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Abstract- We analyze a bivariate marginal 
distribution genetic model in case of infinite 
populations and provide relations between the 
associated infinite population genetic system and the 
neural networks. A lower bound on population size 
is exhibited stating that the behaviour of the finite 
population system. in case of sufficiently large sizes. 
can be suitably approximated by the behaviour of 
the corresponding infinite population system for a 
number of transitions exponentially greater than that 
suggested by Vose's analysis. The infinite population 
system is analyzed by showing that. conversely to 
what happens in the univariate case. the fitness is 
not a Lyapunov function for its asynchronous variant. 
The attractors (with binary components) of the 
infinite population genetic system are characterized 
as equilibrium points of a discrete (neural network) 
system that can be considered as a variant of a 
Ho~field's network; it is shown that the fitness is a 
Lyapunov function for the variant of the discrete 
Hopfield's net. The genetic algorithm based on the 
proposed infinite population system is experimentally 
compared with the (neural) network algorithm for 
the Max - Cut problem. Our main result can be 
summarized by stating that the relation between 
marginal distribution genetic systems and neural 
nets is much more general than that already shown 
elsewhere for the univariate models. 

T. Introduction 
Genetic algorithms are probabilistic search algorithms 

inspired by mechanisms of natural selection and genetics. 
introduced by John Holland in the 1970s. They have 
received considerable attention because of their many 
applications to several research fields such as optimiza- 
tion. adaptive control and others [ I  01. [ I  51. [I  61. [19]. 

A classic way to describe the behaviour of genetic 
algor ~ thms  is obtained by means of homogeneous Marltov 
chains [9], [ll]. [29] whose states encode populations 
and are multi-sets of binary strings. General theoretical 
results were introduced for infinite populations by Vose 
[36], [37] who showed how to use them to perform 
the qualitative analysis of the behavior of the finite 
populations models. In particular. in [36]. [37]. a dy- 
namical system model is introduced for which simulation 
is computationally difficult. It is worth noting that 
the original formalism presented by %se mas intended 
to model situations in which recombination of genetic 
material is obtalned through the crossover of the chro- 
mosomes of two mating parents selected with probability 
in proportion to their fitness. Thus the intractability of 
simulating any general system (such as Vose's) is due 
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to the fact that it keeps track of every chromosome 
[3S]. To avoid exponential complexity one may consider 
approximate models, or. alternatively. restrict the type 
of fitness functions (see for example [31]). different 
approach consists in changing one's mind about what 
is being modeled, thus, representing some other related 
genetic system. This last alternative is followed by 
the present paper (along with restriction of the fitness 
to some classes of polynomial functions) following the 
guidelines of references [2]. [3]: in such papers a model 
has been proposed in which the recombination of the 
genetic material is obtained by means of the bit-based 
simulated crossover operator [33]. This rule. as well as 
the gene pool recombination introduced by Miihlenbein 
and l;oight [35]. [24] maintains an Infinite population 
in linkage equilibrium: the genotype frequencies are the 
product of marginal frequencies. In this context. a fre- 
quency vector with exponentially many components can 
be reconstructed by the vectors of marginal frequencies 
that in the univariate marginal distribution algorithms 
[2]. [3], [27]. [24]. [35], [38] are I-component vectors. 
where throughout by 1 we mean the chromosome length. 
Other models based on the marginal frequencies are 
presented in [I], [13], [20]. Related work can be also 
found in [3S] in which it is analyzed a recombination- 
mutation-selection genetic algorithm that uses gene pool 
recomblnation. In particular \.\/right et al. show that in 
case of linear fitness functions there is a single stable 
fixed point for their univariate marginal distribution 
genetic algorithm. Moreover. readers interested in exact 
mathematical analysis of simple genetic algorithms and 
their use as an alternative approach to combinatorial 
optimization are referred to [31]. 

In this paper. we consider the problem of extending 
the analysis of univariate marginal distribution genetic 
algorithms for infinite populations (UMDGAs) to the 
bivariate case (BMDGAs). IVe review and analyze the 
genetic model based on simulated crossover of fixed 
sequences of two bit genes introduced in [5]. Such a 
model represents an instance of the Random Heuristic 
Search (as defined in chapter 3 of reference [37]) and can 
be considered as an extension of the model presented 
in [33]. [35]. [2]; the main characteristic of the system 
that %ve shall consider is that the recombination of the 
genetic material is obtained by performing a weighted 
average of the alleles along each fixed two-bit locus and 
using such statistics to produce offspring whose alleles in 
distinct l oc~  are independently generated. The model 5ve 
propose is more tightly connected to the classic Holland's 
framexvorlt with respect to the models that have been 
presented in the literature follommg the more recent 
development of marginal distribution genetic algorithms 
(we mean for example the area of the Estimation of 
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Distribution 4lgorithms [23] [26]. [30]. [39] [do]) In fact. 
accordrng to the Holland s the015 the fittest individuals 
chromosomes are formed by classlc genetlc algonthms 
merglng short definition length and small specificit) 
order allele schemata. %\hose fitness remalns above the 
average fitness of the populatlons generated by the 
genetic cycles (Holland [lo]. [15]. [16]) This central 
result has introduced the concept of separabihty of the 
fitness functions with respect to short chromosomic 
traits. that is recognized [8]. [28]. [32] as a basic propert) 
required to justrfy the appllcatlon of a (classic) genetic 
alzorrthm The main idea of the model me Diesent IS " 
that of proceeding in bottom-up fashion in such a way 
to compute the (average) fitness associated to some of 
the chromosome building-blocks (alleles) and translate 
such information into statistics that are used to generate 
nem offspring The may in mhich such stat~strcs are 
used 1s almed at  preserving positions of the alleles. 
Thus. the reader can understand that the sense in which 
our bivarrate model is an extensron of the unrvanate 
marginal distnbutlon genetic algonthms is drfferent from 
that proposed to sol-ce problems that contain significant 
dependencies and that cannot be classified as linear 
or decom~osable ~roblems 1301. Note that the rnteiest 

L ,  

in devising marginal distribution genetic models lies 
not only in the fact that they consent efficient (state 
transition) implementation for infinite populations. In- 
deed. in case of univariate marginal distributions. they 
have been used to construct approximation algorithms 
to solve hard combinatorial problems for which error 
bounds can be theoretically estimated. Moreover. the 
stability analysis of such systems has evidenced an 
interesting relation mith neural networlts (in particular 
with Hopfield's Networlts [2]. [3]). 

f\/e exhibit the following results about the genetic 
system based on simulated crossover of fixed sequences 
of two bit genes. 

1) we provide an exponential lower bound on the con- 
centration probability (viewed as function of the 
population size n )  stating that for sufficiently large 
population sizes the finite population stochastic 
system can be considered as an approximation of 
the infinite population deterministic system the 
result is interpreted stating that the behaviour of 
the finite population system. in case of sufficiently 
large sizes n. can be suitably approximated by the 
behaviour of the corresponding infinite population 
system for a number of transitions (considered as 
a function of n) exponentially greater than that 
suggested by l:ose's analysis in [37]; 

2) the infinite population system is analyzed by 
showing that, conversely to what happens in the 
univariate case [4]. the fitness is not a Lyapunov 
function for its asynchronous variant; the at- 

31 " 

tractors in ( 0 . 1 ) ~  ( 1  even) are characterized as 
equilibrium points of a discrete (neural network) 
system that can be considered as a variant of a 
Hopfield's network; 

3) it is shown that the fitness is a Lyapunov function 
for the discrete neural networlt system 

4) the genetic algorithm based on the proposed infi- 
nite population system is experimentally compared 
with the (neural) network algorithm for the Max- 

Cut problem; the results show that the perfor- 
mances are comparable being those obtained by 
the neural network algorithm slightly worse. 

11. Tlie LnIodel 
\Ve revrew the model [5] on which the genetic system 

is based and introduce the technical formalism useful to 
define states and dynamics. ,4 population P of individ- 
uals is represented by a multi-set of n E N I-length 
binary strings (throughout the paper we suppose 1 even) 
from the set 

Each population P is associated with its frequency vector 
F = (F,,. . . . . FY2] ) specifying the propor tion of the 
strings in 0 contained in P. where F,, = and ni, 
is the number of occurrences of the string in P. u .. 
Let ii,, denote the set of the freauencv vectors that 

L d 

represent populatlons of n ~ndlvrduals Each individual 
is evaluated by his fitness that is measured by means 
of a fitness functlon f C2 -+ Rf that associates 
a positive real value to each chromosome. Throughout 
the paper. let 1 = (00.01.10 11 ) and B = i - (00) 
The strings in the populations represent chromosomes 
and each chromosome is divided into a sequence of 
genes that can assume four distinct forms or alleles For 
k = 1. . $ and a = a ,  a2 E 4. consider funct~ons 
xi, [a] i2 -+ (0.1) defined by 

1. if al .  are in positions 2k - 1.2k in W ;  
xi, [a1 = 

0. otherwise. 

In the rest of the paper we shall use notation 

to mean the expectation of function X 0 -4 R con- 
sidered as a random variable along with the stochastic 
vector P = (pl..  . . .p,i). 

Starting from an inltial population Po, if at time 
t the state of the (genetic) system is the population 
P. represented by its frequency vector F. then the 
population at time t f 1 is obtained as follo~vs 

1) for every k = 1; .  . . , and a E A compute 

2) generate a new population P' of n I-length binary 
strings. denoted by 

mith probability ~ [ a ]  of obtaining a 1 . a ~  in 
positions 2k - 1.2k independently from r ,  and k 
for 1 < k <  ; a n d l < i < n .  

Steps 1. and 2. describe the way rn which recombination 
of the genetic material is obtained: 11y performing a 
weighted average of the alleles along each fixed two-bit 
position and using such statistics to produce offspring 
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\\hose alleles in distlnct loci are independent11 generated. 
The stochastic rule described In 2 1s the b~t-based 
simulated crossover ~ntr  oduced In [33]. [2] extended 
to fixed sequences of tno-bit genes By definition of 
the recombmat~on process descr  bed In 2 , ~f P 1s a 
populat~on at t ~ m e  t and F ~ t s  frequency vector. the 
population at  time t + l  is obtained by selecting n strings 
mlth probab~llty dlstrlbutlon 

where the probability @(F),J of generating the string 
w, = d l  1 . . . w,,! is 

111. Probability Coilceiltratioil Results 
The following theorem states a probability concentra- 

tion result on the Marltov chains describing the stochas- 
tic genetic system in Section TI. The result of the theorem 
allows to derive an iterative deterministic system with 
states in [O. 11'" that represents the behaviour of the infi- 
nite population system. More particularly. for sufficiently 
large population sizes n. we prove that (provided that 
the current state of the systems is F )  a transition taltes 
the finite population stochastic genetic system near the 
next state of the infinite populat~on deterministic genetic 
system with probability close to one. The reader should 
notice that this fact has been shown in greater generality 
for anv instance of the Random Heuristic Search 1371: 

L ,, 
ho~vever: in case of the considered instance. we are able to 
provide an exponential lower bound on the concentration 
probability (viewed as function of n )  that is much better 
than that exhibited in the more general case in [36]. 
[37]. Other results concerning this topic. that can be 
considered as special cases, can be found in [2]. [3], [3]. 

Theorem 1 : Let E .  6 E (0.11 and 

where M is the maximum value that the fitness function 
can assume: if at  time t the system is in the state F. then 
the state F' at time t f 1 is such that for all k = 1.. . . , q 
and a E B it results 

with probability at least 1 - 6. 

Proof It is based on Hoeffding's inequality (see [A] and 
[GI). 

To provide a comparison with Vose's analysis [37]. setting 

and assuming that the fitness is lower bounded by some 
positive constant K > 0. 5ve can state the following. 

Theorem 2 Let t. 6 E (0.11 and 

where the fitness assumes values in [K. MI; if the system 
is in state F, at  time T for 0 5 T 5 t.  then it holds that 

Proof The guidelines of the proof can be found in [GI). 

For example. the bound in Theorem 2 holds with K = 1 
for positive integer fitness functions that are widely used 
in the applications. Moreover. note that the bound pro- 
vided by Vose in [37] states that the probability that the 
infinite population system is a suitable approximation 
of the finite population system for t state-transitions is 
bounded by 1 - 5. In practice. the result of Theorem 
2 can be interpreted 11y saying that the behaviour of the 
finite population system, In case of sufficiently large sizes 
n. can be suitably approximated by the behaviour of the 
corresponding infinite population system for a number of 
transitions (considered as a function of n) exponentially 
greater than that suggested by Vose's analysis. 

TV. Fitness Functions 
First of all. m-e briefly review the topic of efficient im- 

plementation in case of arbitrary finite fitness functions 
f : n - R' and for infinite populations. For ; E B and 
k = 1.. . . , q. one has 

By (3) we observe that efficient implementation depends. 
not only on the dimension of the involved states. but also 
on the type of fitness funct~on. In this regard, it 1s well 
Itnown that f can be expressed in terms of multivariate 
polynomials and this fact can be (naturally) used to 
characterize classes of functions for which we are able to 
perform efficient implementation in the sense that state 
transitions can be computed in time polynomial in I .  
Let, now. 

be a multivariate polynomial defined on [o. 11' and 
coincident with f on 0. Notice that since Pf is a 
polynomial of degree at  most one in each variable its 
global maximum is on elements in 0. 
Denote. for u = I . .  . . . q and a E A1. by ?,,[a] the product 
of zt,l), . z t , ~ ) ,  that is: 
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Polynomial (4) can be rewritten in the form 

where 

and bi. ,,(%) does not depend on the variables x2i.-1. x ~ k  
for every a E A and k = 1.. . . . q. Calculating the 
expectations. being ~ i .  ~ [ 0 0 ]  = 1 -CnER QX ~ [ a ]  for each 
k = 1, . . .  .q, me get 

by linearity of the mean and by independence. Moreover. 
since 

EWF) [xi; [Z]i!k [a]] 
Qli F [z] if z = a 

= ( 0  otherwise 

(a. z E -4). one has for I; = 1.. . . . q and z E B that 

E * ( ~ )  [xi. Is] Pf 1 = 1 [yk [z]?L [a]] EaCF) [bk .] 
a t 4  

= O A , F [ ; ] ~ L , - ( ~ ~ ) .  

Therefore. in case of infinrte populatrons Theorem 1 
implies that as n --- x the stochastic genetic system con- 
verges to an Infinite population detei minlstic system the 
states of such a determinlst~c system are 3q-component 
vectors 

in [O. lIiq. with CoER ~ i . , ~  < 1 (1 < k < q) and the 
dynamics is described. for z E B and k = 1.. . . , q. by 
the equations 

where 

Note that TJ~.  - (t) in Equation (6) represents the proba- 
brlity of having z as the k-th allele aftei t transitions. 

The state space of the iterative deterministic genetic 
system for rnfinite populations is a subset A(3q) C [O. 11'" 
of 3q-component vectors 2: such that CntB ~ i , , ~ ( t )  5 1 
(1 5 k 5 q). Moreover. by76) it 1s clear that. to be able 
to perform (state transition) efficient implementatron. 
the terms bi, 3 ( ~ ( t ) )  for all k = 1. . . . . q and s E B 
must be computrd In tlme polynomial in the chromosome 
length 1. ln such class of funct~ons theie are Important 
tvnes of fitness functions such as auadratic ones that 

d .  

a.re useful to model hard ontimization ~roblems: a more 
general class consists of the functions than can be 
expressed as sums of monomials (products) of at most 
O(1og I' ) variables, where c > 0 is constant. 

V. Analysis 
By equations (6) it follows that 

(t) 

- 1 , ( ( t ) )  - ( ( t ) ) ) ]  (7) 
o E  R - ( )  

for k = 1 . , q and z E B \\/e first, remark that the 
fitness 1s not a Lyapunov functlon for the asynchronous 
variant of the system as in the case of the univariate 
(infinite population) genetlc system introduced in [2]. 
[A] (by asynchronous me mean that the components of 
the state vector are updated one at  a time in a predefined 
order) in case of the blvariate (rnfinite population) 
system. me are only able to state necessary cond~t~ons 
such that this property holds In the other cases. it is 
quite srmple to find fitness functions and states ~ ( t )  for 
mh~ch state-updating In a slngle locus and for ;single 
allele produces a decrease of the fitness 

Theorem 3 If Z / L  - (t + 1) = ui. - (t) + AVI. - (t) (z E B) 
and uh . ( t + l )  = Z/L (t) for a E B - (2). then cond~t~ons 

imply 

where H S1(), HS()  are heavy-side functions defined by 

and 

Proof The result follo~vs by quite straightforward 
manipulations of A P f ( l ~ ( t ) )  and by inspection of the 
conditions on the bi.,,,.&,: polynomials implying that 
the fitness does not decrease. 
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Denote by ,%-Ai, = {x E (0.1)'" : Co,,zx,c, < 
1 for k = 1.. . . . q} the subset of the state space 
composed by the vectors with components each assumlng 
values in (0.1). A11 points in XI\{, are fixed points of 
System (6) as stated by the follo~ving lemma. 

Lemma 1. Tf x t Ni\?,. then it holds that 

Ay~,,=(t)l,(~)=, = 0, for each I; = 1.. . . .q and r E B. 

Proof It is straightforward by (7). 

Set XI, = (xi.01.x~ IO.ZI ,  1 1 )  (1 5 k 5 q). The next 
theorem states sufficient and necessary conditions in 
order that a point x t Yil  i, is an attractor of the System 
(6). 

Theorem 4 The polnt x E lYAi, IS an attractor of 
the System (6) if and only if for every k = 1.. . . , q ~t 
holds that xi, = 0 and 

n H S ( ~ L  ,oo (x) - b ~ ,  , (x)) = I 
n E R  

or XI,. # 0 and 

n HS(bx :(x) - bx,, (x)) = X A  z 

o E A - { z )  

for z E B, where H S()  is the heavy-side function defined 
by 

Proof First, we get the lineal approximation of the 
infinite population genetic system in the neighbourhood 
of the point x E L%A+,.  Then ive notlce that x IS 

an attractor if and only ~f the Jacobian matrix of 
the linearized system has eigenvalues mith modulus 
less than one. Since the Jacobian of the linearized 
system can be decomposed as the dlrect sum of three- 
order blocks. the result follows by using the Laplace's 
expansion and examining separately each of the cases 
XI, = (0.0.0). (0.0.1). (0.1.0). (1.0.0). 

VT. Neural Network 
By Theorem 4 we are able to design a discrete deter- 

ministic netmoi k m hose equilibr ium points, for arbitrary 
(positive) fitness. Include the attractors of System (6). 
This alm has been already obtained in [2]. [3]. [4] for a 
simpler univarlate genetic system whose attiactors have 
essentially been proved to be the equ~libr~um polnts of 
a discrete Hopfield s netmorlc with sequential updating 
and havlng as energy function the fitness In this context 
the equivalence seems to be less satisfactory in the sense 
that for some unstable equilibrium points x t ,% 44, 
mlth x~ = 0 (for some I; E (1. .q}). the behaviour 
of the associated discrete netivork cannot accordingly be 
denved by the result in Theorem 4 Hoivetter as far as me 
are interested in maximizing the fitness. it is reasonable 
to take as updatlng rule 5% hat locally maximizes the fit- 
ness Thus. we define the discrete deterministic network 
associated to the infinite population bivariate marginal 
distribution genetlc system having as states the points 
x E ?1121, and 5% lth sequentla1 updating equations 

~ i , . ~ ( t  + 1) = n H S(bi,,z(x) - b k ; ,  (x)) for r E B 

if it holds that 

for some z E A 1  and 

otherwise. where xi; E ((0: 0: 1): (0; 1: 0); (1; 0.0)) is the 
choice that locally maximizes the fitness in x(t)  with 
xk(t) = xi, (1 < k < q). The following theorem states 
that the fitness function is a L,yapunov function for 
the iterative discrete network; consequently. i e  are able 
to derive an approximation algorithm to maximize the 
fitness over NA3v 

Theorem 5: For every x(t)  E NAs, it holds that 

if x( t  + 1 )  is obtained by (8) and A Pf (x(t)) >- 0 
otherwise (x(t + 1 ) is computed by (9)). 

Proof The result folloivs by lnspectlon of the cases 
(XA ( t+l )  = O)A(XI. (t) = 0). (XI. ( t+ l )  = O)A(XA (t) Z 0). 
(XI, (t  + 1) # 0) A (XI, (t) = 0) and eventually (XI, (t + 1) # 
0) A (xx (t) # 0). 

VII. Application to the Ma.x-Cut Problem 
The topic of designing approximation algorithms 

based on infinite population genetlc models (mith sim- 
ulated crossover of one-bit genes) has been studied in 
[2]. [3]. [4] for hard problems. Tn summary. the available 
maln theoretical results about such models evidence 
that the fitness function becomes a Lyapunov function 
for asynchronous variants of the corresponding iterative 
dynamical systems. As a consequence of thls property. it 
is conceivable to design univariate marginal distribution 
genetic algorithms that can be used as approximation 
algorithms to solve combinatorial optimization problems. 
Other results connecting such genetic systems with 
Hopfield's Networks (well known local optimizers on 
which some approximation algorithms are based) can 
be found in [2]. [3]. The usual uay of using the infinite 
population systems to get local optimization of the 
fitness 1s to initialize with (slightly perturbed) equally 
likely marginal probability distributions for each allele 
(see also [2]. [3] and In particular [A]). ln the expenments. 
the synchronous valiants of the consideled systems have 
exhibited convergence and optimization properties very 
similar to those shown by the asynchronous systems. 
Follo~ving the guidelines of references [2]. [3], [4], [5]. 
System (6) has been implemented to solve (in the sense 
of an approx~mation algorithm) the Max-Cut problem. 
namely. that of partitioning the vertices of an arbitrary 
graph G In two other subsets 1'1 and i ' z  in such a way 
that the number d ( l ~ )  of edges mith one endpoint in 1/1 
and the other in 1; is maximized. IVe remind that the 
decision version of the Max-Cut problem 1s NP-complete 
[17]. In the genetic algorithm. we have considered the 
quadratic fitness f . 0 -+ N+ defined by 
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\\here the rneights w~,, are set w z  , = 1 ~f the input graph 
G has edge { a ,  3 )  and u, , = 0 other rnise f\/e i emar k that 
initial equally lrl<ely marginal probabihty drstiibutrons 
for each allele are fixed points. in case of undirected 
graphs, for the system based on recombrnation of se- 
quences of one-bit genes, hornever. in [2]. [3] it has been 
shonn that such points are not asymptoticallj stable. 
Conversely. for the system based on simulated crossover 
of sequences of two-bit genes, equally lilcely marglnal 
d~stributions are not fixed points. but they initialize 
trajectones that do not converge toxvaids states rn Q. 
Never theless. the Initial shght perturbations (wi, - (0) = 
f f ?. %here 2 = lo-' for k = I . .  . q  and 7 E B) 
consent to solve this problem In our experrments the 
genetrc algorithm wrth simulated crossover of trno-b~t 
genes exhibited con-cergence characteristics verj similar 
to those held by the univariate maiglnal drstiibutrons 
genetrc algorithm 

In Table 1/11 1 there are the experrmental results 
intended to compare the performance of the algorithm 
2BGSC based on srmulated crossover of sequences of 
two-bit eenes wrth the 2DNN based on the coires-oond- - 
ing discretized (neural netmorlt) system initialized mith 
random points and with sequential updating. In the table 
it is reported the mean size of the cuts found by the 
two algorithms for p-random graphs mith p = $ and 
p = f. In the table it is also reported the expected 
number of edges (row Edges) of the p-random graphs. 
The performance of the algorithm 2BGSC is slightly 
better (in average) than that of the 2DNN algorithm 
conversely to what happened in the univariate case [2] in 
which the infinite population genetic algorithm. in case 
of p-random graphs for p = $.. i. exhibited performance 
slightly worse than that of an Hopfield's netmorlt [Is]. 
By completeness. in Table VfT.1 we report the results 
of the simulations intended to compare the performance 
of the algorithm 2BGSC with the univariate l B G S C  
based on recombination of sequences of binary genes 
introduced in [2]. As 5ve have already noticed elsewhere. 
the algorithm 2BGSC consents to improve (in average) 
the performance of the algorithm 1BGSC.  Moreover. by 
giving a look at the mean sizes of the cuts obtained by 
choosing the best ones. for a same p-random graph. 
found by the two algorithms (rows 12BGSC). we 
note that the performance %vas dependent on specific 
generated p-random graphs t h ~ s  fact suggests. as a 
conjecture. that mutations in positions and/or lengths 
of genes could be helpful to obtain better results and to 
speed convergence. In t h ~ s  regard, even ~f our models 
are merely computational. such mutations could be 
explained as having the precise aim of adaptat~on to 
environment mod~fications that. in case of evolutronary 
processes. are very slow. 

VTTT. Coiiclusion 

In this paper. me have reviewed and analyzed a 
brvariate marginal distribution genetic model. Our aim 
is oriented to extend the analysis of univariate marginal 
distribution genetic algorithms for infinite populations 
to the bivariate frame~vorlc. The choice of the bivariate 
model is for sake of conciseness and simplicity both in the 
exposition and in technical details. By a first preliminary 
analysis. we conjecture that the results exhibited in 

T a h l e  V I I .  I :  S lean  size of t h e  c u t s  f o ~ ~ n d  hy t h e  a l g o r i t h m s  

2DNN 61.8 75.6 9 1 9  107.2 126.9 
lBGSC 62.2 76.4 92.6 108.2 127.3 

1 2BGSC 63.3 76.7 93.1 108.7 128.2 - 
7 12BGSC 63.7 7 7 .  94.1 109.5 128.8 

E(1grs 80 1 100.4 125. 0 147.9 175.0 

2DNN 96.2 118.9 145.0 175.5 201.0 
lBGSC 96.7 119.8 145.3 176.1 201.3 
2BGSC 97.2 120.6 146.6 177. 1 204.2 
l2BGSC 97.9 121.4 147.2 178.5 205.9 

Edg('s 1L0.3 175.8 215.3 258.8 306.3 

this paper can quite straightforwardly be translated into 
the multivariate framework. However. further research is 
reauired to better understand how to ~rovide  a suitable 
more general model for marginal distribution genetic 
algorithms (some more recent insigths are addressed in 
the Estimation of Distr ibution Algorithms literature and 
the related research lines. see [26]. [30] for an introduc- 
tion). \Ve are convinced that an important topic in this 
scenario is constituted by the possibility of extending 
the relation found by (infinite population) univariate 
marginal distribution genetic systems and discrete Hop- 
field's networks. Such extension is considered to be of 
particular relevance to answer to some crucial questions 
such as the meaningfulness of genes codification. how 
to improve performance and. in particular. the design 
of new models that could be more convenient to try 
to solve hard optimization problems (in this regard the 
reader is also refer red to the area of classic approximation 
algorithms with special attention to the Goemans and 
Williamson results [12]). 
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