
Task Scheduling on Flow Networks with Temporal Uncertainty
Ping Hu, Meaghan Dellar, and Chenyi Hu

Computer Science Department
University of Central Arkansas

Conway, AR 72035

Abstract

This study was motivated by the large-scale evacuations
and aftermath relief efforts caused by hurricanes Katrina
and Rita in 2005. During large-scale natural disasters,
both demands and uncertainties on transportation
networks can be pushed to the extreme.

The objective of this study is to optimally schedule tasks
on a flow network that has temporal uncertainty modeled
with interval valued time costs. We apply a fuzzy partial
order relation for intervals to extend the Edmonds-Karp
max-flow min-cost algorithm in this paper. Then, using
the greedy approach, we propose task optimal schedule
algorithms on a flow network with temporal uncertainties
by utilizing its full capacity with the least possibility of
delay in terms of the fuzzy partial order relations of
intervals. In addition to the task scheduling algorithms,
simple case studies are also provided in this paper.

Key words: flow network, interval fuzzy partial order,
task scheduling

1. INTRODUCTION

1.1 Motivations of this study

The problem to be studied in this paper is to
schedule multiple tasks on a flow network with temporal
uncertainty. In 2005, hurricanes Katrina and Rita wrought
havoc on the southern states along the Gulf coast. The
anticipatory and resultant evacuation orders caused
unusually high traffic volumes on the surrounding
highways and interstates while many of them had
significantly reduced capacity or became completely
inaccessible. More roadway congestion arose in the
aftermath due to the large influx of hurricane relief aid
sent to cities in the Gulf coast such as New Orleans. In
the wake of these hurricane disasters in the United States,
it has become apparent that further studies need to be
done for scheduling multi-tasks in a flow network with
uncertainties. During large-scale natural disasters, both
demands and uncertainties on transportation networks
can be pushed to extreme. However, in general,
uncertainties are often associated with networks. For
example, the demands on a roadway may vary; and
traffic delays can be cause by road constructions, traffic
accidents, etc. Therefore, the studies in this paper may
have much broader applications.

1.2 Existing model and algorithms

There is a large amount of literature pertaining to the
study of flow networks, task scheduling, and
multi-objective optimization with uncertainties. Weighted
graphs are often used to model networks. Algorithms
developed by Dijkstra [3], Bellman-Ford [2],

Floyd-Warshall [5] and others find shortest paths in a
connected weighted network. The topological ordering of
a directed acyclic graph can be used to schedule tasks
that have dependencies. The Ford-Fulkerson algorithm [6]
finds the maximum flow in a network with single- source
and destination, and satisfies capacity constraints of the
network. When studying uncertainties associated with
scheduling algorithms, in addition to classical statistic,
probabilistic and stochastic approaches, new technologies
such as fuzzy logic [17], interval computing [16], and
genetic algorithms have been applied. All of these
provide us with the necessary background knowledge for
this study.

1.3 Objectives of this study

This study involves scheduling multiple tasks with
temporal constraints on a flow network. A task t on a
flow network is a job to be sent from a source S to a
destination D. To complete a task, it requires available
capacity of the network and also consumes time. Since
the time cost may involve uncertainty, in this study, we
apply intervals to model temporal uncertainty in a flow
network. The objective of this study is to fully utilize the
capacity of a flow network and simultaneously minimize
the possibility of overall delay.

The rest of this paper is organized as the following. In
section 2, we introduce the model of flow network with
temporal uncertainty in this paper. In section 3 we briefly
review related background knowledge including
Ford-Fulkerson algorithm, Edmonds-Karp algorithm, and
interval fuzzy partial order relations. In section 4, we
investigate task scheduling algorithms on a flow network
with temporal uncertainty with sample case studies. We
conclude this paper with section 5.

2. FLOW NETWORK WITH TEMPORAL
UNCERTAINTY

2.1 Flow network

Figure 1: A sample flow network

S
C

A

B

E D

5
4

3

5

3

3
2

6

7

4

4

128

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

In this study we use the flow network model proposed by
Ford and Fulkerson in [6] (1962). In that model, a flow
network is a directed graph G = (V, E) without parallel
edges. There are two distinguished nodes: S (source) and
D (sink) in the network. For each edge e ˛ E, there is an
constant c(e) that represent the maximum allowable flow
capacity on that edge in the given direction. Figure 1
above is a sample flow network. The flow capacity from
the node B to the node E is 4.

An S-T flow is a function f that satisfies the capacity and
conservation constraints as described below:

• " e ˛ E: 0 ≤ f(e) ≤ c(e)

• "v ˛ V\{S, D}: ∑∑ =
outin

efef)()(

The value of a flow is the sum of all outgoing flow f(e)
from the source S.

Ford and Fulkerson proposed their well-known algorithm
to find the maximum flow [6]. Edmonds and Karp then
improved overall efficiency of the Ford-Fulkerson
algorithm [4]. By attaching another constant to an edge in
a flow network to model the cost of a flow on that edge,
Edmonds and Karp proposed their maximum flow and
minimum cost algorithm [4] (1972). We review these
algorithms in the section 3 and then extend them in the
section 4 of this paper.

2.2 Flow network with temporal uncertainty

In real world applications, time is consumed when a flow
passes from one vertex to another through a link (or path)
in a flow network. Therefore, in scheduling tasks on a
flow network we should take time into consideration.
Temporal costs have characteristics that are significantly
different from monetary cost in addition to irreversibility
and compatibility. For example, the monetary cost for
shipping cargo from A to B can be related to its load.
However, the time needed for driving an 18 wheeler and
a light sedan from A to B may have no significant
difference at all. Another special characteristic of
temporal cost on the flow network can be its uncertainty.
For example, the driving time from A to B may not be
exactly two hundred minutes but mostly between 190 and
210 minutes pending on the road conditions or the
departure time. To model this kind of uncertainty, we use
intervals for time consumptions on a flow network in this
study.

Figure 2: A flow network with temporal uncertainty

The term interval used in this paper means a set of all
real numbers between its lower (left) and upper (right)
bounds provided. If the left and right endpoints are equal,
the interval is trivial and is the same as a real number. In
the rest of this paper we will use boldfaced letters to
denote intervals. The left and right endpoints of an
interval a are specified by the same latter but with
subscripts L and R, respectively. Hence, an interval a =

[aL, aR] = {x ˛ ´：aL ≤ x ≤ aR } with its lower and upper
bounds as aL and aR, respectively.

Figure 2 is a sample flow network with uncertain cost
specified by intervals associated with the links.

3. RELATED BACKGROUND KNOWLEDGE
To schedule tasks on flow networks with interval
temporal uncertainty, we need related flow network
algorithms and interval partial order relations. We review
them briefly in this section.

3.1 The task scheduling problem

A task t on a flow network is a job to be sent from the
source S to the destination D. To simplify our study, we
consider only the required capacity resource, ft, and
arrival deadline dt associated with t.

As mentioned earlier in this paper, the objective of this
study is to schedule tasks on a flow network with
temporal uncertainty that fully utilizes the capacity of the
network and minimizes the possibility of total delay.

Let J be a collection of such tasks to be scheduled. The
task scheduling problem is to:

• schedule all tasks in J on a given flow network
and meet all temporal constraints if it possible;

• otherwise, schedule tasks in J within the
maximum flow capacity and minimizing the
overall possible delay.

3.2 Ford-Fulkerson and Edmonds-Karp algorithms

Ford and Fulkerson reported their work on finding a
maximum flow on a flow network. The key concept of
their algorithm is called the augmented path.

Let N be a flow network, which is specified by a graph G,
its capacity function c, source S, and sink D. Furthermore,
let f be a flow of N. Given an edge e = (u, v) of G
directed from a vertex u to another vertex v, the residual
capacity from u to v, forward direction, with respect to
the flow f, denoted by Df (u,v), is defined as

Df (u,v) = c(e) – f(e)

And the residual capacity from v to u, in the backward
direction of the edge (u, v) is defined as

Df (v,u) = f(e)

The residual capacity is defined as

Df (e) = () ()

()
{c e f e if e is a forward edge

f e if e is a backward edge

-

S
C

A

B

E D

[6, 8], 5 [3, 5], 4

[7, 9], 2

[9, 11], 5

[1, 3], 3

[5, 7], 3
[4, 6], 2

[3, 5], 6

[8, 10], 7

[2, 4], 4

[2, 4], 4

129

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Let p be a path from S to D that is allowed to traverse
edges in either the forward or backward direction. The
residual capacity Df (p) of a path p is the minimum
residual capacity of its edge, that is,

Df (p) = min
e p̨

Df (e)

If Df (p) > 0, then p is called an augment path. A value of
total flow then can be increased by adding the minimum
residual capacity on each forward edge and subtract it
from every backward edge in the augment path. By
exhaustively finding augment paths, one may increase the
total flow to the maximum within the capacity constraints.
This results, in pseudo code, the Ford-Fulkerson’s
maximum flow algorithm as the follow:

Edmonds and Karp attached a positive cost constant on
each edge of a flow network. Let C be a cycle, with both
forward and backward edges, in a maximum flow
network. For each e ˛ C, one can find its residual
capacity as usual. The product of the residual capacity
and the cost on the edge is called the residual cost. The
sign of a residual cost is determined as the follows:
positive if the edge is forward; otherwise negative. If the
total product on the cycle is negative, the cycle is called
an augmented cycle. By adjusting flow on each edge of
the augment cycle, the total cost will be reduced without
effect the total flow. The Edmonds-Karp maximum flow
and minimum cost algorithm in pseudo code is as the
follow:

.

3.3 Intervals and their fuzzy partial order relations

Interval computing was proposed by Moore [16] in the
late of the 1950’s. In addition to the above described
left and right endpoints representations, an interval can be
represented by its midpoint and its radius as well. The
midpoint of an interval a = [aL, aR] is denoted by m (a) =
(aL+ aR)/2; and the radius of a is denoted by r (a) = (aR -
aL)/2. Hence, an interval a = [aL, aR] = [m (a) - r (a), m (a) +
r (a)].

Basic binary interval arithmetic operations for intervals, a
= [aL, aR] and b = [bL, bR] are defined as:

a + b = [aL+bL, aR+bR]

a - b = [aL-bR, aR-bL]

a � b = [aL-bL, aR-bR] provided r (a) ≥ r (b)

a * b = [min (aLbL,aLbR,aRbL,aRbR), max (aLbL, aLbR,
aRbL, aRbR)]

a / b = [min (aL/bL, aL/bR, aR/bL, aR/bR), max (aL/bL,
aL/bR, aR/bL, aR/bR)] , provided that 0 ˇ b.

The above interval arithmetic definitions also imply the
following properties:

m (a + b) = m (a) + m (b)

m (a - b) = m (a) + m (b)

m (a � b) = m (a) - m (b)

There is a very rich literature in interval analysis far
beyond the scoop of this paper. For more information
about interval computing, interested readers may refer the
comprehensive website maintained by Kreinovich [11].

In this study, we are interested in the relations of time
intervals. In studying temporal relationships of two time
intervals, Allen listed 13 possible cases [1] (1983)
qualitatively. Krokhin et al further studied the relations in
[14] (2003) and indicated that the relations between
intervals could be 213 = 8192 possible unions of the 13
basic interval relations. For readers’ convenience, here we
list Allen’s 13 basic cases between two time intervals in
Figures 3-9:

Figure 3: a precedes b, and b preceded by a

Figure 4: a meets b, and b met by a

Algorithm FordFulkersonMaxFlow(N)
 for all e ˛ G.edges() setFlow(e, 0)
 while G has an augmenting path p
 {compute residual capacity D of p }
 D ‹ ¥¥¥¥
 for all edges e ̨ p{compute residual

capacity d of e }
 if e is a forward edge of p

 d‹getCapacity(e)-getFlow(e)
 else {e is a backward edge }
 d ‹ getFlow(e)
 if d < D
 D ‹ d
 {augment flow along p }
 for all edges e ˛ p
 if e is a forward edge of p
 setFlow(e, getFlow(e) + D)
 else {e is a backward edge }
 setFlow(e, getFlow(e) - D)

Algorithm EdmondsKarpAlgo(N)

Find max-flow FordFulkerson’s algorithm

while G has an augmenting cycle C

for all edges e ˛ C
 if e is a forward edge
 setFlow(e, getFlow(e) + D)
 else {e is a backward edge }
 setFlow(e, getFlow(e) - D)

b
a

b
a

130

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Figure 5: a overlaps b, and b overlapped by a

Figure 6: a during b, and b includes a

Figure 7: a starts b, and b started by a

Figure 8: a finishes b, and b finished by a

Figure 9: a equals b

The above relations are qualitative. However, we need a
way to quantitatively compare time intervals in a flow
network with interval valued temporal uncertainty. In
other words, if a and b are two intervals, we need to be
able to determine if ‘a is less than b’. This calls for a
partial order relationship between intervals. As we can
see that in the figures the above, the statement ‘a is less
than b’ could not be represented in traditional binary
logic anymore. For example, in Figure 6, there are some a
˛ a, and b ˛ b, such that a < b; and there are also some
a’ ˛ a, and b’ ˛ b, such that a’ > b’. Therefore, the
statement ‘a is less than b’ could be both true and false
but in different degrees.

Applying fuzzy logic proposed by Zadeh [17], we
defined an interval binary operator in [12] that returns a
real number between zero and one as the follow:

Definition 1: Let p be a binary operator for two
nontrivial intervals a = (aL , aR) and b = (bL , bR) such
that (a p b) =

1 if aR < bL

1- if aL ≤ bL ≤ aR< bR

0.5 r (b) = r (a) and aL = bL

(bR - aR)/ 2[r (b) – r (a)] if bL ≤ aL < aR ≤ bR, and

 r (b) > r (a)

Note: The definition above also works when a and b are
trivial intervals. When both of them are trivial intervals,
i.e. aL = aR and bL= bR, the definition returns 1 if aR < bL,

and 0.5 if aL = bL. It is in consistent with the ordering
relation of real numbers. When only one of them is trivial,
say a is trivial, the definition returns appropriate fuzzy
memberships as well.

In this definition, it clearly shows us when a’s right point
is less than b’s left point, a is always less than b without
any questions, so it has the membership 1. When aL ≤ bL
and aR < bR, except the overlap [bL, aR], all points in a are
less than points in b. Also, any point x in the overlap [bL,
aR] is in both a and b. A point x is not less than itself.
Therefore, it is reasonable to believe that a is still less
than b, so it has the membership 1-. If r (b) = r (a) and aL
= bL, then a is the same as b. Hence, a is equally less and
greater than b. So the memberships should be the same as
0.5. When bL ≤ aL < aR ≤ bR that means a is enclosed in b,
so for the statement ‘a is less than b’ the membership
function that returns one when aL = bL and aR < bR, and
zero when aL > bL and aR = bR.

Using the above definition, we can also define another
binary operator for intervals:

Definition 2: Let f be a binary operator for two
nontrivial intervals a = (aL, aR) and b = (bL, bR) such that
(a f b) = 1 – (a p b).

We have proved that the above binary operators are in
fact are fuzzy partial order relations for intervals. We
have also shown that the above two binary operators are
continuous except only at one single point. Using them as
fuzzy membership functions, we can determine if ‘a is
less (or greater) than b’ for two intervals. For more
details about the fuzzy partial order relations, please refer
to our paper [12] which appears in the same proceedings
containing this paper.

Applying the fuzzy partial order relations we have also
successfully extended shortest path and minimum
spanning tree algorithms in [12].

4. TASK SCHEDULING

In this section we discuss task scheduling on a flow
network with temporal uncertainties.

4.1 Flow with minimum interval temporal cost

As we have defined the task scheduling problem before,
an immediate question one may have is what are the
necessary conditions and sufficient conditions if all tasks
in J can be scheduled on the network and meet all
constraints. There are two types of constraints in the
scheduling problem. One is the capacity constraint, and
the other is the time constraints. It is obvious that, to be
able to schedule all tasks, the total capacity required must
be no more than the maximum flow capacity of the
network. However, it is not that straight forward to find
the conditions to meet the time constraints especially
when there are temporal uncertainties associated with a

b

a

b

a

b
a

b
a

b
a

131

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

flow network. In order to do this, we extend the
Edmonds-Karp algorithm to study minimum interval
valued temporal costs.

Let f be a flow on a network G = (V, E). We define the
time cost of the flow f, T(f), as the following:

() () ()
e E

T f T e f e
˛

= ∑

where T(e) is the temporal cost of a flow f on the edge e.
Among all flows that have the same value |f|, f* is said to
be minimum temporal cost if T(f*) = min T(f).

To find a minimum temporal cost flow with given flow
value, we can apply the concept of augment cycle
described in Section 3 of this paper. However, we need to
notice that the temporal cost on a edge T(e) is an interval
now due to temporal uncertainty.

Let C be a cycle, with both forward and backward edges,
in a value |f| flow network. For a forward edge e ˛ C, its
residual cost interval, R(e), is the product of its capacity
residual and time cost interval. If e is a backward edge,
then its residual cost interval is the negative of the
product. The residual cost interval of the cycle C, R(C), is
the sum of the residual cost interval of all edges on C, i.
e., R(C) = S R(e) for all e ˛ C. Through interval
computing, we can find its residual cost interval for the
cycle C. By comparing R(C) with zero as defined in
Definition 1, R(C) p 0, we obtain the fuzzy
membership of that the cycle C is a fuzzy augment cycle.
By repeatedly adjusting flow on each edge of all fuzzy
augment cycles of fuzzy membership greater than 0.5, the
possible total time cost will approach to its minimum
while maintaining the value of the flow. We summarize
the above discussion as:

Theorem 1: A maximum capacity flow f has possible
minimum time cost among all flows of value | f | if and
only if there is no augment cycle with fuzzy membership
greater than 0.5.

Proof:

To prove the “if” part, we assume that f is a maximum
flow but does not have a possible minimum time cost.
Then, using the extended Edmonds-Karp algorithm,
one can obtain a maximum flow with the possible
minimum time cost. Therefore, there exists at least one
fuzzy augmenting cycle with fuzzy membership greater
than 0.5. This contradicts with the assumption that
there is no augment cycle with fuzzy membership
greater than 0.5.

To prove the “only if ” part, suppose that there is an
augmenting cycle of negative time cost with respect to
f, then we can obtain another flow g by this
augmenting cycle with value | f |, but g has less time
cost than f, which is a contradiction.

Our goal is to shift flow from possible more time cost
paths to less time cost paths until there is no such path
available. If there is a flow that can be possibly shifted
from a path p1 to another path p2 and reduces possible
time cost, then p1 and p2 form an augment cycle with

membership more than 0.5. Hence, by exhaustively
shifting flow on fuzzy augment cycles with membership
more 0.5, one approaches the possible minimum time
cost flow. However, in practice, one may want to use an
appropriate α-cut to obtain a reasonable approximation of
the possible minimum time cost flow.

4.2 Task scheduling

The flow with possible minimum temporal cost discussed
above paves the road for scheduling tasks that have a
required capacity that is no greater than the allowable
maximum flow of the network. For a given set of tasks J,
assume its total capacity requirement is less than or equal
to the max-flow of the network. We schedule them to
meet the capacity constraint first, and apply residual
cycles to find the possible minimum time cost of the
entire flow. We then attempt to sort the temporal costs for
each path for the flow, using the upper bounds of the time
interval so we can determine the worst-case cost. (Note:
This is a conservative approach. One may sort the path
according to the lower bounds or the midpoints as an
aggressive or average approach.) Let P = (p1, p2, p3…pm)
be paths from S to D of the flow with minimum total time
costs, and T(pi) be the time cost associated with the path
pi. We arrive at:

T(p1) ≤ T(p2) ≤…≤ T(pm), and

f(p1) + f(p2) +…+ f(pm) = | f |.

Then, we can schedule the tasks according to their sorted
deadlines on these sorted paths.

We illustrate the above idea with the example below:

Figure 10: Minimum temporal cost flow and paths

In the figure above we have found the minimum time
cost flow of volume 17 (in fact it is the maximum flow of
the network.) Then using the Dijkstra’s algorithm we find

p1: S fi C fiE fi D with T (p1) = [2,4] + [1,3] + [3,5] =
[6,12] and f (p1) = 3.

p2: S fi C fiB fi D with T (p2) = [2,4] + [2,4] + [9，11]
= [13,19] and f(p2) = 2.

p3: S fi B fiD with T (p3) = [6，8] + [9，11] = [15, 19]
and f(p3) = 5.

p4: S fi A fiD with T (p4) = [7，9] + [8，10] = [15，19]
and f (p4) = 7.

[2, 4], 2
[6, 8], 5

[2, 4],5

[7, 9],7

[1, 3], 3

[9, 11], 7

[8, 10], 7

[3, 5], 3 S
C

A

B

E D

132

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

We list them in the table below:

 Path Possible time
cost on the
path

Flux on the
path

p1 S-C-E-D [6, 12] 3

p2 S-C-B-D [13, 19] 2

p3 S-B-D [15,19] 5

p4 S-A-D [15,19] 7

Suppose we have n tasks that need to be scheduled with
capacity requirements and deadlines. We sort the tasks
according to their deadlines, and get a series of tasks t1,
t2, …, tn. The task i has a deadline d(ti) for i = 1, 2, …, n
and d(t1) ≤ d(t2) ≤ … ≤ d(tn).

Finally, we schedule the tasks with the greedy approach
by assigning the tasks with earliest deadline to the path
with minimum time costs.

For example，suppose we have three tasks that need to be
scheduled on the flow in Figure 10. They are task1 with
f(t1) = 5 and deadline d(t1) = 21, task2 with f(t2) = 2 and
deadline d(t2) = 14, task3 with f(t3) = 6 and deadline d(t3)
= 23. Then as we discussed the above we sort the tasks by
deadline and we get d(t2) < d(t1) < d(t3). So we first
assign task2 on path1 which is the shortest time cost path
available. Now path1 only has one unit available. Then
we assign task1 on path1 with 1 unit and on path 2 with 2
units and on path 3 with 2 units. At last we assign task 3
on path3 with 3 units and on path4 with 3units. Now all
tasks have been scheduled and meet the time constraint.
We summarize the above as a scheduling algorithm:

Now we have a scheduling algorithm for multiple tasks
on a flow network with temporal uncertainty. Here we
list conditions for which all constraints can be satisfied in
the scheduling:

1. Let the maximum flow capacity of the network be
|fmax|. The necessary condition on the capacity is:

f(t1) + f(t2) +…+ f(tn) ≤ | fmax |.

2. Let ti be a task being scheduled on path pj. The
necessary temporal condition is that for all i = 1,
2, …n and j = 1, 2, …, m,

T(pj) < d(ti).

3. There is sufficient capacity for paths to schedule all
tasks and meet condition 2.

If all of the above conditions can be met then we say
tasks are satisfactorily schedulable on the network crisply.
Otherwise, the tasks may only be scheduled without a
guarantee of satisfying all constraints. For example, when
d(ti) falls in the interval of T(pj) then ti has a possibility to
meet or to miss its deadlines with different degrees due to
temporal uncertainty of the network.

Hence, we need to define a function to evaluate the
uncertainty. Let fij be the flow for task i running on path j
and the upper bound of T(pj) be TR(pj). The fuzzy
membership of d(ti) less than T(pj), meeting the deadline,
is d(ti) f T(pj) as defined in Definition 2. Let Eij = fij * [TR(pj)
- d(ti)] * [d(ti) f T(pj)]. For example if task ti has
deadline 15 and the path j task i running has time cost [13,
17] and the flow running on this path is 3 units, then Eij =
3 * (17 - 15) * (15 f [13,17]) = 3 * 2 * 0.5 = 3. Then,
the scheduling objective is to maximize S Eij. It can also
been defined as a dual minimization problem.

4.3 An alternative approach for task scheduling

The schedule algorithm discussed above works when the

total capacity requirement is no more than the maximum
capacity of the flow network. Instead of using

Algorithm MinCostFlow(N):
Input: Weighted flow network N = (G,S,w,D,t)
Output: A maximum flow with minimum cost f for N

for each edge e ∈ N do
f(e) ← 0

for each vertex v ∈ N do
d(v) ← 0

stop ← false
repeat

compute the weighted residual network fR

for each edge (u,v) ∈ fR do

w’(u,v) ← w(u,v) + d(u) – d(v)

for each edge (u,v) ∈ fR do

w’(u,v) ← w(u,v) + d(u) – d(v)

run Dijkstra’s algorithm on fR using the weights w’

for each vertex v ∈ N do

d(v) ← distance of v from s in fR

if d(t) < +∞ then
{p is an argumenting path with respect to f}
{Compute the residual capacity Df (p) of p}
∆ ← +∞

for each edge e ∈p do

if Df (e) < ∆ then
∆ ← Df (e)
{Push ∆ ← Df (p) units of flow along path p}

for each edge e ∈p do
if e is a forward edge then
f(e) ← f(e) +∆

else
f(e) ← f(e) – ∆ {e is a backward edge}

else
stop ← true {f is a maximum flow of minimum cost}

Algorithm TaskScheduling

On a minimum time cost flow network:
Sort m paths such that
 T(p1) ≤ T(p2) ≤ … ≤ T(pm),
Sort n jobs by deadline such that
 d(t1) ≤ d(t2) ≤ … ≤ d(tn)

 For j = 1 to n
 Assign job j to the path with shortest
time cost still have free capacity. If
the path does not have enough flow
capacity, use the next path.

133

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Ford-Fulkerson’s algorithm to find the maximum flow
first, Edmonds and Karp proposed the algorithm below
that effectively finds maximum flow and minimum cost
on a flow network with successive shortest path approach.
Here is the pseudo code for non-interval costs.

Similar to our previous discussion, we can use the
extended interval Dijkstra’s algorithm [12] and find the
maximum flow with minimum total time cost.

Here is an example:

Suppose we have a network as the above. In the network
each edge is labeled with T(e), f(e)/c(e).

Using the successive shortest path algorithm we first find
the shortest argument path SfiBfiEfiD and the saturated
edge of this path is BE. So, we add 3 units of flow on this path
and get:

Then we find the next shortest argument path is
SfiCfiFfiD and the saturated edge of this path is SC and
CF. So, we add 5 units of flow on this path then we get

We continue until we get the minimum time cost
max-flow.

The maximum flow with minimum time cost of the
example can be described in the table below:

Modify
times Shortest

path

Cost of
shortest
path
di

Flux of
shortest
path
xi

The
saturated
path
(i--j)

1 S-B-E-D [4,10] 3 BE

2 S-C-F-D [5,11] 5 SC and CF

3 S-A-E-D [5,11] 3 AE

4 S-B-F-D [6,12] 2 FD

5 S-B-F-E-D [6,14]] 1 FD

After we obtained the maximum flow with minimum
interval cost, we can then schedule the tasks as described
in section 4.3. When the total capacity required is more
than the maximum flow, one should establish a scheme to
prioritize all the tasks and then keep the capacity
requirement of to be scheduled tasks to no more than the
maximum flow.

5. CONCLUSIONS AND FURTURE WORK

In this paper, we studied algorithms that schedule tasks
on a capacity flow network with capacity and uncertain
temporal constraints.

We modeled temporal uncertainty with time intervals. By
applying fuzzy partial order relations for intervals, we
extended Edmonds-Karp maximum flow and minimum
cost algorithms for task scheduling. We discussed the
necessary conditions and sufficient conditions to satisfy
all scheduling constraints. Algorithms for crisply and
fuzzily schedulable tasks are presented in Section 4.

S

A

B

C

F

D

E

[3,5],3/5

[2,4],6/7

[2,4],3/3

[0,2],7/8

[1,3],1/1

[2,4],5/5
[1,3],0/3

[3,5],3/7

[2,4],5/5

[1,3],7/7

[2,4],3/3

S

A

B

C

F

D

E

[3,5],0/5

[2,4],3/5

[2,4],0/3

[0,2],3/8

[1,3],0/1

[2,4],5/5
[1,3],0/3

[3,5],0/7

[2,4],5/5

[1,3],5/7

[2,4],3/3

S

A

B

C

F

D

E

[3,5],0/5

[2,4],3/5

[2,4],0/3

[0,2],3/8

[1,3],0/1

[2,4],0/5
[1,3],0/3

[3,5],0/7

[2,4],0/5

[1,3],0/7

[2,4],3/3

S

A

B

C

F

D

E

[3,5],0/5

[2,4],0/5

[2,4],0/3

[0,2],0/8

[1,3],0/1

[2,4],0/5
[1,3],0/3

[3,5],0/7

[2,4],0/5

[1,3],0/7

[2,4],0/3

134

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

In this study both tasks and flow networks are static.
However, in practice, they can be dynamic. Scheduling a
dynamic collection of tasks on a dynamic flow network
can be more challenge and more interesting.

Acknowledgement: This research is partially supported
by NSF Grant CCF-0202042.

Two student co-authors of this paper have been supported
by the university graduate assistantship and Arkansas
State Undergraduate Research Fellowship.

REFERENCES

[1] Allen, J., Maintaining knowledge about temporal
intervals, ACM Communications 26, pp.832–843,
1983.

[2] Bellman, R. On a routing problem, Quarterly of
Applied Mathematics, 16(1), pp.87-90, 1958.

[3] Dijkstra, E. W. A note on two problems in connexion
with graphs. Numerische Mathematik, Vol. 1, pp.
269-271, 1959.

[4] Edmonds J. and Karp R., Theoretical improvements
in the algorithmic efficiency for network flow
problems, J. of ACM, 19, pp. 248-264, 1972.

[5] Floyd, R. W. Algorithm 97: Shortest path,
Communication of ACM, Vol. 5, No. 6, pp. 345,
1962.

[6] Ford, L. R., Fulkerson, D. R. Flows in Networks,
Princeton University Press, 1962.

[7] Fishburn, P. C. Interval Orders and Interval Graphs:
A study of Partially Ordered Sets, Wiley, New York,
1985.

[8] Gilmore, P. C. and Hoffman, A. J. A
characterization of comparibility graphs and
interval graphs, Canadian Journal of Mathematics,
16, pp.539-548, 1964.

[9] Golumbic, M. C. Algorithmic Graph Theory and
Perfect Graphs, Academic Press, 1980.

[10] Goodrich, M. and Tamassia, R. Algoritm Design,
John Wiley & Sons, 2002.

[11] Interval Computations,
http://www.cs.utep.edu/interval-comp/main.html

[12] Hu, P. and Hu, C. Fuzzy partial-order relations for
intervals and interval weighted graphs, Proceedings
of IEEE 2007 Symposium on Foundations of
Computational Intelligence, Honolulu, HI, 2007.

[13] Klein, G.; Moskowitz, H.; Ravindran, A;
Interactive multi-objective optimization under
uncertainty, Management Science; 36, pp. 58-75,
1990.

[14] Krokhin A., Jeavons P., and Jonsson P. Reasoning
about temporal relations: the tractable subalgebras of
Allen’s interval algebra, J. of the ACM, 50, pp.
591–640, 2003.

[15] Kruskal, J. B. On the shortest spanning subtree and
the traveling salesman problem, Proceedings of the
American Mathematical Society 7, pp.48–50, 1956.

[16] Moore , R. E. Method and Application of Interval
Analysis, SIAM, Philadelphia, 1979.

[17] Zadeh, L.A. The Concept of a Linguistic Variable
and Its Application to Approximate Reasoning I, II,
III. Information Sciences, 8, pp. 199-251; 9, pp.
43-80, 1975.

135

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

