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Abstract 

This study was motivated by the large-scale evacuations 
and aftermath relief efforts caused by hurricanes Katrina 
and Rita in 2005. During large-scale natural disasters, 
both demands and uncertainties on transportation 
networks can be pushed to the extreme.  

The objective of this study is to optimally schedule tasks 
on a flow network that has temporal uncertainty modeled 
with interval valued time costs. We apply a fuzzy partial 
order relation for intervals to extend the Edmonds-Karp 
max-flow min-cost algorithm in this paper. Then, using 
the greedy approach, we propose task optimal schedule 
algorithms on a flow network with temporal uncertainties 
by utilizing its full capacity with the least possibility of 
delay in terms of the fuzzy partial order relations of 
intervals. In addition to the task scheduling algorithms, 
simple case studies are also provided in this paper. 

Key words: flow network, interval fuzzy partial order, 
task scheduling  

1. INTRODUCTION 

1.1 Motivations of this study  

The problem to be studied in this paper is to 
schedule multiple tasks on a flow network with temporal 
uncertainty. In 2005, hurricanes Katrina and Rita wrought 
havoc on the southern states along the Gulf coast. The 
anticipatory and resultant evacuation orders caused 
unusually high traffic volumes on the surrounding 
highways and interstates while many of them had 
significantly reduced capacity or became completely 
inaccessible. More roadway congestion arose in the 
aftermath due to the large influx of hurricane relief aid 
sent to cities in the Gulf coast such as New Orleans. In 
the wake of these hurricane disasters in the United States, 
it has become apparent that further studies need to be 
done for scheduling multi-tasks in a flow network with 
uncertainties. During large-scale natural disasters, both 
demands and uncertainties on transportation networks 
can be pushed to extreme. However, in general, 
uncertainties are often associated with networks. For 
example, the demands on a roadway may vary; and 
traffic delays can be cause by road constructions, traffic 
accidents, etc. Therefore, the studies in this paper may 
have much broader applications. 

1.2 Existing model and algorithms  

There is a large amount of literature pertaining to the 
study of flow networks, task scheduling, and 
multi-objective optimization with uncertainties. Weighted 
graphs are often used to model networks. Algorithms 
developed by Dijkstra [3], Bellman-Ford [2], 

Floyd-Warshall [5] and others find shortest paths in a 
connected weighted network. The topological ordering of 
a directed acyclic graph can be used to schedule tasks 
that have dependencies. The Ford-Fulkerson algorithm [6] 
finds the maximum flow in a network with single- source 
and destination, and satisfies capacity constraints of the 
network. When studying uncertainties associated with 
scheduling algorithms, in addition to classical statistic, 
probabilistic and stochastic approaches, new technologies 
such as fuzzy logic [17], interval computing [16], and 
genetic algorithms have been applied. All of these 
provide us with the necessary background knowledge for 
this study. 

1.3 Objectives of this study 

This study involves scheduling multiple tasks with 
temporal constraints on a flow network. A task t on a 
flow network is a job to be sent from a source S to a 
destination D. To complete a task, it requires available 
capacity of the network and also consumes time. Since 
the time cost may involve uncertainty, in this study, we 
apply intervals to model temporal uncertainty in a flow 
network. The objective of this study is to fully utilize the 
capacity of a flow network and simultaneously minimize 
the possibility of overall delay.  

The rest of this paper is organized as the following. In 
section 2, we introduce the model of flow network with 
temporal uncertainty in this paper. In section 3 we briefly 
review related background knowledge including 
Ford-Fulkerson algorithm, Edmonds-Karp algorithm, and 
interval fuzzy partial order relations. In section 4, we 
investigate task scheduling algorithms on a flow network 
with temporal uncertainty with sample case studies. We 
conclude this paper with section 5. 

2. FLOW NETWORK WITH TEMPORAL 
UNCERTAINTY 

2.1 Flow network 

 

  

Figure 1: A sample flow network 
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In this study we use the flow network model proposed by 
Ford and Fulkerson in [6] (1962). In that model, a flow 
network is a directed graph G = (V, E) without parallel 
edges. There are two distinguished nodes: S (source) and 
D (sink) in the network. For each edge e ˛ E, there is an 
constant c(e) that represent the maximum allowable flow 
capacity on that edge in the given direction. Figure 1 
above is a sample flow network. The flow capacity from 
the node B to the node E is 4.  

An S-T flow is a function f that satisfies the capacity and 
conservation constraints as described below: 

• " e ˛ E:  0 ≤  f(e) ≤ c(e)         

• "v ˛ V\{S, D}: ∑∑ =
outin

efef )()(   

The value of a flow is the sum of all outgoing flow f(e) 
from the source S.  

Ford and Fulkerson proposed their well-known algorithm 
to find the maximum flow [6]. Edmonds and Karp then 
improved overall efficiency of the Ford-Fulkerson 
algorithm [4]. By attaching another constant to an edge in 
a flow network to model the cost of a flow on that edge, 
Edmonds and Karp proposed their maximum flow and 
minimum cost algorithm [4] (1972). We review these 
algorithms in the section 3 and then extend them in the 
section 4 of this paper. 

2.2 Flow network with temporal uncertainty 

In real world applications, time is consumed when a flow 
passes from one vertex to another through a link (or path) 
in a flow network. Therefore, in scheduling tasks on a 
flow network we should take time into consideration. 
Temporal costs have characteristics that are significantly 
different from monetary cost in addition to irreversibility 
and compatibility. For example, the monetary cost for 
shipping cargo from A to B can be related to its load. 
However, the time needed for driving an 18 wheeler and 
a light sedan from A to B may have no significant 
difference at all. Another special characteristic of 
temporal cost on the flow network can be its uncertainty. 
For example, the driving time from A to B may not be 
exactly two hundred minutes but mostly between 190 and 
210 minutes pending on the road conditions or the 
departure time. To model this kind of uncertainty, we use 
intervals for time consumptions on a flow network in this 
study.  

 
Figure 2: A flow network with temporal uncertainty 

The term interval used in this paper means a set of all 
real numbers between its lower (left) and upper (right) 
bounds provided. If the left and right endpoints are equal, 
the interval is trivial and is the same as a real number. In 
the rest of this paper we will use boldfaced letters to 
denote intervals. The left and right endpoints of an 
interval a are specified by the same latter but with 
subscripts L and R, respectively. Hence, an interval a = 

[aL, aR] = {x ˛ ´：aL ≤ x ≤ aR } with its lower and upper 
bounds as aL and aR, respectively.  

Figure 2 is a sample flow network with uncertain cost 
specified by intervals associated with the links. 

3. RELATED BACKGROUND KNOWLEDGE 
To schedule tasks on flow networks with interval 
temporal uncertainty, we need related flow network 
algorithms and interval partial order relations. We review 
them briefly in this section.   

3.1 The task scheduling problem 

A task t on a flow network is a job to be sent from the 
source S to the destination D. To simplify our study, we 
consider only the required capacity resource, ft, and 
arrival deadline dt associated with t.  

As mentioned earlier in this paper, the objective of this 
study is to schedule tasks on a flow network with 
temporal uncertainty that fully utilizes the capacity of the 
network and minimizes the possibility of total delay.  

Let J be a collection of such tasks to be scheduled. The 
task scheduling problem is to: 

• schedule all tasks in J on a given flow network 
and meet all temporal constraints if it possible;  

• otherwise, schedule tasks in J within the 
maximum flow capacity and minimizing the 
overall possible delay. 

3.2 Ford-Fulkerson and Edmonds-Karp algorithms 

Ford and Fulkerson reported their work on finding a 
maximum flow on a flow network. The key concept of 
their algorithm is called the augmented path. 

Let N be a flow network, which is specified by a graph G, 
its capacity function c, source S, and sink D. Furthermore, 
let f be a flow of N. Given an edge e = (u, v) of G 
directed from a vertex u to another vertex v, the residual 
capacity from u to v, forward direction, with respect to 
the flow f, denoted by Df (u,v), is defined as 

Df (u,v) = c(e) – f(e) 

And the residual capacity from v to u, in the backward 
direction of the edge (u, v) is defined as  

Df (v,u) = f(e) 

The residual capacity is defined as 

Df (e) = ( ) ( )      

( )       
{c e f e if e is a forward edge

f e if e is a backward edge

-  
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Let p be a path from S to D that is allowed to traverse 
edges in either the forward or backward direction. The 
residual capacity Df (p) of a path p is the minimum 
residual capacity of its edge, that is, 

Df (p) = min
e p̨

Df (e) 

If Df (p) > 0, then p is called an augment path. A value of 
total flow then can be increased by adding the minimum 
residual capacity on each forward edge and subtract it 
from every backward edge in the augment path. By 
exhaustively finding augment paths, one may increase the 
total flow to the maximum within the capacity constraints. 
This results, in pseudo code, the Ford-Fulkerson’s 
maximum flow algorithm as the follow: 

 

Edmonds and Karp attached a positive cost constant on 
each edge of a flow network. Let C be a cycle, with both 
forward and backward edges, in a maximum flow 
network. For each e ˛ C, one can find its residual 
capacity as usual. The product of the residual capacity 
and the cost on the edge is called the residual cost. The 
sign of a residual cost is determined as the follows: 
positive if the edge is forward; otherwise negative. If the 
total product on the cycle is negative, the cycle is called 
an augmented cycle. By adjusting flow on each edge of 
the augment cycle, the total cost will be reduced without 
effect the total flow. The Edmonds-Karp maximum flow 
and minimum cost algorithm in pseudo code is as the 
follow:  

.  

3.3 Intervals and their fuzzy partial order relations 

Interval computing was proposed by Moore [16] in the 
late of the 1950’s.  In addition to the above described 
left and right endpoints representations, an interval can be 
represented by its midpoint and its radius as well. The 
midpoint of an interval a = [aL, aR] is denoted by m (a) = 
(aL+ aR)/2; and the radius of a is denoted by r (a) = (aR - 
aL)/2. Hence, an interval a = [aL, aR] = [m (a) - r (a), m (a) + 
r (a)]. 

Basic binary interval arithmetic operations for intervals, a 
= [aL, aR] and b = [bL, bR] are defined as: 

a + b = [aL+bL, aR+bR] 

a - b = [ aL-bR, aR-bL] 

a � b = [aL-bL, aR-bR] provided r (a) ≥ r (b) 

a * b = [min (aLbL,aLbR,aRbL,aRbR ), max (aLbL, aLbR, 
aRbL, aRbR)]  

a / b = [min (aL/bL, aL/bR, aR/bL, aR/bR), max (aL/bL, 
aL/bR, aR/bL, aR/bR)] , provided that 0 ˇ b.  

The above interval arithmetic definitions also imply the 
following properties: 

m (a + b)  = m (a) + m (b) 

m (a - b)  = m (a) + m (b) 

m (a � b)  = m (a) - m (b) 

There is a very rich literature in interval analysis far 
beyond the scoop of this paper. For more information 
about interval computing, interested readers may refer the 
comprehensive website maintained by Kreinovich [11]. 

In this study, we are interested in the relations of time 
intervals. In studying temporal relationships of two time 
intervals, Allen listed 13 possible cases [1] (1983) 
qualitatively. Krokhin et al further studied the relations in 
[14] (2003) and indicated that the relations between 
intervals could be 213 = 8192 possible unions of the 13 
basic interval relations. For readers’ convenience, here we 
list Allen’s 13 basic cases between two time intervals in 
Figures 3-9: 

 

 

Figure 3: a precedes b, and b preceded by a 

 

 

Figure 4: a meets b, and b met by a 

 

Algorithm FordFulkersonMaxFlow(N) 
   for all  e ˛ G.edges()  setFlow(e, 0) 
   while G has an augmenting path p 
   {compute residual capacity D of p } 
   D ‹ ¥¥¥¥ 
       for all edges e ̨  p{compute residual 

capacity d of e } 
  if e is a forward edge of p 

     d‹getCapacity(e)-getFlow(e) 
  else {e is a backward edge } 
   d ‹ getFlow(e) 
  if d < D 
   D ‹ d 
 {augment flow along p } 
   for all edges e ˛ p 
  if e is a forward edge of p 
   setFlow(e, getFlow(e) + D)  
  else {e is a backward edge } 
   setFlow(e, getFlow(e) - D)  
 

Algorithm EdmondsKarpAlgo(N) 

Find max-flow FordFulkerson’s algorithm    

while G has an augmenting cycle C 

for all edges e ˛ C 
  if e is a forward edge  
   setFlow(e, getFlow(e) + D)  
  else {e is a backward edge } 
   setFlow(e, getFlow(e) - D)  
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Figure 5: a overlaps b, and b overlapped by a 

 

 

Figure 6: a during b, and b includes a 

 

 

Figure 7: a starts b, and b started by a 

 

 

Figure 8: a finishes b, and b finished by a 

 

 

Figure 9: a equals b 

The above relations are qualitative. However, we need a 
way to quantitatively compare time intervals in a flow 
network with interval valued temporal uncertainty. In 
other words, if a and b are two intervals, we need to be 
able to determine if ‘a is less than b’. This calls for a 
partial order relationship between intervals. As we can 
see that in the figures the above, the statement ‘a is less 
than b’ could not be represented in traditional binary 
logic anymore. For example, in Figure 6, there are some a 
˛ a, and b ˛ b, such that a < b; and there are also some 
a’ ˛ a, and b’ ˛ b, such that a’ > b’. Therefore, the 
statement ‘a is less than b’ could be both true and false 
but in different degrees.  

Applying fuzzy logic proposed by Zadeh [17], we 
defined an interval binary operator in [12] that returns a 
real number between zero and one as the follow:  

Definition 1: Let p  be a binary operator for two 
nontrivial intervals a = (aL , aR) and b = (bL , bR)  such 
that  (a p  b) =  

1 if aR < bL 

1- if aL ≤ bL ≤ aR< bR 

0.5 r (b) = r (a) and aL = bL 

(bR - aR)/ 2[r (b) – r (a)]  if bL ≤ aL < aR ≤ bR, and  

   r (b) > r (a) 

Note: The definition above also works when a and b are 
trivial intervals. When both of them are trivial intervals, 
i.e. aL = aR and bL= bR, the definition returns 1 if aR < bL, 

and 0.5 if aL = bL. It is in consistent with the ordering 
relation of real numbers. When only one of them is trivial, 
say a is trivial, the definition returns appropriate fuzzy 
memberships as well. 

In this definition, it clearly shows us when a’s right point 
is less than b’s left point, a is always less than b without 
any questions, so it has the membership 1. When aL ≤ bL 
and aR < bR, except the overlap [bL, aR], all points in a are 
less than points in b. Also, any point x in the overlap [bL, 
aR] is in both a and b. A point x is not less than itself. 
Therefore, it is reasonable to believe that a is still less 
than b, so it has the membership 1-. If r (b) = r (a) and aL 
= bL, then a is the same as b. Hence, a is equally less and 
greater than b. So the memberships should be the same as 
0.5. When bL ≤ aL < aR ≤ bR that means a is enclosed in b, 
so for the statement ‘a is less than b’ the membership 
function that returns one when aL = bL and aR < bR, and 
zero when aL > bL and aR = bR.  

Using the above definition, we can also define another 
binary operator for intervals:   

Definition 2: Let f  be a binary operator for two 
nontrivial intervals a = (aL, aR) and b = (bL, bR) such that 
(a f  b) = 1 – (a p  b).  

We have proved that the above binary operators are in 
fact are fuzzy partial order relations for intervals. We 
have also shown that the above two binary operators are 
continuous except only at one single point. Using them as 
fuzzy membership functions, we can determine if ‘a is 
less (or greater) than b’ for two intervals. For more 
details about the fuzzy partial order relations, please refer 
to our paper [12] which appears in the same proceedings 
containing this paper. 

Applying the fuzzy partial order relations we have also 
successfully extended shortest path and minimum 
spanning tree algorithms in [12].  

4. TASK SCHEDULING  

In this section we discuss task scheduling on a flow 
network with temporal uncertainties.  

4.1 Flow with minimum interval temporal cost  

As we have defined the task scheduling problem before, 
an immediate question one may have is what are the 
necessary conditions and sufficient conditions if all tasks 
in J can be scheduled on the network and meet all 
constraints. There are two types of constraints in the 
scheduling problem. One is the capacity constraint, and 
the other is the time constraints. It is obvious that, to be 
able to schedule all tasks, the total capacity required must 
be no more than the maximum flow capacity of the 
network. However, it is not that straight forward to find 
the conditions to meet the time constraints especially 
when there are temporal uncertainties associated with a 
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flow network. In order to do this, we extend the 
Edmonds-Karp algorithm to study minimum interval 
valued temporal costs. 

Let f be a flow on a network G = (V, E). We define the 
time cost of the flow f, T(f), as the following:  

( ) ( ) ( )
e E

T f T e f e
˛

= ∑
 

where T(e) is the temporal cost of a flow f on the edge e. 
Among all flows that have the same value |f|, f* is said to 
be minimum temporal cost if T(f*) = min T(f). 

To find a minimum temporal cost flow with given flow 
value, we can apply the concept of augment cycle 
described in Section 3 of this paper. However, we need to 
notice that the temporal cost on a edge T(e) is an interval 
now due to temporal uncertainty.  

Let C be a cycle, with both forward and backward edges, 
in a value |f| flow network. For a forward edge e ˛ C, its 
residual cost interval, R(e), is the product of its capacity 
residual and time cost interval. If e is a backward edge, 
then its residual cost interval is the negative of the 
product. The residual cost interval of the cycle C, R(C), is 
the sum of the residual cost interval of all edges on C, i. 
e., R(C) = S R(e) for all e ˛ C. Through interval 
computing, we can find its residual cost interval for the 
cycle C. By comparing R(C) with zero as defined in 
Definition 1, R(C) p  0, we obtain the fuzzy 
membership of that the cycle C is a fuzzy augment cycle. 
By repeatedly adjusting flow on each edge of all fuzzy 
augment cycles of fuzzy membership greater than 0.5, the 
possible total time cost will approach to its minimum 
while maintaining the value of the flow. We summarize 
the above discussion as: 

Theorem 1: A maximum capacity flow f has possible 
minimum time cost among all flows of value | f | if and 
only if there is no augment cycle with fuzzy membership 
greater than 0.5. 

Proof:  

To prove the “if” part, we assume that f is a maximum 
flow but does not have a possible minimum time cost. 
Then, using the extended Edmonds-Karp algorithm, 
one can obtain a maximum flow with the possible 
minimum time cost. Therefore, there exists at least one 
fuzzy augmenting cycle with fuzzy membership greater 
than 0.5. This contradicts with the assumption that 
there is no augment cycle with fuzzy membership 
greater than 0.5.  

To prove the “only if ” part, suppose that there is an 
augmenting cycle of negative time cost with respect to 
f, then we can obtain another flow g by this 
augmenting cycle with value | f |, but g has less time 
cost than f, which is a contradiction. 

Our goal is to shift flow from possible more time cost 
paths to less time cost paths until there is no such path 
available. If there is a flow that can be possibly shifted 
from a path p1 to another path p2 and reduces possible 
time cost, then p1 and p2 form an augment cycle with 

membership more than 0.5. Hence, by exhaustively 
shifting flow on fuzzy augment cycles with membership 
more 0.5, one approaches the possible minimum time 
cost flow. However, in practice, one may want to use an 
appropriate α-cut to obtain a reasonable approximation of 
the possible minimum time cost flow. 

4.2 Task scheduling  

The flow with possible minimum temporal cost discussed 
above paves the road for scheduling tasks that have a 
required capacity that is no greater than the allowable 
maximum flow of the network. For a given set of tasks J, 
assume its total capacity requirement is less than or equal 
to the max-flow of the network. We schedule them to 
meet the capacity constraint first, and apply residual 
cycles to find the possible minimum time cost of the 
entire flow. We then attempt to sort the temporal costs for 
each path for the flow, using the upper bounds of the time 
interval so we can determine the worst-case cost. (Note: 
This is a conservative approach. One may sort the path 
according to the lower bounds or the midpoints as an 
aggressive or average approach.) Let P = (p1, p2, p3…pm) 
be paths from S to D of the flow with minimum total time 
costs, and T(pi) be the time cost associated with the path 
pi. We arrive at: 

T(p1) ≤ T(p2) ≤…≤ T(pm),  and 

f(p1) + f(p2) +…+ f(pm) = | f |. 

Then, we can schedule the tasks according to their sorted 
deadlines on these sorted paths.  

We illustrate the above idea with the example below: 

 

Figure 10: Minimum temporal cost flow and paths 

In the figure above we have found the minimum time 
cost flow of volume 17 (in fact it is the maximum flow of 
the network.) Then using the Dijkstra’s algorithm we find  

p1: S fi C fiE fi D with T (p1) = [2,4] + [1,3] + [3,5] = 
[6,12] and f (p1) = 3. 

p2: S fi C fiB fi D with T (p2) = [2,4] + [2,4] + [9，11] 
= [13,19] and f(p2) = 2. 

p3: S fi B fiD with T (p3) = [6，8] + [9，11] = [15, 19] 
and f(p3) = 5. 

p4: S fi A fiD with T (p4) = [7，9] + [8，10] = [15，19] 
and f (p4) = 7. 

[2, 4], 2    
[6, 8], 5 

[2, 4],5 
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We list them in the table below: 

 Path Possible time 
cost on the 
path 

Flux on the 
path 

p1 S-C-E-D [6, 12] 3 

p2 S-C-B-D [13, 19] 2 

p3 S-B-D [15,19] 5 

p4 S-A-D [15,19] 7 

Suppose we have n tasks that need to be scheduled with 
capacity requirements and deadlines. We sort the tasks 
according to their deadlines, and get a series of tasks t1, 
t2, …, tn. The task i has a deadline d(ti) for i = 1, 2, …, n 
and d(t1) ≤ d(t2) ≤ … ≤ d(tn). 

Finally, we schedule the tasks with the greedy approach 
by assigning the tasks with earliest deadline to the path 
with minimum time costs.  

For example，suppose we have three tasks that need to be 
scheduled on the flow in Figure 10. They are task1 with 
f(t1) = 5 and deadline d(t1) = 21, task2 with f(t2) = 2 and 
deadline d(t2) = 14, task3 with f(t3) = 6 and deadline d(t3) 
= 23. Then as we discussed the above we sort the tasks by 
deadline and we get d(t2) < d(t1) < d(t3). So we first 
assign task2 on path1 which is the shortest time cost path 
available. Now path1 only has one unit available. Then 
we assign task1 on path1 with 1 unit and on path 2 with 2 
units and on path 3 with 2 units. At last we assign task 3 
on path3 with 3 units and on path4 with 3units. Now all 
tasks have been scheduled and meet the time constraint. 
We summarize the above as a scheduling algorithm: 

 

 

 

Now we have a scheduling algorithm for multiple tasks 
on a flow network with temporal uncertainty.  Here we 
list conditions for which all constraints can be satisfied in 
the scheduling:  

1. Let the maximum flow capacity of the network be 
|fmax|. The necessary condition on the capacity is:   

f(t1) + f(t2) +…+ f(tn) ≤ | fmax |. 

2. Let ti be a task being scheduled on path pj. The 
necessary temporal condition is that for all i = 1, 
2, …n and j = 1, 2, …, m,  

T(pj) < d(ti). 

3. There is sufficient capacity for paths to schedule all 
tasks and meet condition 2. 

If all of the above conditions can be met then we say 
tasks are satisfactorily schedulable on the network crisply. 
Otherwise, the tasks may only be scheduled without a 
guarantee of satisfying all constraints. For example, when 
d(ti) falls in the interval of T(pj) then ti has a possibility to 
meet or to miss its deadlines with different degrees due to 
temporal uncertainty of the network.  

Hence, we need to define a function to evaluate the 
uncertainty. Let fij be the flow for task i running on path j 
and the upper bound of T(pj) be TR(pj). The fuzzy 
membership of d(ti) less than T(pj), meeting the deadline, 
is d(ti) f T(pj) as defined in Definition 2. Let Eij = fij * [TR(pj) 
- d(ti)] * [d(ti) f  T(pj)]. For example if task ti has 
deadline 15 and the path j task i running has time cost [13, 
17] and the flow running on this path is 3 units, then Eij = 
3 * (17 - 15) * (15 f  [13,17]) = 3 * 2 * 0.5 = 3. Then, 
the scheduling objective is to maximize S Eij. It can also 
been defined as a dual minimization problem.  

4.3 An alternative approach for task scheduling 

The schedule algorithm discussed above works when the  

 

total capacity requirement is no more than the maximum 
capacity of the flow network. Instead of using 

Algorithm MinCostFlow(N): 
Input: Weighted flow network N = (G,S,w,D,t) 
Output: A maximum flow with minimum cost f for N 

for each edge e ∈ N do 
f(e) ← 0 

for each vertex v ∈ N do 
d(v) ← 0 

stop ← false 
repeat 

compute the weighted residual network fR  

for each edge (u,v) ∈ fR  do 

w’(u,v) ← w(u,v) + d(u) – d(v) 

for each edge (u,v) ∈ fR  do 

w’(u,v) ← w(u,v) + d(u) – d(v) 

run Dijkstra’s algorithm on fR  using the weights w’ 

for each vertex v ∈ N do 

d(v) ← distance of v from s in fR  

if d(t) < +∞ then 
{p is an argumenting path with respect to f} 
{Compute the residual capacity Df (p) of p} 
∆ ← +∞ 

for each edge e ∈p do  

if Df (e) < ∆ then 
∆ ← Df (e) 
{Push ∆ ← Df (p) units of flow along path p} 

for each edge e ∈p do  
if e is a forward edge then 
f(e) ← f(e) +∆ 

else 
f(e) ← f(e) – ∆  {e is a backward edge} 

else 
stop ← true {f is a maximum flow of minimum cost} 

Algorithm TaskScheduling 
 
On a minimum time cost flow network: 
Sort m paths such that 
  T(p1) ≤ T(p2) ≤ … ≤ T(pm),   
Sort n jobs by deadline such that 
 d(t1) ≤ d(t2) ≤ … ≤ d(tn) 

  For j = 1 to n 
 Assign job j to the path with shortest 
time cost still have free capacity. If 
the path does not have enough flow 
capacity, use the next path. 
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Ford-Fulkerson’s algorithm to find the maximum flow 
first, Edmonds and Karp proposed the algorithm below 
that effectively finds maximum flow and minimum cost 
on a flow network with successive shortest path approach. 
Here is the pseudo code for non-interval costs. 

Similar to our previous discussion, we can use the 
extended interval Dijkstra’s algorithm [12] and find the 
maximum flow with minimum total time cost.  

Here is an example:  

 
 

Suppose we have a network as the above. In the network 
each edge is labeled with T(e), f(e)/c(e). 

Using the successive shortest path algorithm we first find 
the shortest argument path SfiBfiEfiD and the saturated 
edge of this path is BE. So, we add 3 units of flow on this path 
and get: 

 

 
 

Then we find the next shortest argument path is 
SfiCfiFfiD and the saturated edge of this path is SC and 
CF.  So, we add 5 units of flow on this path then we get 

 

 
We continue until we get the minimum time cost 
max-flow. 

 
The maximum flow with minimum time cost of the 
example can be described in the table below: 

Modify 
times    Shortest 

path 

 

Cost of 
shortest 
path   
di 

Flux of 
shortest 
path   
xi 

The 
saturated 
path      
(i--j) 

1 S-B-E-D [4,10] 3 BE 

2 S-C-F-D [5,11] 5 SC and CF 

3 S-A-E-D [5,11] 3 AE 

4 S-B-F-D [6,12] 2 FD 

5 S-B-F-E-D [6,14]] 1 FD 

After we obtained the maximum flow with minimum 
interval cost, we can then schedule the tasks as described 
in section 4.3. When the total capacity required is more 
than the maximum flow, one should establish a scheme to 
prioritize all the tasks and then keep the capacity 
requirement of to be scheduled tasks to no more than the 
maximum flow. 

5. CONCLUSIONS AND FURTURE WORK 

In this paper, we studied algorithms that schedule tasks 
on a capacity flow network with capacity and uncertain 
temporal constraints.  

We modeled temporal uncertainty with time intervals. By 
applying fuzzy partial order relations for intervals, we 
extended Edmonds-Karp maximum flow and minimum 
cost algorithms for task scheduling. We discussed the 
necessary conditions and sufficient conditions to satisfy 
all scheduling constraints. Algorithms for crisply and 
fuzzily schedulable tasks are presented in Section 4.  

S 

A 

B 

C 

F 

D 

E 

[3,5],3/5 

[2,4],6/7 

[2,4],3/3 

[0,2],7/8 

[1,3],1/1 

[2,4],5/5 
[1,3],0/3 

[3,5],3/7 

[2,4],5/5 

[1,3],7/7 

[2,4],3/3 

S 

A 

B 

C 

F 

D 

E 

[3,5],0/5 

[2,4],3/5 

[2,4],0/3 

[0,2],3/8 

[1,3],0/1 

[2,4],5/5 
[1,3],0/3 

[3,5],0/7 

[2,4],5/5 

[1,3],5/7 

[2,4],3/3 

S 

A 

B 

C 

F 

D 

E 

[3,5],0/5 

[2,4],3/5 

[2,4],0/3 

[0,2],3/8 

[1,3],0/1 

[2,4],0/5 
[1,3],0/3 

[3,5],0/7 

[2,4],0/5 

[1,3],0/7 

[2,4],3/3 

S 

A 

B 

C 

F 

D 

E 

[3,5],0/5 

[2,4],0/5 

[2,4],0/3 

[0,2],0/8 

[1,3],0/1 

[2,4],0/5 
[1,3],0/3 

[3,5],0/7 

[2,4],0/5 

[1,3],0/7 

[2,4],0/3 
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In this study both tasks and flow networks are static. 
However, in practice, they can be dynamic. Scheduling a 
dynamic collection of tasks on a dynamic flow network 
can be more challenge and more interesting. 
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