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On the BMDGAs and Neural Nets

Marco Carpentieri

Abstract— We analyze a bivariate marginal
distribution genetic model in case of infinite
populations and provide relations between the
associated infinite population genetic system and the
neural networks. A lower bound on population size
is exhibited stating that the behaviour of the finite
population system. in case of sufficiently large sizes,
can be suitably approximated by the behaviour of
the corresponding infinite population system for a
number of transitions exponentially greater than that
suggested by Vose's analysis. The infinite population
system is analyzed by showing that. conversely to
what happens in the univariate case, the fitness is
not a Lyapunov function for its asynchronous variant.
The attractors (with binary components) of the
infinite population genetic system are characterized
as equilibrium points of a discrete (neural network)
systern that can be considered as a variant of a
Hopfield’s network; it is shown that the fitness is a
Lyapunov function for the variant of the discrete
Hopfield’s net. The genetic algorithm based on the
proposed infinite population system is experimentally
compared with the (neural) network algorithm for
the Max — Cut problem. Our main result can be
summarized by stating that the relation between
marginal distribution genetic systems and neural
nets is much more general than that already shown
elsewhere for the univariate models.

1. Introduction

Genetic algorithms are probabilistic search algorithms
inspired by mechanisms of natural selection and genetics,
introduced by John Holland in the 1970s. They have
received considerable attention because of their many
applications to several research fields such as optimiza-
tion, adaptive control and others [10], [15], [16], [19].

A classic way to describe the behaviour of genetic
algorithms is obtained by means of homogeneous Markov
chains [9], [11], [29] whose states encode populations
and are multi-sets of binary strings. General theoretical
results were introduced for infinite populations by Vose
[36], [37] who showed how to use them to perform
the qualitative analysis of the behavior of the finite
populations models. In particular, in [36], [37], a dy-
namical system model is introduced for which simulation
is computationally difficult. It is worth noting that
the original formalism presented by Vose was intended
to model situations in which recombination of genetic
material is obtained through the crossover of the chro-
mosomes of two mating parents selected with probability
in proportion to their fitness. Thus the intractability of
simulating amy general system (such as Vose’s) is due
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to the fact that it keeps track of every chromosome
[38]. To avoid exponential complexity one may consider
approximate models, or, alternatively, restrict the type
of fitness functions (see for example [31]). A different
approach consists in changing one’s mind about what
is being modeled, thus, representing some other related
genetic system. This last alternative is followed by
the present paper (along with restriction of the fitness
to some classes of polynomial functions) following the
guidelines of references [2], [3]; in such papers a model
has been proposed in which the recombination of the
genetic material is obtained by means of the bit-based
simulated crossover operator [33]. This rule, as well as
the gene pool recombination introduced by Miihlenbein
and Voight [35], [24] maintains an infinite population
in linkage equilibrium: the genotype frequencies are the
product of marginal frequencies. In this context, a fre-
quency vector with exponentially many components can
be reconstructed by the vectors of marginal frequencies
that in the univariate marginal distribution algorithms
2], [3], [27], [24], [35]. [38] are l—component vectors,
where throughout by [ we mean the chromosome length.
Other models based on the marginal frequencies are
presented in [1], [13], [20]. Related work can be also
found in [38] in which it is analyzed a recombination-
mutation-selection genetic algorithm that uses gene pool
recombination. In particular Wright et al. show that in
case of linear fitness functions there is a single stable
fixed point for their univariate marginal distribution
genetic algorithm. Moreover, readers interested in exact
mathematical analysis of simple genetic algorithms and
their use as an alternative approach to combinatorial
optimization are referred to [31].

In this paper, we consider the problem of extending
the analysis of univariate marginal distribution genetic
algorithms for infinite populations (UMDGAs) to the
bivariate case (BMDGAs). We review and analyze the
genetic model based on simulated crossover of fixed
sequences of two bit genes introduced in [5]. Such a
model represents an instance of the Random Heuristic
Search (as defined in chapter 3 of reference [37]) and can
be considered as an extension of the model presented
in [33], [35], [2]; the main characteristic of the system
that we shall consider is that the recombination of the
genetic material 1s obtained by performing a weighted
average of the alleles along each fixed two-bit locus and
using such statistics to produce offspring whose alleles in
distinct loci are independently generated. The model we
propose is more tightly connected to the classic Holland’s
framework with respect to the models that have been
presented in the literature following the more recent
development of marginal distribution genetic algorithms
{we mean for example the area of the Estimation of
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Distribution Algorithms [23], [26], [30], [39], [40]). In fact,
according to the Holland’s theory, the fittest individuals
chromosomes are formed by classic genetic algorithms
merging short definition length and small specificity
order allele schemata, whose fitness remains above the
average fitness of the populations generated by the
genetic cycles (Holland [10], [15], [16]). This central
result has introduced the concept of separability of the
fitness functions, with respect to short chromosomic
traits, that is recognized [8], [28], [32] as a basic property
required to justify the application of a (classic) genetic
algorithm. The main idea of the model we present is
that of proceeding in bottom-up fashion in such a way
to compute the (average) fitness associated to some of
the chromosome building-blocks (alleles) and translate
such information into statistics that are used to generate
new offspring. The way in which such statistics are
used i1s aimed at preserving positions of the alleles.
Thus, the reader can understand that the sense in which
our bivariate model is an extension of the univariate
marginal distribution genetic algorithms is different from
that proposed to solve problems that contain significant
dependencies and that cannot be classified as linear
or decomposable problems [30]. Note that the interest
in devising marginal distribution genetic models lies
not only in the fact that they consent efficient (state
transition) implementation for infinite populations. In-
deed, in case of univariate marginal distributions, they
have been used to construct approximation algorithms
to solve hard combinatorial problems for which error
bounds can be theoretically estimated. Moreover, the
stability analysis of such systems has evidenced an
interesting relation with neural networks (in particular
with Hopfield’s Networks [2], [3]).

We exhibit the following results about the genetic
system based on simulated crossover of fixed sequences
of two bit genes:

1) we provide an exponential lower bound on the con-
centration probability (viewed as function of the
population size 1) stating that for sufficiently large
population sizes the finite population stochastic
system can be considered as an approximation of
the infinite population deterministic system; the
result 1s interpreted stating that the behaviour of
the finite population system, in case of sufficiently
large sizes n, can be suitably approximated by the
behaviour of the corresponding infinite population
system for a number of transitions (considered as
a function of n) exponentially greater than that
suggested by Vose’s analysis in [37];

2) the infinite population system is analyzed by
showing that, conversely to what happens in the
univariate case [4], the fitness is not a Lyapunov
function for its asynchronous variant; the at-
tractors in {0, 1}% (I even) are characterized as
equilibrium points of a discrete (neural network)
system that can be considered as a variant of a
Hopfield’s network;

3) it is shown that the fitness is a Lyapunov function
for the discrete neural network system;

4) the genetic algorithm based on the proposed infi-
nite population system is experimentally compared
with the (neural) network algorithm for the Max-

Cut problem; the results show that the perfor-
mances are comparable being those obtained by
the neural network algorithm slightly worse.

II. The Model

We review the model [5] on which the genetic system
is based and introduce the technical formalism useful to
define states and dynamics. A population P of individ-
uals is represented by a multi-set of n € N [—length
binary strings (throughout the paper we suppose [ even)
from the set

QO = {01} = {w,...

Each population P is associated with its frequency vector
F = (F.,,...,F.,) specifying the proportion of the
strings in £ contained in P, where F,, = %f‘- and 7
is the number of occurrences of the string wi in P.
Let A, denote the set of the frequency vectors that
represent populations of n individuals. Each individual
is evaluated by his fitness that is measured by means
of a fitness function f : & — R?* that associates
a positive real value to each chromosome. Throughout
the paper, let A = {00,01,10,11} and B = A — {00}.
The strings in the populations represent chromosomes
and each chromosome is divided into a sequence of
genes that can assume four distinct forms or alleles. For
kE=1,...,5 and a = a) - a2 € A, consider functions

xkla] : @ — {0,1} defined by

Wl }.

b |~

la](w) = 1, if a1, a2 are in positions 2k — 1,2k in w;
Xklafw 0, otherwise.

In the rest of the paper we shall use notation

Ep[X] = 2 X{wi)pi

to mean the expectation of function X : € — R con-
sidered as a random variable along with the stochastic
vector P = (p1,... ,py1).

Starting from an initial population Fo, if at time
t the state of the (genetic) system is the population
P, represented by its frequency vector F, then the
population at time ¢ 4+ 1 is obtained as follows:

1) for every k=1,..., é and a € A compute

xela)(w) f(winq
Ex[xi[o]/] 2.

drrla] = Belfl | if( ) |

2) generate a new population P’ of n [—length binary
strings, denoted by

P =

{“’7‘17"' 7WT71}7

with probability ¢ r[a] of obtaining ai,a in
positions 2k — 1,2k independently from r; and k&
for 1<k<Lf{and1<i<n
Steps 1. and 2. describe the way in which recombination
of the genetic material is obtained: by performing a
weighted average of the alleles along each fixed two-bit
position and using such statistics to produce offspring
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whose alleles in distinct loci are independently generated.
The stochastic rule described in 2. is the bit-based
simulated crossover introduced in [33], [2] extended
to fixed sequences of two-bit genes. By definition of
the recombination process described in 2., if P is a
population at time ¢ and F its frequency vector, the
population at time £+ 1 is obtained by selecting n strings
with probability distribution

®F) = (BF),... . P(Fly,)

where the probability ®(F)..; of generating the string
Wy =Wy Wy is

o

B(F)., =

J ék,F[\’-b'jﬂkfl : Lu‘,;gzl,»].

k

ITI. Probability Concentration Results

The following theorem states a probability concentra-
tion result on the Markov chains describing the stochas-
tic genetic system in Section I1. The result of the theorem
allows to derive an iterative deterministic system with
states in [0, 1]77 that represents the behaviour of the infi-
nite population system. More particularly, for sufficiently
large population sizes n, we prove that (provided that
the current state of the systems is F) a transition takes
the finite population stochastic genetic system near the
next state of the infinite population deterministic genetic
system with probability close to one. The reader should
notice that this fact has been shown in greater generality
for any instance of the Random Heuristic Search [37];
however, in case of the considered instance, we are able to
provide an exponential lower bound on the concentration
probability (viewed as function of n) that is much better
than that exhibited in the more general case in [36],
[37]. Other results concerning this topic, that can be
considered as special cases, can be found in [2], [3], [4].

Theorem 1: Let €,8 € (0,1] and

M /6l
"o 2(€E4>(F)[f]> log<?>’

where M is the maximum value that the fitness function
can assume; if at time ¢ the system is in the state F, then
the state F/ at time £+ 1 is such that forall k =1, ... ,q
and a € B it results
|bn, 5 [a] = Oramla]] < € (1)

with probability at least 1 — 4.

Proof 1t is based on Hoeffding’s inequality (see [4] and
[6]).
To provide a comparison with Vose’s analysis [37], setting
(OHF[O]]*Q'F[]O] OI»F[]]] IS} ('bQ»F[OH?

gb‘i;F[lO]r qbq,F[ll])v

and assuming that the fitness is lower bounded by some
positive constant K > 0, we can state the following.
Theorem 2: Let €,6 € (0,1] and

M\ 61t
> | y -
n73l(€K) log<6>,

O =

where the fitness assumes values in [K, M]; if the system
is in state F.. at time 7 for 0 < 7 < £, then it holds that

t
P(/\lle’p,_—é@(FWIISe) > 1-6 (2
=1

Proof The guidelines of the proof can be found in [6]).

For example, the bound in Theorem 2 holds with K =1
for positive integer fitness functions that are widely used
in the applications. Moreover, note that the bound pro-
vided by Vose in [37] states that the probability that the
infinite population system is a suitable approximation
of the finite population system for ¢ state-transitions is
bounded by 1 — ni;,. In practice, the result of Theorem
2 can be interpreted by saying that the behaviour of the
finite population system, in case of sufficiently large sizes
n, can be suitably approximated by the behaviour of the
corresponding infinite population system for a number of
transitions {considered as a function of ) exponentially
greater than that suggested by Vose’s analysis.

1V. Fitness Functions

First of all, we briefly review the topic of efficient im-
plementation in case of arbitrary finite fitness functions
f:Q — R* and for infinite populations. For z € B and
k=1,...,q, one has

®(F)w; x[2)(wi) f (ws)
Bomxe[2If] ;z:l
Egm[f]

ST O(F)., fw)

q
> O xul2lwi)Fws) T énrwlws e -1 - wjow]

=1 K =1

o 2t ¢ : (3)
S Hws) TT 0w wlwson 1 - wjon]

i

k=1

By (3) we observe that efficient implementation depends,
not only on the dimension of the involved states, but also
on the type of fitness function. In this regard, it is well
known that f can be expressed in terms of multivariate
polynomials and this fact can be (naturally) used to
characterize classes of functions for which we are able to
perform efficient implementation in the sense that state
transitions can be computed in time polynomial in [.
Let, now,

Pflzi,...,;) = Z wyl-'-!ux(lw)"'-731(!”) (4)

¥i,--- 41 €{0,1}

(@D =1-a;, 2V =mifori=1,...,0)

be a multivariate polynomial defined on [0,1] and
coincident with f on 2. Notice that since Pf is a
polynomial of degree at most one in each variable its
global maximum is on elements in 2.

Denote, foru =1,... ,g and a € A, by &.[a] the product
of xg?113|7nglz), that is:
i’” [a’] - "L“(Zfllf) 1 ‘(2(1112) .
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Polynomial (4) can be rewritten in the form

Pf(x) = Y &lalbra(%)
acA
where
% = (£.[00],2.[01],2.[10], 2:[11], .., 24[00], 2,[01],
24[10]. 2,[11])

and by «(X) does not depend on the variables z2r—1, T2k
for every ¢ € A and & = 1,...,q. Calculating the
expectations, being ¢ ¢[00] =1-3_ ¢ ¢x r[a] for each
k=1,...,q, we get

Eg | Pf]

= 3" Eym)laxlal] Bur)[bx o]

ach
= %@kﬂa]bw (6,)

= ;(pm[a]m w(6) + S1r[00]b00(,)

= i(ﬁkm[a]bk;u(%)

' (1 ) ZB””) b ()

-y o lal(ben () — boon(8,)) + bl (5

by linearity of the mean and by independence. Moreover,
since

E@(F)[Xk[:/]:ik[a]] — { BJLF[:]
(a,z € A), one has for k=1,... ,q and z € B that

Eswy[xx[2]Pf] Z Epmy[Xk[2]12k [a]] Eo ) [br.o]
acA
Or,w[2]bk,- (Dp)-

if z=a
otherwise

Therefore, in case of infinite populations, Theorem 1
implies that as n — o the stochastic genetic system con-
verges to an infinite population deterministic system; the
states of such a deterministic system are 3g—component
vectors

(1,01, ¥1,10, 1,11, %2,01,¥2,10, ¥2,11, - Yg,01,

Wa,10, Pg,11)
in [0,1]*, with YwerWre <1 (1 <k < q) and the
dynamics is described, for z € B and k = ,q, by
the equations

T

Yt +1) = —wp(jf)(b;(t;)ﬂt_) (6)

where
() = (@roi(t) v n @), .
Vg 10(8), @g,11(2))-

Note that % .(¢) in Equation (6) represents the proba-
bility of having z as the k—th allele after ¢ transitions.

Pg.01(t),

The state space of the iterative deterministic genetic
system for infinite populations is a subset A(3¢) [0, 1]*7
of 3g—component vectors ¥ such that ZaeB Upa(t) <1
(1 < k < g). Moreover, by _(6 it is clear that, to be able
to perform (state tran51t10n) efficient 1rnplernentat10n,
the terms by .(1)(¢)) for all k = 1,... ., g and = € B
must be computed in time polynomial in the chromosome
length I. In such class of functions there are important
types of fitness functions such as quadratic ones that
are useful to model hard optimization problems; a more
general class consists of the functions than can be
expressed as sums of monomials (products) of at most
O(log °) variables, where ¢ > 0 is constant.

V. Analysis
By equations (6) it follows that

A (t)

= P (t+1)— 9. (t)

_ W, ”(t) — A — b %

a0) [(1 = 2= (£))(br, = (& (£)) — br,00 (¥2(2)))

— Z 14 (8 (br,a(2(2)) — br,00(10(1)))] (7
for k=1,...,q and z € B. We, first, remark that the

fitness is not a Lyapunov function for the asynchronous
variant of the system as in the case of the univariate
(infinite population) genetic system introduced in [2],
[4] (by asynchronous we mean that the components of
the state vector are updated one at a time in a predefined
order); in case of the bivariate (infinite population)
system, we are only able to state necessary conditions
such that this property holds. In the other cases, it is
quite simple to find fitness functions and states v (¢) for
which state-updating in a single locus and for a single
allele produces a decrease of the fitness.

Theorem 3: If g -(t+1) = wr - (£) +Avn,=(t) (z € B)
and Yo (t+1) = ¥r,«(t) for a € B—{z}, then conditions

I HS'®r:(w®) —bra(#)) = 1

acA—{z}
or
II (= HSGr:(@0) = bra(w®) = 1
acA—{=z}
imply
APf(u(t)) = PfRE+1))-PfHeE) = 0
where HS'(), HS() are heavy-side functions defined by
sor 1 #X>0
AS(X) = {0 if X < 0.
and
. 1 ifX >0
HS(X) = {0 if X < 0.

Proof The result follows by quite straightforward
manipulations of APf(w(t)) and by inspection of the
conditions on the bk,[,,b_k,,: polynomials implying that
the fitness does not decrease.
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Denote by NAs, = {x € {0.1}* : ¥ _para <
1 for K = 1,...,q} the subset of the state space
composed by the vectors with components each assuming
values in {0,1}. All points in NAj, are fixed points of
System (6) as stated by the following lemma.

Lemma 1: Tf x € NAsz,, then it holds that

A @lorx —
Proof Tt is straightforward by (7).
Set xi = (xr,01,T8,10,2x,11) {1 < k < g). The next

theorem states sufficient and necessary conditions in
order that a point x € N Ay, is an attractor of the System

(6).

Theorem 4: The point x € NAs, is an attractor of
the System (6) if and only if for every k = 1,... ,q it
holds that x, = 0 and

1] #Sbroo(x) —bra(x)) = 1
ac B
or xi # 0 and
[ HSGr-(x)—beo(x) =
acA—{z}

for z € B, where HS() is the heavy-side function defined
by

Tk,

1 X >0
HS(X) = {0 if X <0,

Proof First, we get the linear approximation of the
infinite population genetic system in the neighbourhood
of the point x € NAs,. Then we notice that x is
an attractor if and only if the Jacobian matrix of
the linearized system has eigenvalues with modulus
less than one. Since the Jacobian of the linearized
system can be decomposed as the direct sum of three-
order blocks, the result follows by using the Laplace’s
expansion and examining separately each of the cases

Xk = (O, O, O); (O, 0, 1); (0, 1~ 0); (1~ 0~ O)
VI. Neural Network

By Theorem 4 we are able to design a discrete deter-
ministic network whose equilibrium points, for arbitrary
(positive) fitness, include the attractors of System (6).
This aim has been already obtained in [2], [3], [4] for a
simpler univariate genetic system whose attractors have
essentially been proved to be the equilibrium points of
a discrete Hopfield’s network with sequential updating
and having as energy function the fitness. In this context
the equivalence seems to be less satisfactory in the sense
that for some unstable equilibrium points x € NAy,
with xx = 0 (for some k£ € {1,...,q}), the behaviour
of the associated discrete network cannot accordingly be
derived by the result in Theorem 4. However, as far as we
are interested in maximizing the fitness, it is reasonable
to take as updating rule what locally maximizes the fit-
ness. Thus, we define the discrete deterministic network
associated to the infinite population bivariate marginal
distribution genetic system having as states the points
x € NAs; and with sequential updating equations

o (t+1) = [ HS(br:(x)—bralx)) forzeB
acA—{z}
(8)

0, foreach k=1,... ,gand z € B.

if it holds that
[T HSC:-(x)—bra(x)) = 1

w€A—{z}
for some z € .1 and

xi(t+1) = xs 9)
otherwise, where x;, € {(0,0,1),(0,1,0),(1,0,0)} is the

choice that locally maximizes the fitness in x{¢) with
xx(t) = x. (1 < k < g). The following theorem states
that the fitness function is a Lyapunov function for
the iterative discrete network; consequently, we are able
to derive an approximation algorithm to maximize the
fitness over NAs,.

Theorem 5: For every x(f) € NAz, it holds that
APf(x(t)) = Pf(x{t+1))-Pfx() > 0

if x(t + 1) is obtained by (8) and APf(x(t)) > 0
otherwise (x(¢ + 1) is computed by (9)).

Proof The result follows by inspection of the cases
(s (1) = O)AGes (£) = 0), (xi(t+1) = O)A(xk(£) # 0),
(xx(t+1) # 0)A (x4 (t) = 0) and eventually (x(t+1) #
0) A (xk(t) # 0).

VII. Application to the Max-Cut Problem

The topic of designing approximation algorithms
based on infinite population genetic models (with sim-
ulated crossover of one-bit genes) has been studied in
(2], [3], [4] for hard problems. In summary, the available
main theoretical results about such models evidence
that the fitness function becomes a Lyapunov function
for asynchronous variants of the corresponding iterative
dynamical systems. As a consequence of this property, it
is conceivable to design univariate marginal distribution
genetic algorithms that can be used as approximation
algorithms to solve combinatorial optimization problems.
Other results connecting such genetic systems with
Hopfield’s Networks (well known local optimizers on
which some approximation algorithms are based) can
be found in [2], [3]. The usual way of using the infinite
population systems to get local optimization of the
fitness is to initialize with (slightly perturbed) equally
likely marginal probability distributions for each allele
(see also [2], [3] and in particular [4]). In the experiments,
the synchronous variants of the considered systems have
exhibited convergence and optimization properties very
similar to those shown by the asynchronous systems.
Following the guidelines of references [2], [3], [4], [5].
System (6) has been implemented to solve (in the sense
of an approximation algorithm) the Max-Cut problem,
namely, that of partitioning the vertices of an arbitrary
graph GG in two other subsets Vi and V5 in such a way
that the number w (V1) of edges with one endpoint in ¥}
and the other in V, is maximized. We remind that the
decision version of the Max-Cut problem is NP-Complete
[17]. In the genetic algorithm, we have considered the
quadratic fitness f :  — N defined by

H
> w1 — =),

ij=1

#)

Qf(zr,... . m) =
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where the weights w; ; are set w; ; = 1 if the input graph
G has edge {1, j} and w; ; = 0 otherwise. We remark that
initial equally likely marginal probability distributions
for each allele are fixed points, in case of undirected
graphs, for the system based on recombination of se-
quences of one-bit genes; however, in [2], [3] it has been
shown that such points are not asymptotically stable.
Conversely, for the system based on simulated crossover
of sequences of two-bit genes, equally likely marginal
distributions are not fixed points, but they initialize
trajectories that do not converge towards states in 2.
Nevertheless, the initial slight perturbations (.. (0) =
ii’y, where v ~ 1072, for k = 1,...q and = € B)
consent to solve this problem. In our experiments, the
genetic algorithm with simulated crossover of two-bit
genes exhibited convergence characteristics very similar
to those held by the univariate marginal distributions
genetic algorithm.

In Table VII.1 there are the experimental results
intended to compare the performance of the algorithm
2BGSC based on simulated crossover of sequences of
two-bit genes with the 2DINN based on the correspond-
ing discretized (neural network) system initialized with
random points and with sequential updating. In the table
it is reported the mean size of the cuts found by the
two algorithms for p—random graphs with p = % and
p = % In the table it is also reported the expected
number of edges (row Edges) of the p—random graphs.
The performance of the algorithm 2BGSC is slightly
better (in average) than that of the 2DINN algorithm
conversely to what happened in the univariate case [2] in
which the infinite population genetic algorithm, in case
of p—random graphs for p = %, %, exhibited performance
slightly worse than that of an Hopfield’s network [18].
By completeness, in Table V7.1 we report the results
of the simulations intended to compare the performance
of the algorithm 2BGSC with the univariate 1BGSC
based on recombination of sequences of binary genes
introduced in [2]. As we have already noticed elsewhere,
the algorithm 2BGSC consents to improve (in average)
the performance of the algorithm 1BGSC. Moreover, by
giving a look at the mean sizes of the cuts obtained by
choosing the best ones, for a same p—random graph,
found by the two algorithms (rows 12BGSC), we
note that the performance was dependent on specific
generated p—random graphs; this fact suggests, as a
conjecture, that mutations in positions and/or lengths
of genes could be helpful to obtain better results and to
speed convergence. In this regard, even if our models
are merely computational, such mutations could be
explained as having the precise aim of adaptation to
environment modifications that, in case of evolutionary
processes, are very slow.

VIII. Conclusion

In this paper, we have reviewed and analyzed a
bivariate marginal distribution genetic model. Our aim
is oriented to extend the analysis of univariate marginal
distribution genetic algorithms for infinite populations
to the bivariate framework. The choice of the bivariate
model is for sake of conciseness and simplicity both in the
exposition and in technical details. By a first preliminary
analysis, we conjecture that the results exhibited in

Table VI1.1: Mean size of the cuts found by the algorithms

i 34 38 42 46 50
2DNN 61,8 75,6 91,9 107.2 126.9
1BGSC 62,2 76,4 92.6 108,2 127.3

. 2BGSC 633 76,7 93,1 1087 128,2

7 12BGSC 63,7 77,5 94,1 109,5 128.8
Fdges 80,1  100.4 123.0 147.9 1750
2DNN 96,2 118,9 1450 1755 201,0
1BGSC 96,7 119.8 145.3 176,1 201,3

1 2BGSC 97,2 1206 146,6 1771 2042
12BGSC  97.9  121,4 147,2 178.5 205.9
Edgoes 140.3 175.8 2153 258,8 306,3

this paper can quite straightforwardly be translated into
the multivariate framework. However, further research is
required to better understand how to provide a suitable
more general model for marginal distribution genetic
algorithms (some more recent insigths are addressed in
the Estimation of Distribution Algorithms literature and
the related research lines, see [26], [30] for an introduc-
tion). We are convinced that an important topic in this
scenario is constituted by the possibility of extending
the relation found by (infinite population) univariate
marginal distribution genetic systems and discrete Hop-
field’s networks. Such extension is considered to be of
particular relevance to answer to some crucial questions
such as the meaningfulness of genes codification, how
to improve performance and, in particular, the design
of new models that could be more convenient to try
to solve hard optimization problems (in this regard the
reader is also referred to the area of classic approximation
algorithms with special attention to the Goemans and
Williamson results [12]).

Acknowledgment

This paper is memory of my father Mario Carpentieri.

References

[1] S. Baluja and R. Caruana, Removing the Genetics from
the Standard Genetic Algorithms, Proceedings of the
Twelfth International Conference on Machine Learning,
pp. 38—46, Morgan Kaulman, San Trancisco, Calilornia.

[2] A. Berioni, P. Campadelli, M. Carpentieri, G. Grossi,
A Genetic Model and the Hopfield Networks, lcann96:
International Conference on Artificial Neural Networks,
[ectures Notes in Computer Science, pp. 463 — 468,
Springer-Verlag, Berlin, Germany, 1996.

[3] A. Berioni, P. Campadelli, M. Carpentieri, G. Grossi,
Analysis of a Genetic Model, ICGA97: Proceedings
of the Seventh International Conlerence on Genetic
Algorithms, pp. 121 — 126, Morgan-Kaufmann, San Ma-
teo, California, 1997, (also presented at Nips96: Neural
Informadtion Processing Systems Workshop, Snowrnass,
Colorado, Decetmber, 1996).

|4] A. Bertoni, P. Campadelli, M. Carpentieri, GG. Grossi, A
Genetic Model: Analysis and Application to MAXSAT,
Fvolutionary Computation, pp. 291 — 309, Vol. 8, n.
3, Massachusctts Institute of Technology, Mit Press,

Cambridge, MA, 2000.

154



Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

5]

[6]

[10]

[t

[12]

[13]

[14]

[15]
[16]

[17]

[18]

119]

[20]

[21]

[22]

[23]

[24]

M. Carpentieri, A Bivariate Marginal Distribution Ge-
netic Model, CRC2006: 2006 TEEE Congress on Fvo-
lutionary Computation, pp. 1016 — 1022, Vancouver,
Canada, 2006.

M. Carpentieri, A Genetic System Based on Crossover
of Two-Bit Genes, Theoretical Computer Science, Vol.
367, n. 3, pp. 324 — 335, 2006 (available online at
www.sciencedirect.com).

S. A. Cook, The Complexity of Theoremn Proving
Procedures, Proceedings of the Third Symposium of
the ACM on the Theory of Computing, pp. 151 — 138,
ACM Press, New York, NY, 1971.

Y. Davidor Epistasis Variance: A Viewpoint on GA-
Hardness, Foundalions ol Genetic Algorithms, G. J. E.
Rawlings Editor, pp. 23 — 35, San Mateo, CA: Morgan
Kaufmann, 1991.

A. E. Eiben, F. H. .. Aarts, K. M. van Hee, Global
Convergence ol Genetie Algorithins: a Markov Chain
Analysis, Parallel Problem Solving from Nature, pp.
4 — 12, H. P. Schwefel and R. Mdanner Editors, Berlin
and Heideberg: Springer, Berlin, 1991.

D. E. Goldberg, Genetic Algorithms in Search, Op-
timization and Machine Learning, Addison-Wesley,
Reading, M A, 1989.

D. E. Goldberg, P. Segrest, Finite Markov Chain Analy-
sis of Genetic Algorithms, Proceedings of the Second In-
ternational Conference on Genetic Algorithms and their
Applications, pp. 1 =8, J. Grelenstette Editor, Lawrence
Erlbaum Associates, Cambridge, Massachusctts, 1987,
M. X. Goemans, D. P. Williamson, Improved Approxi-
mation Algorithms for Maximum Cut and Satisfiability
Problems Using Semidefinite Programming, Journal ol
the Association for Computing Machinery, Vol. 42, n.
6, 1995.

G. R. Harik, F. G. Lobo, D. E. Goldberg, The Compact
Genetic Algorithm, Technical Report 97006, Illinois
Genetic Algorithm laboratory (illiGAL), University of
Ilinois, Urbana lllinois, 1997.

J. Hastad,Some Optimal Inapproximability Results,
Proceedings of the Twenty-Ninth ACM Sympaosium on
the Theory of Computation, pp. 1 — 10, ACM Press,
New York, NY, 1997.

J. H. Holland, Induction, Processes of Inference, Learn-
ing and Discovery, MIT Press, Cambridge, 1989.

J. H. Holland, Adaptation in Natural and Artificial
Systems, MIT Press, Cambridge, 1992.

J. E. Hoperoft and J. D. Ullman, Introduction to Au-
tomata Theory, Languages and Computation, Addison-
Wesley, 1979.

J. J. Hopfield, Neural Networks and Physical Systems
with Emergent Collective Computational Abilities, Pro-
ceedings of the National Academy ol Sciences, pp.
2554 — 2558, 1982.

J. R. Koza, Genetic Programming, MIT Press, Cam-
bridge, M A, 1992.

P. Larranaga, J. A. Lozano, Estimation of Distribution
Algorithms: a New Tool [or Evolutionary Optimization,
Kluwer Academic Publishers, Boston, 2001.

S. Lipschutz, Theory and Problems ol Lincar Algebra,
Mc Graw-Jill Books Company, 1968.

K. Marton, A Concentration-of-Measure Inequality for
Contracting Markov Chains, Geometric and TPunctional
Analysis, Vol. 6, pp. 556 — 371, Birkhuscr, Bascl, 1996.
A. Mendiburu, J. A, Lozano, J. Migucl-Alonso, Par-
allel Tmplementation of EIDAs Based on Probabilistic
Graphical Models, F EFE F Transactions on Evolutionary
Computation, Vol. 9, n. 4, 2003.

H. Mihlenbein, H. M. Voight, Gene Pool Recombina-
tion in Genetic Algorithms, Proceedings of the Meta-

155

(28]

29]

[30]

[31]

[32]

[33]

[34]

[35]

heuristics International Conference, I. Osman and J.
Kelly Fditors, Kluwer, Boston, Massachusetts, 1996.
H. Miihlenbein, The Equations for the Response o
Selection and its Use lor Prediction, Evolutionary Com-
putation, Vol. 5 (3), pp. 306 — 346, 1998.

H. Mihlenbein, R. Héns, The Fstimation of Distribu-
tions and the Minimum Relative FEntropy Principle,
Evolutionary Computation, Vol. 13, n. 1, pp. 1 — 27,
2005.

H. Mihlenbein, T. Mahnig, Evolutionary Algorithims:
from Recombination to Search Distributions, Theoreti-
cal Aspects of Fivolutionary Computation, pp. 137—176,
L. Kallel, B. Naudts and A. Rogers Editors, Springer-
Verlag, 2000.

B. Naudts and L. Kallel A Comparison of Predictive
Measures of Problem Difficulty in FEvolutionary Algo-
rithms, IEEFR Transactions on Fvolutionary Computa-
tion, Vol. 4 (1), pp. 1 — 15, 2000.

A. Nix and M. D. Vosc, Modeling Genetic Algorithms
whit Markov Chains, Annals of Mathcmatics and Arti-
ficial Intelligence, Vol. 5, pp. 79 — 83, 1992.

M. Pelikan, H. Miihlenbein, The Bivariate Marginal
Distribution Genetic Algorithm, Advances in Solt
Computing - Engincering Design and manufacturing,
Springer-Verlag, London, pp. 521 — 535, 1999.

Y. Rabynovich, A. Wigderson, An Analysis of a Simple
Genetic Algorithm, Proceedings of the Fourth Inter-
national Conlerence on Genetic Algorithins, pp. 215 —
221, Rick Belew and Lashon Booker Editors, Morgan
Kauliman, San Mateo, CA, 1991.

S. Rochet, Epistasis in Genetic Algorithms Revisited,
Information Sciences, Vol. 102, pp. 133 — 155, 1997.
G. Syswerda, Simulated Crossover in Genetic Algo-
rithims, Proceedings of the Sccond Workshop of Toun-
dations of Genetic Algorithms, D. Whitley Editor, pp.
239 — 255, Morgan Kaufmann, San Mateo, California,
1993.

V. Vapnik, The Nature of Statistical Learning Theory,
Springer Verlag, New York, 19935.

H. Voight, Miihlenbein, Gene Pool Recombination and
the Utilization of Covariances for the Breeder Genetic
Algorithm, Proceedings of the Second ITEFEFE Interna-
tional Conlerence on Evolutionary Computation, pp.
172 — 177, 7. Michalewitch Editor, IEEFE Press, New
York, 1995.

M. D. Vose, Modeling Simple Genetic Algorithms,
Fvolutionary Computation, Vol. 3, 453 — 472, 1996.
M. D. Vose, The Simple Genetic Algorithim: Theory and
Toundations, MIT Press, Cambridge, M A, 1999.

J. H. Rowe, R. Poli, C. R. Stephens, A Fixed Point
Analysis of a Gene Pool G A with Mutation, Proceedings
of GECCO, pp. 642 — 649, Morgan-Kaufmann, 2002.
Q. Zhang, On the Convergence of a Class ol Estimation
of Distribution Algorithms, IEEE Transactions on
Fvolutionary Computation, Vol. 8 n. 2, 2004.

Q. Zhang, On Stability of Fixed Points of Limit Models
of Univariate marginal Distribution Algorithm and Fac-
torized Distribution Algorithm,  EEFE Transactions on
Evolutionary Computation, Vol. 8, n. 1, 2004.



