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Abstract— In this paper, we show that our earlier presented
immune response inspired algorithmic framework [1], [3] for
spatial-temporal target detection applications using CNN tech-
nology [9], [17], [10] can be implemented on the latest CNN-UM
chip (Ace16k) [16] and Bi-i system [15]. The implementation
of the algorithm is real-time and able to detect novelty events
in image flows reliably, running 10000 templates/s with video-
frame (25 frame/s) speed and on image size of 128x128. Besides
that some results of the implementation of this AIS model and
its application for natural image flows are shown, the realized
adaptation and mutation methods are also introduced.

I. INTRODUCTION

Every day it is worth wondering over the beauties of Nature,
life and its biological processes, came to that the complexity
of only one cell. We can wonder and admire, however we will
never be able to understand it fully. We often take courage,
with our humbleness is on the small side, to copy or horn in
its processes. The alibi of Medicine is simple: the protection
of human life. An engineer can offer his knowledge to the
doctor, and give better instruments to him or find ideas from
studying medicine and apply them to provide more effective
solutions of engineering problems. Artificial Immune Systems
is a growing research area where engineers would like to get
ideas while studying the processes of our immune system.

Artificial Immune Systems (AIS) mimic the human immune
system that has refined capabilities and methodologies, to
build efficient algorithms that solve engineering problems.
Moreover, our immune system possesses important properties,
such as diversity, noise and fault tolerance, learning and
memory and self-organization, which give it an advantage
compared to other standard methods [11], [8], [12].

The cell-level interaction of immune system is based on
identification and recognition of 3D molecule patterns. During
our research the object we proposed is a creation of a model,
which, similarly to the 3D spatial pattern detection of the
immune system, is able to detect and recognize dynamic
objects in 2D image flows. We intended to design topograph-
ical algorithms and their experimental realization where huge
number of target objects are monitored in real time to detect
previously unknown events. So our goal was spatial-temporal
novelty detection.

Novelty detection is the identification of new or unknown
data or signal that a machine learning system is not aware of
during training. Novelty detection is one of the fundamental

requirements of a good classification or identification system
since sometimes the test data contains information about
objects that were not known at the time of training the model.

Novelty detection can be a challenge in several areas. Nowa-
days, one of these areas is robotics, where novelty detection -
the differentiation of the general sensor input and the sensory
pattern not yet experienced - provides useful knowledge to
mobile robots in a dynamically changing environment [18].

Basically, there are two approaches of novelty detection:
statistical based and neural network based approaches [13],
[14].

Statistical approaches are mostly based on modeling data
based on its statistical properties and using this information
to estimate whether a test samples comes from the same
distribution or not [13].

Neural networks have been widely used for novelty detec-
tion. Compared to statistical methods, some issues for novelty
detection are more critical to neural networks such as their
ability to generalize, computational expense while training and
further expense when they need to be retrained [14].

To compare our work to the research areas of novelty
detection, we can observe that it is rather statistical approach,
because it has similar properties as statistical approaches have:
easily re-trainable and the evaluation of the algorithm is based
on the sub-patterns of the images.

Sensor-close computation can be crucial from the point of
view of utilization efficiency, since it could help solving some
of the general problems of traditional systems, namely the
reduction of the bandwidth of image transfer from the sensor to
the computational unit and the time needed to process images
in real-time.

Computer architectures based on the cellular nonlinear/ne-

ural network (CNN: Cellular nonlinear/neural networks are
regular, single or multi-layer, parallel processing structures
with analog nonlinear dynamic units (cells). The state value
of the individual processors is continuous in time and their
connectivity is local in space.) paradigm and its 128 × 128
sized VLSI implementations offer adequate solution for high-
speed pattern matching. In our algorithms designed for CNN
Universal Machine (CNN-UM: A cellular wave computer ar-
chitecture that includes CNN dynamics as its main instruction.
The CNN-UM makes it possible to efficiently combine analog
array operations with local logic.) wave computers we used
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already published template classes (Template: The program
of CNNs is completely determined by the pattern of the local
interactions, the so-called template). It was an important aspect
of the chosen templates being able to be executed reliably on
available CNN-UM hardware systems. In the course of the
implementation of our analogical CNN algorithms we intended
to raise efficiency, using both CNN and conventional digital
solutions and implemented the most suitable algorithmic steps
on the appropriate machine.

The organization of this paper is the following. First we
present the algorithm based on our earlier work to make
this paper more understandable. Section 3 introduces the
adaptation and mutation methods. Section 4 descusses the
main foundational aspects of the presented system. In Section
5, we show some Ace16k experiments. Conclusions can be
found in Section 6.

II. ALGORITHM FRAMEWORK

Although the details of our algorithm and its subroutines can
be found in [1], [4], [5], we shortly summarize our framework
to the reader following the layered approach which is often
used for designing artificial immune systems [6], [8]. The basis
of every system is the application domain. For this domain,
the representation of the components of the system has to be
considered. Having a suitable representation, the interactions
of the elements of the system have to be quantified by one
or more affinity measures. Usually Hamming or Euclidean
distances is chosen, but it is dependent upon the representation.
The next layer represents the processes or algorithms and
subroutines to govern the dynamics of the system.

A. Representation

Our model defines the antigens and T-lymphocytes as two
data items with different characteristics and goals. The anti-
gens can be represented by n×n sized binary (black and white)
matrixes. Colors can be coded with 1 (black) and -1 (white)
numbers. Each antigen is usually a 3×3 or 5×5 subpattern of
a binary picture which is extracted from the input image flow
by a special feature extraction method [2]. These patterns can
be recognized by our T-lymphocytes, called match-templates
[19]. They are usually 3 × 3 or 5 × 5 matrixes (On Ace16k
chip we could use only 3× 3 sized templates.) and contain 1,
-1 and 0 numbers.

B. Affinity measurement

In our model the S shape-space has 9 or 25 dimensions,
because the sub-pattern matrixes can be represented by 25 or
9 long binary vectors and the templates correspond to 25 or
9 long vectors (coordinates can be -1, 1, or 0). The distance
measure between an antigen (Ag = 〈Ag1, Ag2, ...AgL〉) and a
template T = 〈T1, T2, ...TL〉 is

D =
L∑

i=1

δi, where δi

{
0, if Ti = Agi or Ti = 0,
1, if Ti �= Agi

(1)

Our match template class does the recognition if and only if the
D distance is 0. Contrary to common AIS, where the molecules

usually are represented by similar vectors, the sub-patterns
and template vectors generally differ in our model. There are
“don’t care” elements in the templates, whose positions are
fixed within their vectors. Therefore, we could not give a
definition of affinity as other AISs have. If a match-template
has d “don’t care” elements, it can detect 2d different sub-
patterns. The more “don’t care” elements it has, the more
different sub-patterns are, which are detected. Therefore, the
affinity of a template can be characterized by the number
of the “don’t care” elements. This affinity is called template
affinity α. This affinity has a similar effect to the usual
affinity or cross-reactivity threshold in AIS. A sub-pattern
can be matched successfully by 2L =

∑L
α=0

(
L
α

)
different

match-templates, where α is the affinity, defined formerly. The
maximum number of sub-patterns that can be recognized by
a template set is

∑
2αi , where the αi is the template affinity

of ith template of the template set.

C. Algorithm and its subroutines

The immune system endeavors to solve a target detection
problem where the objects to be detected are not predeter-
mined. These objects can be numerous. The system has to react
as quickly as possible to distinguish between non-pathogen
and pathogen objects to protect the body from the pathogens.

The algorithm has two parts – initialization and recognition
which sequentially follow each other. In the course of initial-
ization, a “non-dangerous” template set (T cells) is created.
This template set contains templates which are not able to
recognize the initial objects – the non-dangerous objects. This
process is called negative selection. The output of the negative
selection – templates – performs the recognition in the second
part. The randomly chosen templates (lymphocytes in the bone
marrow) are tested (in the thymus) against a pattern flow which
is extracted (by the antigen presenting cells) from the initial
2D image flow. The feature extractor module converts the
gray-scale input flow to binary. Those templates, which do not
match any of the patterns, are selected as the “non-dangerous”
ones.

Initial objects in
2D  flow pictures

Template
runner

Random Initialization
of the Templates

feature-
extraction

feature-
extraction

T emplate Set

Sub-flow,
5x5 patterns Initialization,

familiarization

Input: objects in
2D  flow pictures

Templates + properties

Sub-flow,
5x5 patterns

Recognition,
detection of

unfamiliar objects

Template
runner

Detection message

Mutation and
division

Fig. 1. Target detection CNN algorithm [1]

In the recognition phase, every member of the selected
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template-set tests the actual pattern extracted from the input
image flow of the recognition part, and if it recognizes the
unfamiliar pattern then a detection message is generated.
These templates are called prosperous and get higher priority,
and thus have more opportunities to recognize patterns. The
mutation and division module operates on the templates and its
sequence to improve the effectiveness of the algorithm. More
details can be found in the next section.

III. MUTATION SUBROUTINES

Emphasizing the significance of the mutation of the immune
system [7] we would like to mention three motivations why it
was applied in our implementation.

Increased affinity: Increased affinity will increase the chance
of binding with the antigen, and therefore increase the effi-
ciency of the attack by the immune cells. If a pathogen is
associated with multiple patterns it is very well possible that
a T-Cell that recognizes one of these shades does not recognize
the other one.

Memory: Some of the most successful immune cells will
mutate into long lived memory cells. This effect serves mainly
to increase the speed of the immune response for latter
invasions of the same pathogen. For this reason, in our model
the T-Cells have to be equipped with some sort of activity
flag showing how effective they have been in recognizing
pathogenic patterns.

Set Completion: Due to the great number of different
immune cells, it is hardly ever possible to cover the whole
space with the actual immune cell set. Having some form of
rotation in non-recognizing T-Cells by mimicking cell death
and the spawning of new randomly created T-Cells will assure
set completion over a larger span of time.

A. Implementation

In the next part of this section two methods of the imple-
mentation mutation are described.

Affinity Maturation: When a template is successful in the
recognition of a pattern, there is a certain chance that it will
generate a mutation. Mutation candidates are generated as
follows: If a template is general (i.e., has multiple zeros) one of
the zeros of the template will be mutated into either a +1 or a
-1, making the mutation more specific. If it is already specific
(d < 2), the mutation will just be random. The generated
mutation candidate is tested on the input antigen to see whether
it is more successful in recognition than the original version.
The success of the template is determined by the number of
matches found in the antigen. If the mutation candidate is
found to be more successful than the original, it is tested to
see whether it is triggering a response to the self set. In case
the mutation is accepted, the original will be replaced. In case
a test on the mutation candidate fails, the mutation will be
rejected, and the candidate is removed (cell death). Since we
want the system to be running in real time it is not feasible
to run the whole self set each time we want to perform a
mutation. Therefore this test is spread out over time. After
every input image the mutation candidates will be tested on

one of the images from the self set. Affinity maturation realizes
increased detection efficiency, and makes the system more
suitable for implementing pathogen recognition. The whole
process of mutation for successful templates is shown as a
flow chart in Fig. 2 and Fig. 3.

Set Completion: The total number of patterns recognized
by the entire template set is kept in a variable. When this
value drops below a threshold related to the total number of
possible patterns, new random templates will be spawned. Of
course, these templates are tested against the self set before
being allowed into the pool.

Fig. 2. Flow chart of the realized mutation procedure for affinity maturation.
It shows the actual mutation procedure block.

The need for having mutation in the natural immune system
different from the need for it in our CNN model. The possible
goals for mutation are concluded to be increasing efficiency,
maintaining set completion, realizing memory, and creating
specific pathogen recognition.

158

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



Fig. 3. Flow chart of the realized mutation procedure for affinity maturation.
It shows the details of the self recognition test for mutation candidates.

IV. FOUNDATIONAL ASPECTS

Our system was designed to detect and recognize dynamic
objects in 2D image flows in real time. Analyzing this solution
basically there are two main aspects of this system. The
difference is not only hardware and software, but they are
theoretically different areas. As it is described in section 2 and
3, the algorithm basically follows the design steps of artificial
immune systems, which provide several useful features. The
algorithm was implemented on CNN-UM architecture, where
well designed image processing algorithms can be executed
with high speed. Let us itemize the issues and properties of
our framework from both AIS and CNN aspects.

A. AIS issues

• The modules of the algorithm are inspired by the pro-
cesses of the immune system. E.g. production of lym-
phocytes in the bone marrow, affinity maturation during
mutation or negative selection in thymus.

• Significances of the mutation are increased affinity, mem-
ory and set completion as described above.

• The representation can be given by using adequate math-
ematical description.

• Its affinity measurement can be described in general AIS
form, but some properties are different as it is discussed
in section 2.

B. CNN issues

• The algorithm is well suited to run on CNN-UM ar-
chitecture. The kernel of the algorithm - which has the
biggest computational cost - is designed for effective
evaluation. The combination of the parallel processing
and fast execution result in real time running.

• The chosen match template class can be run reliably on
Ace16k type chips which are available on the market.

• The implementation of the algorithm exploits the archi-
tecture advantages of Bi-i systems.

V. ACE16K EXPERIMENTS

A. Bi-i (Bio-inspired) Architecture

The Bi-i architecture [15] is built on Ace16k CNN type and
Texas DSP type microprocessors. This system is standalone
and has a communication processor which is able to exchange
information over a 100 Mbit/sec network using TCP/IP pro-
tocol. In between different processing stages the algorithmic
framework of the Bi-i contains several automatic control and
feedback mechanisms. There is a proper selection of the visual
input of a low resolution CNN (Ace16k sensor-processor) and
a high resolution CMOS sensor. The algorithm can acquire
128× 128 CNN size images from the high resolution CMOS
sensor cut by given positions. Besides using the own optical
sensor of the CNN chip, an algorithm can navigate in a
1280 × 1024 high resolution projection of the enviroment at
a processing rate of a few thousand frames/sec. The most
important attributes of this system are the following: Bio-
inspired sensor-computer, fault tolerant, high speed, standalone
system [15]. The key component reaching its high performance
- the ability of capturing and processing 10000 frames of
128 × 128 sized images in a second - is the CNN-UM type
array processor chip (Ace16k).

B. Experiments

In this section, we describe two experiments, which were
presented on Bi-i system and implemented on ACE16k chip.
The inputs were real images transferred from the optical
interface of the chip. The feature extraction module and the
algorithmic template core were implemented on the chip.
The evaluation of results, template storage, mutation and
administration of their different properties were performed on
a Texas digital signal processor. This combination gave better
performance with real-time processing.

The first experiment shows dynamic adaptation of the
system to the environment. In the rows, from left to right,
the order of the images are the following. The first image is
the gray-scale input. Its binary converted version is the second
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image. You can see the detection points of all the templates in
the third image. The last image is the combination of the input
and the detection points, where the detection points belong to
a template whose number of detection points is higher than
a value. From up to down the following can be observed:
at the beginning, the system has several detection points,
but during learning, the number of detection points decrease.
Once objective is covered, the template set was enriched with
new templates by the mutation routines. New detection points
show that the input has changed again while the covering was
removed (Fig. 4).

Fig. 4. The system’s dynamic adaptation to the environment. In the rows,
from left to right, the order of the images are the following. The first image
is the gray-scale input. Its binary converted version is the second image. You
can see the detection points of all the templates in the third image. The last
image is the combination of the input and detection points, where the detection
points belong to a template whose number of detection points is higher than
a given number. From up to down the number of frame indexes are 1, 23, 28,
64 in time.

In the second experiment, we show that the implemented
system with particular parameters can be appropriate for object
recognition and border estimation. The relation between the
images is similar as in Fig. 4. From up to down the following
can be observed: the first image shows that the system is
already adapted to the environment, there is no detection. In
the second and third row, two results of an image sequence
can be seen, where a palm in front of the camera shows the
detection points, mainly on the fingers and upper part of the
palm are detected (Fig. 5).

The CNN-UM chip (Ace16k) implementation of our algo-
rithm is able to detect novelty events in image flows reliably,
running 10000 templates/s with video-frame (25 frame/s)
speed and on image size of 128 × 128.

VI. CONCLUSION

Nature has developed a powerful 3D pattern recognizer
defense system. Our model was inspired by this, and the results

Fig. 5. This figure shows that the implemented system with particular
parameters can be appropriate for object recognition and contour estimation.
The relation between the images is similar as in Fig. 4. From up to down the
number of the frames are 18, 21, 30 in time.

show that it is efficiently usable on 2D patterns (pictures).
CNN’s spatio-temporal dynamics with fast template process-
ing is an effective tool for modelling the spatio-temporal
dynamics of the immune system. The immune system provides
a special class of algorithms, covers the target space, is able
to learn and has memory. The proposed strategy has been
successfully applied in a sample texture analyzer application
and gave promising results.
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