
 

Abstract— We present a hybrid clustering system that is 
based on the Adaptive Resonance Theory 1 (ART1) Artificial 
Neural Network (ANN) with a Genetic Algorithm (GA) 
optimizer, to improve the ART1 ANN settings. As a case study, 
we will consider text clustering. The core of our experiments 
will be the quality of clustering, Multi-dimensional domain 
space of ART1 design parameters has many possible 
combinations of values that yield high clustering quality. These 
design parameters are hard to estimate manually. We proposed 
GA to find some of these sets. Results show better clustering 
and simpler quality estimator when compared with the existing 
techniques. We call this algorithm Genetically Engineered 
Parameters ART1 or ARTgep. 

I. INTRODUCTION

nsupervised training is defined as self-organizing neural 
nets that group similar input vectors together, without 

the use of training data to specify what a typical member of 
each group looks like or to which group each vector belongs. 
Unsupervised ANN is mainly used for clustering [1], and 
ART1 is a typical example. In addition to being 
unsupervised, ART1 is an online learning ANN, which 
means that it can adapt to new data sets after being detached 
from the training algorithm [2]. In contrast to how other 

ANNs behave regarding new input vectors; the ART1 ANNs 
do not require the training to restart for the adaptation to take 
place. 

Genetic Algorithms mimic the biological evolution 
process known as “Survival of the fittest”; improved 
solutions evolve from previous generations until reaching to 
a near optimal solution [3]. Designing a genetic algorithm 
involves: 

1. Devising suitable structures to represent the solutions 
(later called chromosomes or individuals).  

2. Defining a set of genetic operators that produce new 
solutions from the existing ones.  

3. Devising an index that can be used as measure of 
quality for the solutions to drive the evolution process, 
typically called the fitness function.  

4. Selection rules that maintain the population size bound 
by getting rid of solutions. 

GAs have been used as optimization tools in many 
applications. To use it as ANN ART design parameters 
optimizer, each set of the ART1 design parameters 
represents a possible solution; Figure 1 depicts the ART1 
architecture and its design parameters: bij (bottom-up 

Performance Optimization of Adaptive Resonance Neural Networks 
Using Genetic Algorithms 

Hussein T. Al-Natsheh, Student Member, IEEE
natsheh@ieee.org 

Taisir M. Eldos, Member, IEEE
eldos@ieee.org 

Department of Computer Engineering 
Jordan University of Science and Technology 

U

F1(a) Layer 
(Input Units) 

F1(b) Layer 
(Interface Units) 

F2 Layer 
(Cluster Units) 

Reset 
Unit 

Yj Ym

R

Xi XnX1

Si SnS1

Y1

Figure 1 Basic Structure of ART1 [1] 

bij 

tji

143

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE



weights) is the weight matrix from the interface layer to the 
cluster layer, tji (top-down weights) is the weight matrix 
from the cluster layer to the interface layer, n (number of 
input patterns or interface units), m (maximum allowed 
number of clusters), and  (vigilance parameter). The set of 
parameters bij, , and m constitute the chromosomes, where 
bij is initialized by (L and a) from (1), which will be 
described later. The best set of design parameters is then the 
fittest amongst the chromosomes [L, a, , m]. In this work, 
we will show the superiority of this design methodology 
compared to the conventional methods, which are based on 
recommended set of parameters. 

The vigilance ( ) and the maximum allowed number of 
clusters (m) have a big impact on the performance [1]: 
 1. High  and small m results in stable cluster formation 

after a few epochs of training while some input patterns 
cannot be placed in clusters. 

 2. High  and large m reduces the sensitivity to order of 
input with stable cluster formation after a few epochs. 

 3. Low  and small m requires more epochs to stabilize and 
it results in higher sensitivity to order of input. 

The main objective of this work is to define a general and 
application independent measure for the quality of 
clustering, without previous knowledge of what the 
clustering would actually look like, and use it as a fitness 
function to guide the GA towards finding an optimal or 
suboptimal set of design parameters for the ART1. 

Clustering is used heavily in text mining; applications of 
clustering in text mining include taxonomy generation, topic 
extraction, and grouping the hits returned by a search engine. 
Clustering can also be used to group textual information 
with other indications from business databases to provide 
novel insights [4]. Text clustering has a major significance 
in the search based applications like web-searching, since 
the fact that searching in clustered text sets instead of one set 
of documents runs faster. Supervised Text Categorization 
(TC) is the best method for such applications in terms of 
quality, but it suffers from some weakness compared with 
ART1 like expert's intervention, occasional need of 
retraining, and lack of adaptability [5]. 

II. RELATED WORK

Research in this area has focused on some major issues 
like quality, space and time requirement, while only few 
considered application-independent architecture, learning 
algorithms, and performance. For example, Adaptive 
Resonance Theory under Constraints ART-C [6], [7], where 
dynamic variable value of vigilance parameter is applied, 
according to an extra constraint reset mechanism to the ART 
architecture. This concept was applied in ART 2A [7] to 
produce ART 2A-C. It was examined by clustering of gene 
expression data application. ART-C shows better 
performance than K-means, Self-Organizing Map (SOM), 
and conventional ART. 

In [5], the author tests a simple ART1 network 
implementation and evaluates its text clustering quality on 
the Reuter data set by standard measures. He employs        
K-means clustering quality as lower bound and supervised 
TC as upper bound to publish his results relatively. He also 

applies incremental search for the best design parameters 
criteria to find the best setting for  and m.  

Since ART was published, many approaches have been 
presented: improved ART1, adaptive Hamming net (AHN) 
by C. Hung and S. Lin [8], and Fuzzy ART, which are 
optimized in terms of space and time. In AHN, ART 
clustering scheme as an optimization problem was solved by 
finding the best matching unit in time by 4 defined 
equations.  

The symmetric Fuzzy ART (S-Fuzzy ART) network is 
presented as a possible improvement over Fuzzy ART. 
Fuzzy ART is the best-known representative of the ART 1-
based network group: (in fact, besides being viewed as a 
standalone system, Fuzzy ART is also known as the basic 
module of the Fuzzy ARTMAP classifier). However, Fuzzy 
ART has some weakness that can be summarized into three 
points: sensitivity to noise and outliers, inefficiency of 
category structures, and dependence of category structures 
upon data set input presentation [9]. 

The Simplified Adaptive Resonance Theory (SART) 
group of ART algorithms is defined as a generalization of S-
Fuzzy ART. Gaussian ART (GART), which is a Gaussian 
maximum-likelihood (ML) probability density function 
estimator, is presented as one more instance of class SART. 
Results of the comparison between Fuzzy ART and S-Fuzzy 
ART may easily extend to the ARTMAP supervised learning 
framework in general and, in particular, to the Fuzzy 
ARTMAP classifier [9].       

Projective ART (PART) neural network developed by Cao 
and Wu recently has been shown to be very effective in 
clustering data sets in high dimensional spaces [10]. The 
PART algorithm is based on the assumptions that the model 
equations of PART (a large scale and singularly perturbed 
system of differential equations coupled with a reset 
mechanism) have quite regular computational performance. 

Genetic algorithms were used to optimize some types of 
ANN like the back-propagation [12], [13], [14], [15], and 
[16]. In this work, we design a genetic algorithm to search 
for the best design parameters for the ART1 ANN, with 
another challenge since the genetic algorithm itself uses a set 
of parameters that needs to be optimized as well [11].  

III. ARTGEP

 We design a fitness function that measures the 
performance of the ART1 and use it in the genetic search 
process as a guide towards the best set of parameters for a 
given data set. The test data set will consist of a group of 
web pages with features extracted as input to the proposed 
system. 

We consider the Sensitivity of Order (SoO) of units to be 
clustered, a parameter to measure the fitness of the 
clustering. Usually, the clustering results depend on the 
order by which the data sets are presented to the ART 
network. Genetically engineering the parameters of the ART 
decouples the quality from the presentation order. 

Could Not Cluster (CNC) units stand for the data sets that 
the clustering algorithm does not allocate to any cluster. The 
cardinality of the CNC can be used as a parameter to 
measure the quality of clustering. Usually designers update 
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the ART parameters to overcome this problem.  Employing 
a combination of ART1 and GA is expected to improve the 
clustering efficiency and quality, by tuning ART1 design 
parameters to minimize SoO and CNC problems.  

The following stages summarize our approach: 

A. Designing ART1 
Basically, two weight matrices, described in Figure 1, form 

ART1 net: top-down weights matrix (tji), and bottom-up 
weights matrix (bij), while tji is initialized by 1's, bij is 
initialized by the following equation: 

nL
Lajib

+−
×=

1
),(        (1) 

Where: i = 1: n, j = 1: m, n is the number of input units, m
is the max number of clusters, L and a are design parameters 
for initializing weight matrix.  

To measure SoO parameter, we run ART1 twice: in-order 
and reverse-order, then apply the following equation: 

m
matchSoO =           (2) 

Where: match is the number of equal clusters from the 
two runs, we reverse the meaning of sensitivity to avoid zero 
in the denominator of the equation. 

CNC is a counter that increments whenever the norm of 
input layer is zero; ||s||=0, or when the winning cluster unit 
value = -1. Which means either the input pattern is all zeros 
(no features) or all cluster nodes are inhibited due to the 
reset activation caused by low vigilance (||x||/||s|| < ).   Both 
cases indicate an input unit that could not be clustered. 

B. Designing GA 
We propose the following fitness function: 

+
+×=

mCNC
mSoOF

2
1

     (3) 

We apply GA according to [3], [16] using a random 
population, all chromosomes enter into scaling function, so 
that every parameter is bounded by maximum and minimum 
values according to [17], [18], and [19] the values resolution 
reaches to 0.0001. The pseudo-code of the scaling function 
which updates design parameters is described as follows: 

While (L<1) L= L*10; 
While (a>1) a= a/10; 
While ( >1)  =  /10; 
While (m<1) m= m*10; integer (m);

Out of range values are rejected by setting fitness value to 
0, as follows: 

Fitness =0; If (L=1)  
Or (r>1) or (r<= (1/n))  
Or (a<=0) or (a>=1)  
Or (m<min accepted value defined by user, for example 

m= 4) or (m>max accepted value defined by user, 
for example m= d/3, where d is the number of input 
patterns). 

Table I shows a sample of chromosomes from a random 
experiment. Fitness value calculated for all chromosomes by 

applying these chromosomes to the training set which equals 
to about 70% of the input data set [20]. After that, the 
population is sorted based on the fitness value. As we can 
see from Table I, tuning the values of L and a -while  & m
are fixed- affects the fitness value for each chromosome. 
This explains how (L and a) impact the performance of the 
ART clustering.  

The GA is applied as the following steps: 
1. Generate random population of chromosomes. 
2. Each chromosome enters to the scaling function. 
3. Calculate the fitness value of each chromosome. 
4. Sort descending the population by the fitness value. 
5. Select 4 parents (2 pairs) randomly from the top 10 

chromosomes. Another pair is selected from the rest 
10 of the top 20 chromosomes.  

6. Each pair of parents enters to 2X2 crossover function 
to produce a new child (each child has the first half of 
the first parent, and the second half of the second 
parent).  

7. The mutation rate defined by user (for example 
probability = 0.1) is applied to each produced child. 
Two kinds of mutation function are applied: either to 
add a small value to a random component of the child 
or to subtract a small value.  

TABLE I
 SAMPLE OF CHROMOSOMES FROM RANDOM EXPEREMENT

Highlighted chromosomes shows the impact of L & a to the fitness 
value (clustering performance) when  & m are fixed 
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8. Each child enters to the scaling function, and the 
fitness value of them is calculated. This step makes 
the new child chromosomes ready to join the 
population.  

9. The new 3 chromosomes are replaced with the 
smallest 3 chromosomes from the bottom of the 
population.  

10. The population is resorted by the fitness value. 
11. Check the stopping condition to stop or go to step 5.

The stopping condition is either to reach a threshold 
fitness value (defined by user for example 0.7) of the top 
chromosomes of the population or to reach a state where the 
top 10 chromosomes have the same fitness values. The top 
chromosome of the last population obtained by the algorithm 
is our target. This set of design parameters (L, a, , m) will 
be applied for testing the rest 30% of input data set, and 
from now on, it will be applied for all new data sets, since 
ART1 has the on-line property which means that the 
network can continuously be trained once the network is 
detached from the training algorithm [2].

C. Input Data Set 
The test data consists of a hundred of random web pages, 

with a feature extraction procedure similar to those in [21, 
22 and 23] applied to prepare the data set, where only nouns 
and verbs are filtered and stored in a set without repeat, to 
produce a group of sets (D1, D2, …, Di, …, D100) where 
every set represents a web page. A vocabulary set (U) is 
generated from the union of all sets without repeating any 
word. This set is indexed from 1 to N, where N is the 
number of words. A binary matrix is generated by presenting 
all items in U as headers of columns, and all sets (D1, D2, 
…, Di, …, D100) as headers of rows. Now for every row Di, 
every matched word from Di with a word from U will be 
represented by a binary value 1. All other un-matched words 
will be filled with 0's. This binary matrix will be the input 
data set of the ARTgep algorithm. 

IV. EXPERIMENTAL RESULTS

Since the literature has shown that the ART is superior to 
both the K-means and the SOM [5], [6], it suffices to 
compare the ARTgep performance with that of the 
conventional ART. The training set has 2000 features 
(according to our text feature extraction software), we 
compare our set of design parameters with the recommended 
ones (L=2, a=0.5,  =1, m=d/3 = 23) from previous work [5], 
[17], [1]8, and 19], where  is estimated from Figure 2, d is 
the number of web pages and m is the maximum allowed 
number of clusters. We assume that this set is the best 
conventional ART1 for comparison purpose. 

By running both: the conventional ART1 and ARTgep 
with the same training data set we obtained results in Table 
II. As in [5] we used Jaccard (JAC) [24] and Fowlkes-
Mallows (FM) [25] quality measures equations: 

CBA
AJAC

++
=           

   
(4)

)()( CACA
AFM

+×+
=         (5) 

Where [5]: 
A: is the pair-wise number of true positives, i.e. the total 

number of document pairs grouped together in the 
expected solution and are indeed clustered together by 
the clustering algorithm. 

B: is the pair-wise number of false positives, i.e. the 
number of document pairs not expected to be grouped 
together but are clustered together by the clustering 
algorithm 

C: is the pair-wise number of false negatives, i.e. the 
number of document pairs expected to be grouped 
together but are not clustered together by the clustering 
algorithm. 

Table II shows better results of ARTgep, where higher 
value of fitness function is better. Also, higher values of 
JAC and FW are reflecting the higher value of fitness 

function of ARTgep. This concludes that our fitness function 
from (1), is an indicator of clustering quality. This indicator 
does not need a prior knowledge of the text's real topic 
(cluster) to measure the quality of the clustering. That is very 
helpful for text mining applications, because of the need for 
unsurprised learning of such applications. 

After adding the testing data set and running both 
generated ART design sets from previous experiment, we 
obtained results in Table III, which shows that ARTgep is 
superior, and we conclude that reducing the effect of SoO
increases the quality and the generalization of ART1, since 
[5] states that SoO is case dependant.  

If we run the conventional ART1 and ARTgep for all 
input data sets, we will get the results listed in Table IV. The 
fitness values of the last population of ARTgep after running
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all input data set using two population sizes; 30 and 100, are 
shown in Figures 3 and 4.  The stopping condition for both 
experiments was repeating the GA 20 times. We noticed that 
using population size 30 results has a bit higher fitness value 
and 70% time saving. Also, the intervention of GA to find 
the targeted design parameters set is higher in the population 
size 30 than size 100; because when we use population size 

100, the random initial generated chromosomes take bigger 
role than the randomness from the GA. So we recommend 
using small population in GA to obtain faster and better 
results. 

   TABLE II
 RESULTS OF RUNNING TRAINING SET

     

Table 1 L a m No. of  
clusters 

fitness 
function A B C JAC FM 

Conventional 
ART Set 2 0.5 1 23 12 0.5214 87 391 493 0.089598 0.165231 

ARTgep Set 95.7991 0.1923 0.8807 19* 14 0.6579 66 164 481 0.092827 0.186074 
* Generated by ARTgep which allows m to be up-to d/3 = 23, fitness function is the new quality indicator, JAC & FM traditional indicators 

TABLE III
 RESULTS OF RUNNING TESTING SET

Table 2 L a  m No. of clusters fitness function 
Test Conventional ART 2 0.5 1 33 18 0.52 

Test  ARTgep 95.7991 0.1923 0.8807 33 18 0.5758 

TABLE IV 
 RESULTS OF RUNNING ALL INPUT DATA SET

Table 3 L a  m No. of clusters fitness function 
Conventional ART for 100 web 2 0.5 1 33 18 0.52 

ARTgep for 100 web 1.5274 0.4983 0.1556 33 14 0.6212 
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjjjjjjj jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj                      

I.

Figure 3: fitness values of the last population of ARTgep for all input 
 data set using population size = 30 individuals 

Figure 4: fitness values of the last population of ARTgep for all 
input data set using population size =100 individuals 
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V. CONCLUSION

Optimizing the ART1 ANN design parameters using 
genetic algorithms yields better performance in terms of 
the clustering quality. We develop a novel fitness function 
which used as a new clustering quality estimator. This 
quality measure is simpler of calculation, tracing time and 
complexity. The sensitivity to order of inputs gets 
minimized which is a big plus in the ART design in the 
quest for a more generalized system. Besides, the new 
quality estimator is application independent. Much more, 
it can be used for optimizing the ART1 design parameters 
during the design phase, since it doesn't need a proper 
knowledge of what the targeted clusters would look like. 
The experiments also, show the impact of initial bottom-
up weight matrix of ART1 to the performance of its 
clustering. 

 Future work will concentrate on optimizing the genetic 
algorithms themselves before being used to optimize the 
ART ANN and apply the same concept to the ART2 ANN 
design parameters optimization; real numbers instead of 
just binary values of ART1. 
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