpty() 
      u←Q.removeMin() 

∀ vertex z adjacent to u and z ∈ Q do 
  {perform relaxation on the edge(u, z)} 
    if D[u] + w(u, z) < D[z] then

     D[z] ←D[u] + w(u, z)  
    {change the key of vertex z in Q

with  D[z]} 
return the label D[u] of each vertex of G 
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comparisons. The only modification that needs to be 
made for the interval Dijkstra’s algorithm is that in each 
step of the edge relaxations, we need to find the fuzzy 
membership for the label D[z] being the least. We then 
select the interval edge, which makes D[z] being the 
least with the maximum membership, into Dijkstra’s 
‘cloud’. The maximum can be obtained with the ‘drastic 
sum’ operation or others in fuzzy logic [23] and [24]. Let 
us make the following comments to distinguish two kinds 
of shortest paths in an interval weighted graph: 

• (Strong crisp and crisp shortest paths) If all edges 
of a path brought into Dijkstra’s ‘cloud’ have fuzzy 
memberships one or one minus to be the least weight, 
then we say that the path is the shortest crisp (or 
strongly crisp if in fact the memberships are all one 
but minus). For example, the shortest paths of the 
interval weighted graph G in Figure 2 from A to C, E, 
F, are strongly crisp. The shortest path from A → C 
has an interval weight [2, 4]. The shortest path from 
A → C → E has an interval weight [3, 7]; and 
A →C → E →F has an interval weight [6, 12]. 

• (Fuzzy shortest paths) Otherwise, shortest paths 
found are fuzzy. During the generation of a fuzzy 
shortest path, a vertex is introduced through the edge 
relaxation. Edge relaxations are done through 
interval comparisons. Hence, a sequence of fuzzy 
memberships comes along with the construction of 
the path.  

We now can define the fuzzy membership of a fuzzy 
shortest path as the follow: 

Definition 6: Let P be a fuzzy shortest path from a vertex 
A to B produced with the interval Dijkstra’s algorithm 
and μe be the fuzzy membership of an edge e ∈ P at the 
time it brought in the ‘cloud’ of being the least D[z] for 
all other edges in E\P. Then the fuzzy membership of the 
fuzzy shortest path P is νP = min μe for all e ∈ P. 

The above definition comes from the ‘drastic product’ in 
fuzzy logic [23] and [24]. Of course one may use 
bounded difference, Einstein product, Hamacher product, 
or others to define the fuzziness of a fuzzy shortest path 
depending on ones preference. However, if there is a 
shortest path from A to B with membership greater than 
0.5 in an interval weighted graph then it is the only fuzzy 
shortest path from A to B with membership greater than 
0.5. We state it as a theorem below with a proof.  

Theorem 2: In an interval weighted graph, if P is a fuzzy 
shortest path from A to B with membership greater than 
0.5 then it is the only path from A to B with membership 
greater than 0.5. 

Proof:  

Let P and P’ be two distinct shortest paths from A to B 
and both have membership greater than 0.5 as 
illustrated in Figure 6. Without loss of generality, we 
assume CD and CK are the first different edges 
between P and P’. As we defined, the fuzzy 
membership of the fuzzy shortest path is the least 
element in E\P. So when the algorithm choose CD as 

an edge of P it must has compared with CK, that means 
D[D] p  D[K] is greater than 0.5. Hence, D[K] 
p D[D] is less than 0.5 according to Definition 4. 
Therefore, the membership of P’ being a shortest path 
is less than 0.5.  This is a contradiction. Hence P and 
P’ are identical.    

  

Figure 6: The uniqueness of a shortest path with 

Theorem 2 implies the uniqueness of interval shortest 
path with fuzzy membership greater than 0.5. However, it 
should be pointed out that if the fuzzy membership of 
interval shortest path is close to 0.5 then it may not be 
helpful in practice at all. Hence, one may want to use a 
predetermined level α ∈ [0.5, 1] for the minimum 
allowable fuzzy membership for to be generated shortest 
paths. If one sets the α value too high in applications, 
then the interval Dijkstra’s algorithm may generate no 
shortest paths at all.   

We use an example in Figure 7 to summarize the above 
discussion. 

Example: As illustrated in Figure 7 below, we apply the 
extended interval Dijkstra’s algorithm with the drastic 
sum in the literature of operations of fuzzy sets,. The 
shortest path from A to F is AC – CB – BE – EF with a 
fuzzy membership 0.8. 

If we use α > 0.9 then the interval Dijkstra’s algorithm 
generates no shortest paths from A to F.   

  

Figure 7: Fuzzy shortest path in an interval weighted graph 

As we know the partial order relationship ‘less than’ of 
real numbers plays the fundamental role in all currently 
available shortest path algorithms. Therefore, by using 
the interval fuzzy partial order relationship we defined, 
we may extend other existing shortest path algorithms as 
well.  
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In the classical Dijkstra’s algorithm it is assumed that 
there are no negative-weight edges in a graph. By 
assuming edges are directed and no negative-weight 
cycles, the Bellman-Ford algorithm [2] finds shortest 
paths of a graph even with negative weighted edges. The 
pseudo code below is from [13] 

  

If we use the interval partial order for the statement if r 

< getDistance(z)in the algorithm above, we can apply 
it directly for interval weighted graphs. Similarly these 
extended algorithms may produce crispy and/or fuzzy 
shortest paths. We can similarly extend other shortest 
path algorithms for interval weighted digraphs as well.   

5. MINIMUM SPANNING TREE FOR INTERVAL 
WEIGHTED GRAPHS 

In connected graph G = (V, E), one may remove some 
edges to form a sub-graph G’ = (V, E’) with the same 
number of vertices but less number of edges. If G’ is in 
fact a tree T, then it is called a spanning tree of G. If G is 
weighted, then among all of its spanning trees the one 
with the minimum total weight is called the minimum 
spanning tree (MST) of G.  

The first algorithm that finds a minimum spanning tree 
was developed by Czech scientist Bor

�
vka in 1926 [5]. 

Its purpose was to find efficient electrical coverage of 
Bohemia. Other algorithms to find MST include 
Kruskal's MST algorithm [16] (1956) and Prim-Jarnik’s 
MST algorithm [19] (1957). Most MST algorithms, if not 
all, take the greedy approach. Hence, sorting is often 
required according to given partial ordering relations. 
The partial order relations we developed in section 3 of 

this paper can be applied to extend these algorithms to 
find minimum spanning trees for interval weighted 
graphs. As an example, we extend the Kruskal’s MST 
algorithm for interval weighted graphs. For reader’s 
convenience, we copy the Kruskal’s MST algorithm in 
pseudo code from [13] as the above. 

In the above algorithm the most critical step is to 
construct a priority queue, Q, using the weights of edges 
as the key. The fuzzy binary interval operator p  is a 
fuzzy partial order for intervals as we proved in Theorem 
1. Therefore, to extend the MST algorithm, the only thing 
we need to do is to apply the fuzzy partial order relation 
to form a priority queue according to the interval weights 
associated with the edges.  

Let us use a heap to implement the priority queue. Then, 
the interval weighted edges are stored in a balanced 
binary tree. We denote the interval weighted edge stored 
in the node m of the binary tree as em. Let i be a node of 
the binary tree, and j and k be its immediate children. 
Then, to ensure the heap condition both ei p  ej and ei

p  ek should be at least 0.5.  Hence, the interval in the 
root r is the least interval in terms of the fuzzy partial 
order in Definition 3. Let us use m and n to denote the 
two immediate children of r. Then, the fuzzy membership 
for er being the least interval in the heap can be 
reasonably defined as σr = min {er p  em, er p  en} 
which is no less than 0.5.   

With the heap implementation for the extended Kruskal’s 
algorithm, the number of down heaps for each re-heap is 
at most log M, where M is the number of edges of the 
interval weighted graph. Hence, the overall asymptotic 
complexity of the extended Kruskal’s algorithm is still O 
(M log M). 

We now discuss the fuzzy membership of the generated 
MST by removing interval weighted edges from the root 
of the heap consecutively. There should be total |V| -1 
interval edges de-queued from the root such that each of 
them has its own fuzzy membership of the least interval 
in the heap before the de-queue operation. Of course, if 
for every de-queued interval edge its fuzzy membership 
of being the least intervals is one or one minus then the 
interval MST is crisp. Otherwise, let μT denote the fuzzy 
membership of the minimum spanning tree. One idea is 
to define μT = min σr. However, it can be misleading. 
Assume there are two interval weights that are equal or 
have the same midpoints and both of them are ‘short’ 
enough to be able to make the root in the heap and to be 
included in the MST. The fuzzy membership of 0.5 for 
the tree would not make any sense. Another approach is 
to define μT = max σr. However, this maybe misleading 
as well since any single crisp comparison will result in a 
crisp MST.  

Both μT = min σr and μT = max σr that are most 
commonly used in fuzzy logic can be misleading so we 
need reasonable alternatives. In applications, one may 
want to output the fuzzy memberships as well when 
perform the de-queue operations. By observing their 
behavior, one may have a better sense of the fuzziness of 
the generated MST. Another approach is to use the fuzzy 
membership of the last edge de-queued from the heap

Algorithm: KruskalMST (G)  

for each vertex v in G do 
  define a Cloud(v) of  {v}
let Q be a priority queue. 
 Insert all edges into Q using their
 weights as the key 

T ∅∅∅∅  
while T has fewer than n-1 edges do
   edge e = Q.removeMin()
 Let u, v be the endpoints of e 

if Cloud(v) ≠ Cloud(u) then 
  Add edge e to T 
  Merge Cloud(v) and Cloud(u)

return T 

Algorithm BellmanFord(G, s) 
for all  v ∈ G.vertices() 

  if  v = s 
   setDistance(v, 0) 
  else  

   setDistance(v, ∞) 
 for i ← 1 to n-1 do

for each  e ∈ G.edges() 
  {relax edge e} 
  u ← G.origin(e) 
  z ← G.opposite(u,e) 
  r ← getDistance(u)+ weight(e) 
  if  r < getDistance(z) 
   setDistance(z,r) 
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when generating an MST by interval extended Kruskal’s 
algorithm.  

Similarly, we can extend other available MST algorithms 
for interval weighted graphs. We finish this section with 
an example of interval MST.  

Example: As G in Figure 7, we find a minimum 
spanning tree of G with extended interval Kruskal’s 
algorithm. The MST is formed by AC, CB, BE, ED, EF 
with its total interval weight is [13, 24].  

6. Conclusion and future work 
In this paper, we have introduced interval-valued weights 
to model the uncertainty and variability in weighted 
graphs. In order to study application algorithms for 
interval weighted graphs, we have defined continuous 
(except at a single point for two equal intervals) binary 
interval operators that can quantitatively describe if one 
interval is less than or greater than another. We proved 
that the operators in fact form fuzzy partial order 
relationship for intervals. By applying the partial order 
relationship, we have extended application algorithms 
that find shortest paths and minimum spanning tree for 
interval weighted graphs. These can be directly applied to 
handle interval valued uncertainties in decision making 
systems modeled by weighted graphs. 

Our work here is just an initial investigation on interval 
weighted graphs. We have searched the internet 
extensively for ‘interval weighted graph’ in the literature 
but not very successfully. The relationship of intervals 
was first studied by Allen [1] (1983). His study was 
mainly for temporal properties described as 13 cases. 
Another close match was Fishburn’s work on interval 
orders and interval graphs [10] in 1985. However, the 
purpose of that study was mainly for ordering vertices in 
a graph but not for interval weighted edges at all.  

The theoretic results on interval fuzzy partial order 
relations can have more potential applications in dealing 
with systems with interval valued uncertainties other than 
interval weighted graphs. We are working on other 
applications, and report our results on scheduling tasks on 
flow networks with temporal uncertainty in [14].  
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