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Abstract— The development of approaches for under-
standing the complex dynamics of biological systems is
a growing research area in electrical engineering, par-
ticularly in the fields of signal processing and controls.
The focus of our research is the exploitation of the
parallels between engineering and biology through the
development of optimization and identification methods.
Specifically, this research consists of developing methods
for the estimation of unmeasured states, the identification
of parameters of kinetic models and the validation of
biochemical models. This work falls under the general
research topic of systems biology.

We explore the use of interval analysis in developing
numerical algorithms for optimization and validation of
systems biology problems. A major attribute of this method
is that convergence to global minima is guaranteed. This
paper includes a development of an adaptive interval opti-
mization method based on the branch-and-bound method
known as Smooth Interval Branch-and-Bound.

One potential impact of this research is the development
of more accurate models of biological systems. This will
aid in the design of drugs for cancer and disease treatment
and aid in the study of how they propagate.

I. INTRODUCTION

Systems biology is an emerging research field that
focuses on acquiring a system-level understanding
of biological processes through multifaceted ap-
proaches based on analytical, computational, and
experimental techniques. The idea of acquiring a
system-level understand of biological processes is
not a new concept. This idea has a long history
and goes back to the days of Wiener [1] and
Bertalanffy [2]. The renewed interest in this area
is partly due to the tremendous strides that have
been accomplished over the last decades in molec-
ular biology, specifically in the areas of genomics
and proteomics. These advancements in molecular
biology and computer technology have equipped

the research community with knowledge of molec-
ular level biological components that describes bi-
ological systems corresponding to gene regulation,
protein creation, cellular signaling, and metabolite
production and consumption. An understanding of
the individual components, however, is not adequate
for interpreting the underlying system-level charac-
teristics of a given biological process.

The advancements of quantitative experimental
approaches has also aided in acquiring knowledge
about these biological systems. These advancements
have yielded high throughput experimental tech-
niques that are capable of generating large amounts
of biological, genomic, proteomic, and metabolomic
data [3] [4] [5]. These techniques allow the col-
lection of comprehensive data sets that are rep-
resentative of the overall system performance of
the biological process [6]. This increase in data is
responsible for the increased interest in the areas of
bioinformatics and computational biology. However,
a systems level understanding of biological systems
will require a multifaceted approach to analyzing
this data that goes beyond the traditional heuristic
and statistical approaches used in computational
biology and bioinformatics today. One approach
would be to integrate methodologies from systems
and control theory along with computationally intel-
ligent approaches in order to acquire accurate ana-
lytical representations that would aid in the analysis
and control of these biological systems.

Two important steps that are needed in order to
gain this systems-level understanding of biological
systems are: (1) the identification of the system
structure and associated components of the system
and (2) identification and validation of the dynam-
ics of the system [7]. Identification of the system
structure is in itself a difficult task. Current knowl-
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edge that has been acquired from advancements
made in the fields of molecular and computational
biology has aided tremendously in the generation
and verification of valid network topologies for
biological systems. Network topologies have been
derived from varying amounts of information, which
include sequence analysis [8], in-depth study of
molecular interactions, and gene expression analysis
[9] [10]. The identification of analytical models that
are capable of replicating the true dynamics of these
systems seems to be a more elusive objective. This
is still an open research area where computationally
intelligent approaches, particularly those based on
interval arithmetic [11][12][13], can be used to help
solve various aspects of this problem.

Due to the complex nature of biological systems,
traditional analytical approaches to analyzing these
processes often fail. Thus, there is a a need to in-
tegrate computationally intelligent approaches into
these analysis schemes. Interval analysis [13] [14]
represent a class of computationally intelligent ap-
proaches that can be readily integrated into analysis
schemes such as state estimation, parameter iden-
tification, and model validation for biological sys-
tems. Several attractive attributes of interval analysis
include their ability to locate all solutions set for
nonlinear equations and their ability to provide
reliable bounds on these solution sets [12]. In our
previous work, we have developed an algorithm for
adaptive filtering that can be extended to address
these systems biology problems [15].

The outline of this paper is as follows: Section
II discusses the background material of interval
analysis and adaptive filters. A description of the
development of an adaptive global optimization
method, using an adaptive filtering formulation, for
parameter identification is discussed in Section III.
Section IV outlines areas in systems biology where
interval approaches can be used. A synopsis of this
work will be provided in the conclusion, Section V.

II. BACKGROUND

A. Interval Analysis

Interval Arithmetic [11], the primary tool for
performing interval analysis, was developed as a
way of bounding the errors due to rounding and
quantization that accrue during numerical computa-
tions, and is based on the manipulation of intervals,

or sets, of real numbers, instead of individual real
numbers. An interval X is defined as X = [a, b]
such that X = {x ∈ R : a ≤ x ≤ b}. A
real number x is defined as a degenerate interval
if X = [x, x]. The basic arithmetic operations of
addition, subtraction, multiplication and division are
generally defined for intervals as:.

X �Y = {x � y : x ∈ X, y ∈ Y } (1)

where � denote one of the interval arithmetic opera-
tions. An important aspect of interval computations
is that outward rounding is used to guarantee that
the infinite precision result is within the bounded in-
terval. To illustrate, consider a function f(x) over a
region D such that fL ≤ f(x) ≤ fU , ∀x ∈ D. Note
that fL and fU may not be exactly representable in
a floating-point or fixed-point number system. The
result of computing the range of f over D using
interval arithmetic will be an interval F = [f, f̄ ]
where f is the largest machine representable number
smaller than or equal to fL, and f̄ is the smallest
machine representable number that is larger than or
equal to fU . By rounding fL to f and fU to f̄ , a
process called outward rounding, F is guaranteed to
contain the true range, [fL, fU ].

Interval functions are typically used to provide
sharp bounds on the range of real functions over
an interval. This is done by using the principle of
monotonicity. An interval function, F , is said to be
inclusion monotonic if Xi ⊂ Yi (i = 1, 2, . . . , n) im-
plies that F (X1, X2, . . . , Xn) ⊂ F (Y1, Y2, . . . , Yn).
Consider the following theorem:

Theorem 1: [12] Let F (X1, . . . , Xn) be a ra-
tional interval function. Assume F is evaluated
using a fixed form with a fixed sequence of opera-
tions involving only interval addition, subtraction,
multiplication, and division. Then F is inclusion
monotonic.

The above theorem leads to the following Fun-
damental Theorem of Interval Analysis [12]. One
of the far-reaching consequences of this theorem is
that it allows for the solution of global optimization
problems.

Theorem 2: [12] Let F (X1, . . . , Xn) be an inclu-
sion monotonic interval extension of a real function
f(x1, . . . , xn). Then F (X1, . . . , Xn) contains the
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range of values of f(x1, . . . , xn) for all xi ∈ Xi (i =
1, . . . , n)

Interval functions can be implemented in multi-
ple forms. The standard form, called the Natural
Interval Extension directly translates arithmetic op-
erations into their interval equivalent. Other forms
include the Centered Form [16][17] which incorpo-
rates interval gradient information and the Taylor
Form [18] which uses both gradient and Hessian
information.

B. Adaptive Signal Processing

Adaptive Infinite Impulse Response (IIR) fil-
ters [19][20] represent a particular class of filters
whose output is formed as a linear combination
of past and present inputs and past outputs. They
are particularly attractive solutions for applications
where power and memory resources are limited.
Consider the general adaptive filtering setup shown
in Fig. 1, where d(n) is a stochastic, discrete-time
sequence called the desired signal, y(n) is the filter
output and e(n) is the output error. The input,
x(n), is a stochastic, discrete-time sequence whose
statistical characteristics are assumed to be known
(at least partially). The linear difference equation
governing the output of the adaptive filter is:

y(n) =
N−1∑

i=0

bi(n)x(n− i) +
M∑

j=1

aj(n)y(n− j) (2)

where the bi’s and aj’s are referred to as the feedfor-
ward and feedback filter coefficients respectively. N
is the length of the feedforward section of the filter
and M is the length of the feedback section. The
error signal, e(n), is given by:

e(n) = d(n) − y(n). (3)

y(n)

d(n)

e(n)

x(n) Adaptive Filter

H(z) -

+

Fig. 1. Basic Adaptive IIR Filtering Setup

One of the most fundamental properties of adap-
tive filters is their self-adjusting nature. Filters adjust
their coefficients in such a way that performance
objectives are met when a given cost or performance
function, ξ, is minimized. Although there are several
cost functions to choose from, the most widely used
one, primarily because of its simplicity, is the Mean
Square Error (MSE) function given by

ξ(n) = E
[
e2(n)

]
, (4)

where E(·) is the expectation operator. It represents
the optimum criterion when distribution of the input
data is Gaussian.

Stearns [21] showed that in general, the MSE cost
function of an adaptive IIR filter is multimodal and
so minimization of ξ in order to meet performance
objectives requires the use of global optimization
algorithms. Several stochastic global optimization
algorithms including the computational intelligent
methods of Simulated Annealing [22] and Genetic
Algorithms (GA) [23] have been used to minimize
ξ. However, as expected, they only converge to
global minima with probabillity one. Since conver-
gence to local minima yields suboptimal solutions,
these algorithms are not suitable for use in practice.

We have focused part of our research efforts
on the development of an adaptive IIR filtering
algorithm that addresses the issue of convergence
to local minima. This effort has resulted in the de-
velopment of an adaptive Branch-and-Bound global
optimization method for signal processing called the
Smoothed Interval Branch-and-Bound (SIBB) [15].
This algorithm is discussed further in Section III.

III. ADAPTIVE SYSTEMS

One method being investigated for parameter
identification is the Smoothed Interval Branch-and-
Bound (SIBB) algorithm [15]. This adaptive method
is designed to minimize the MSE cost function of
adaptive IIR filters despite its multimodal nature of
ξ, as defined in (4). The SIBB algorithm is based
on the global optimization technique of Branch-
and-Bound [24][25][12], which has a theoretical
guarantee of convergence to global minima. Branch-
and-bound techniques locate the global minima of
functions by splitting up the search space into
sub-regions, determining the range of the function
over each region (a process called bounding) and
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discarding those regions that are guaranteed not to
contain global minimum point(s).

The process of bounding the cost function is a
critical one for two reasons. First, computations
have to be performed in such a way that the bounds
obtained are guaranteed to contain the infinite preci-
sion range of ξ despite rounding errors which occur
naturally on digital computers [12]. Secondly, the
computation of bounds is complicated by the fact
that ξ is a stochastic function of e(n). We addressed
the first issue by employing interval arithmetic for
performing computations as discussed in Section II-
A, and resolved the second issue by developing an
exponential weighting scheme which is presented in
detail next.

A. Exponential Weighting Scheme

The MSE cost function, ξ, is a function of the
output error, e(n), which is a random process. In
practice, only one realization of e(n) is available
and so, ensemble averages cannot be computed.
However, if e(n) is assumed to be ergodic, ξ can
be estimated using time averages. Based on this,
we developed an exponential weighting (smoothing)
scheme for estimating ξ at time n as follows:

¯̂
ξ(n) =

1

K

n∑

i=n−K+1

λn−ie2(i) (5)

for n = K, 2K, 3K, . . . The parameter λ is called
the forgetting factor and K is the size of the win-
dow over which the cost function is averaged. The
forgetting factor, λ, controls the amount of memory
in the estimation process and takes on values such
that 0 < λ ≤ 1.

B. Smoothed Interval Branch-and-Bound Algorithm

The use of the exponential weighting scheme de-
scribed in Section III-A, together with interval arith-
metic, results in the SIBB algorithm [15]. It is an
iterative algorithm designed to process discrete-time
data and does not make use of gradient information.
The feasible region, S, represents a large enough
region within which global minima are believed to
lie. The smoothing step, where averaging of ξ takes
place according to (5), is the most computationally
intensive step. The algorithm spends K time steps
at this stage every time through before moving on to
update the filter coefficients. Thus, SIBB processes

blocks of K data samples at a time and updates
filter coefficients once every K time steps.

Memory is required to track boxes in the sys-
tem that require further processing, and the total
amount of memory needed is linked to the branching
strategy employed in the splitting step. This is
because it is a function of the number of boxes
produced after splitting a single box, which is
exponentially related to the number of dimensions
that are split, k. Specifically, each box produces
qk new boxes, where q represents the number of
times each dimension is split. This phenomenon of
exponential growth is called the curse of dimension-
ality. Although several methods have been proposed
for splitting boxes [24], no particular strategy has
been found to be the best. For instance, while
Hansen [12] suggests splitting boxes along the two
largest dimensions (each dimension being split in
two), Markót et. al. [26] note that splitting along
one dimension is sometimes a better strategy. In our
implementations, k = 2 and q = 1.

At termination, SIBB not only provides the co-
ordinates of the global minimum point(s), but also
returns bounds on the minimum value of the ξ.

IV. SYSTEMS BIOLOGY

A. State Estimation

Accurate mathematical models that are capable of
capturing the dynamic characteristics of biological
systems have been an attractive objective in the
field of systems biology. Many system identifica-
tion approaches require measurements of all time-
varying components of the system in order to be
effective. The fact remains that even though there
have been great advancements in the development of
high throughput experimental techniques, it can be
very time consuming, expensive, or sometimes just
impossible for these techniques to measure all time-
varying components in the systems. Thus, most sys-
tem identification approaches remain underutilized
in this field of research. One means of addressing
this bottleneck in biological systems modeling is
to develop techniques that are able to estimate the
unmeasured components of the system using the
measurements that can be acquired from current
experimental techniques [27] [28] [29] [9].

Biochemical networks are often represented in a
nonlinear state-space form. The discrete forms of
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these representations can often be expressed as

xk+1 = Axk + Bvk(xk,p) (6)

where x represents the components or states of
the system, v represents the state-dependent non-
linearity that drives the dynamics of the system, A
describes the linear degradation/production of the
states, and p is the vector of kinetic parameters. The
matrix B is known as the stoichiometric matrix and
is derived completely from the network topology.

State estimation methods, similar to those out-
lined by Mahadevan et al. and Gadkar et al., are
based on the premise that biological systems operate
according to some internal optimal objective. Equa-
tion (6) is used in combination with the optimal ob-
jective to form a constrained optimization problem
for calculating the estimates of the unknown dynam-
ics of the system. Local search algorithms present an
attractive means of implementing this constrained
optimization due to their low complexity and are
often used in these types of estimation procedures
[29] [9]. Local search algorithms, however, have
several drawbacks and, except for the most simplest
of optimization problems, often produce suboptimal
results. Global search algorithms are more robust
and often produce results that are better than local
search methods. Williams et al. demonstrated that a
constrained global search algorithm based on Real-
Coded Genetic Algorithms (RCGA) was able to
produce estimates of the unmeasured states that
more closely matched the true dynamics of the
biological system [30] as compared with standard
nonlinear programming methods. RCGA, however,
is still a stochastic global search algorithm and is
not guaranteed to yield the most optimal solution
for any given optimization problem.

Guaranteed estimation of the states for a non-
linear system can be achieved using interval meth-
ods, as describe in [13]. These interval based so-
lutions take into account the uncertainties without
applying local linearization. Guaranteed estimation
is achieved by either bounding the appropriate vari-
ables or through constraint satisfaction.

B. Parameter Identification

The vector p in (6) represents a collection of
kinetic parameters that are often very difficult to

estimate experimentally. Parameter identification, or
system identification, is often used as a means of
estimating these parameters given that we have
adequate knowledge about the system. This includes
having knowledge about the true functional form of
the state-dependent nonlinearity in (6) as well as full
state information over the time interval of interest.
Estimation procedures, like the one described above,
can be employed if the complete state of the system
cannot be measured. The parameters p are then var-
ied in order to minimize the error between the states
from the analytical model and the measurements of
the states. This process is illustrated in Figure 2.

Axk + Bvk(xk,p)

Measurement Dataset

xk, k = 0, 1, . . . , N

xk+1

ek+1

x̂k+1

Fig. 2. Parameter Identification Procedure

The number of kinetic parameters for biological
systems are often large, resulting in a high dimen-
sional optimization problem. Due to the curse of
dimensionality, high dimensions on the parameter
vector can often have adverse affects on the opti-
mization algorithm, leading to a low confidence in
the estimates that are produced. In these situations,
interval methods for parameter estimation can be
used to obtain not only the estimates, but also a
measure of the level of confidence. This measure of
confidence is determined by the width of the interval
estimates. In addition, inherent to interval analysis
is that appropriately setting the bounds on the initial
estimates also bounds the search space [13].

C. Validation of Biochemical Models

The model described in (6) is often used as a first
step in analyzing the system aspects of biological
system. The fact is that most biological system have
some level of uncertainty associated with them. A
system with uncertainty is represented as

xk+1 = Axk + Bvk(xk,p) + βk. (7)
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The added term βk describes any uncertainty as-
sociated with the system. This uncertainty may be
due to noise in the system, unknown or un-modeled
dynamics of the system, uncertainty in the initial
condition, or uncertainty in the kinetic parameters.
The problem now is to determine whether the
measurement data set obtained from experimental
procedures is consistent with the given uncertainty
model. In other words, we wish to establish whether
the observed data could have been produced by the
model given some bounded uncertainty within the
system [31]. This is called the model validation
problem. Model validation serves as a precursor to
many aspects of system analysis. The use of interval
methods for performing model validation represents
a recent research topic within systems biology, see
[32] and the upcoming NATO Symposium on Com-
putational Uncertainty [33]. Furthermore, model
validation for systems biology becomes a major
factor in insuring that system models developed
mimic the actual biological system very closely.
This will insure that the medical community has
confidence in the work of system biologist and there
results.

D. Application of SIBB to System Biology

The solution of parameter identification and state
estimation problems found in Systems Biology, as
well as the validation of the dynamical models
used requires computationally intelligent schemes
just as adaptive filtering does. As a result, with
some modifications, algorithms such as SIBB can
be used to solve these problems. For instance, in
determining the kinetic parameters, p, of the non-
linear, state-space model given in (6), the problem
can be placed in the adaptive filtering framework
where the filter output represents estimates of the
state vector, denoted by x̂k. The error, ek, will then
be the difference between the measured data, xk,
and x̂k:

ek = xk − x̂k (8)

The goal here will be to minimize the error in
the mean-square sense. The advantage of using
SIBB is that although it was designed for adaptive
linear systems, it can be easily extended for use
with nonlinear systems similar to that in (6). One
extension that has to made to SIBB is to give it the
capability of handling linear constraints.

V. CONCLUSION

We have discussed in this paper our research
thrust in the field of systems biology. In general,
the research consist of the estimation of unmeasured
states, the identification of kinetic model parame-
ters, and the validation of dynamical chemical mod-
els. We use the reliable computational and numerical
method of interval analysis to solve the above prob-
lems. These methods are important for optimiza-
tion because convergence to the global minima is
guaranteed. Also, computational and measurement
uncertainty can be incorporated into the estimation
and identification procedures. One such method is
the Smoothed Interval Branch-and-Bound (SIBB)
algorithm. Though the SIBB algorithm was devel-
oped for solving the adaptive IIR filtering problem,
it can be used to solve the similar problem in system
biology of parameter identification.

Accurate models of biological systems will en-
able researchers to observe and predict the behavior
due to internal and/or external perturbations of the
system. This knowledge can have a direct impact on
the design of drugs with fewer side effects as well
as the treatment of cancer and diseases for which,
presently, there is no cure.
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