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Abstract— Recently, a local-search heuristic algorithm called
Extremal Optimization (EO) has been proposed and successfully
applied in some NP-hard combinatorial optimization problems.
This paper presents an investigation on the fundamentals of EO
with its applications in discrete and numerical optimization
problems. The EO was originally developed from the fundamental
of statistic physics. However, in this study we also explore the
mechanism of EO from all three aspects: statistical physics,
biological evolution or co-evolution and ecosystem. Furthermore,
we introduce our contributions to the applications of EO in solving
traveling salesman problem (TSP) and production scheduling, and
multi-objective optimization problems with novel perspective in
discrete and continuous search spaces, respectively. The
simulation results demonstrate the competitive performance with
EO optimization solutions due to its extremal dynamics
mechanism.

Index Terms— Extremal optimization, Self-organized criticality,
Multiobjective optimization, Traveling salesman problem,
Production scheduling.

I. INTRODUCTION

HE studies on NP-hard optimization problems have been a
challenge subject in optimization community. In addition to

traditional operations research, the modern heuristics [1] have
been attractive in fundamental research and real applications.
The approaches to evolutionary algorithm (EA) [2], artificial
life [3], simulated annealing (SA) [4] and Tabu search [5] et al.
are developed from the natures of biological evolution,
statistical physics and artificial intelligence et al. In recent
years, a novel general-purpose local search optimization
approach, so-called “Extremal Optimization (EO)” has been
proposed by Boettcher and Percus [6, 32, 34, 35] based on the
fundamentals of statistical physics and self-organized criticality
(SOC) [8]. In contrast to SA which is inspired by equilibrium
statistical physics, EO is based on Bak-Sneppen (BS) model [7]
of biological evolution which simulates far-from equilibrium
dynamics in statistical physics. The BS model is one of the
models that show the nature of SOC [8, 33, 37, 40]. The SOC
means that regardless of the initial state, the system always tunes
itself to a critical point having a power-law behavior without
any tuning control parameter. In BS model, species has an
associated fitness value between 0 and 1 representing a time
scale at which the species will mutate to a different species or
become extinct. The species with higher fitness has more chance
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of surviving. Species in this model is located on the sites of a
lattice. Each species is assigned a fitness value randomly with
uniform distribution. At each update step, the worst adapted
species is always forced to mutate. The change in the fitness of
the worst adapted species will cause the alteration of the fitness
landscape of its neighbors. This means that the fitness values of
the species around the worst one will also be changed randomly,
even if they are well adapted. After a number of iterations, the
system evolves to a highly correlated state known as SOC. In
that state, almost all species have fitness values above a certain
threshold. In the SOC state, a little change of one species will
result in co-evolutionary chain reactions called “avalanches”
[8]. The probability distribution of the sizes “K” of these
avalanches is depicted by a power law ( )P K K  , where τis a
positive parameter. That is, the smaller avalanches are more
likely to occur than those big ones, but even the avalanches as
big as the whole system may occur with a small but
non-negligible probability. Therefore, the large avalanches
make any possible configuration (i.e., so-called “solution”in the
evolutionary algorithms) accessible [9].

In contrast to genetic algorithms (GAs) which operate on an
entire “gene-pool”of huge number of possible solutions, EO
successively eliminates those worst components in the
sub-optimal solutions. Its large fluctuations provide significant
hill-climbing ability, which enables EO to perform well
particularly at the phase transitions [9, 38, 39]. EO has been
successfully applied to some NP-hard combinatorial
optimization problems such as graph bi-partitioning [9], TSP
[9], graph coloring [10], spin glasses [11], MAX-SAT [12] and
dynamic combinatorial problems [42].

In this paper, we make a deep investigation on the
fundamental of EO from three points of view: statistical physics,
biological evolution and ecosystem. In this work, we also
introduce our contributions to the applications of EO in discrete
and numerical optimization problems. Finally, the advantages
and disadvantages of EO are discussed.

II. EXTREMAL OPTIMIZATION

Unlike GAs, which work with a population of candidate
solutions, EO evolves a single individual (i.e. chromosome) S.
In EO, each decision variable in the current individual S is
considered “species”. There is only mutation operator in EO.
Through always performing mutation on the worst species and
its neighbors successively, the individual can improve its
components and evolve itself toward the optimal solution
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generation by generation. This requires that a suitable
representation should be selected which permits each species to
be assigned a quality measure (i.e. fitness). This differs from
holistic approaches such as evolutionary algorithms that assign
equal-fitness to all species of a solution based on their collective
evaluation against an objective function.

For a minimization problem with n decision variables, EO
proceeds as follows [9]:
1. Randomly generate an individual S. Set the optimal solution

bestS S .
2. For the “current”individual S
(a) evaluate the fitness

i for each decision variable , (1, , )ix i n
(b) find j satisfying j i  for all i, i.e., jx creates the “worst

fitness”,
(c) choose ' ( )S N S such that

jx must change its state, N(S)is

the neighborhood of S,
(d) accept 'S S unconditionally,
(e) if the current cost function value is less than the minimum
cost function value, i.e. ( ) ( )bestC S C S , then set bestS S

3. Repeat at Step 2 as long as desired.
4. Return bestS and ( )bestC S .

To avoid getting stuck into a local optimum [9], a single
parameter is introduced into EO and the new algorithm is
called -EO. In -EO, according to fitness i, all ix are
ranked, i.e., a permutation  of the variable labels i with

(1) (2) ( )n
  
  

   . (1)
is found. The worst variable

jx is of rank 1, (1)j , and the

best variable is of rank n. Consider a scale-free probability
distribution over the ranks k,

, 1kP k k n   , (2)
for a fixed value of the parameter . At each update, select a
rank k according to

kP . Then, modify Step 2 (c) so that the

variable jx with ( )j k changes its state.

III. FUNDAMENTAL ASPECTS OF EXTREMAL OPTIMIZATION

From Fig. 1, it can be seen that EO is a multi-disciplinary
technique which is based on the fundamental and knowledge of
statistical physics, biological evolution and ecosystem.

First, we will make an investigation on EO from statistical
physics point of view. EO is motivated by the SOC, which is a
statistical physics concept to describe a class of dynamical

systems that have a critical point as an attractor. Their
macroscopic behavior exhibits the spatial and temporal
scale-invariance characteristics of the critical point of a phase
transition [8]. It is interesting to note that in SOC, there is no
need to tune control parameters to precise values. SOC is
typically observed in slowly-driven non-equilibrium systems
with extended degrees of freedom and a high level of
nonlinearity [8]. Inspired by SOC, EO drives the system far
from equilibrium: aside from ranking, there exists no adjustable
parameter, and new solutions are accepted indiscriminately.

Second, we can study the mechanism of EO from the
perspective of biological evolution. The EO heuristic was
motivated by the BS model which shows the emergence of SOC
in ecosystems. The fundamental idea behind this model is that
of co-evolutionary avalanches. It is well known that the
competitive and co-evolutionary activities are regarded as two
important factors that help the organisms evolve generation by
generation in the nature. Although co-evolution does not have
optimization as its exclusive goal, it serves as a powerful
paradigm for EO [13]. EO follows the spirit of the BS model in
that it merely updates those components with worst fitness in the
current solution, replacing them by random values without ever
explicitly improving them. At the same time, EO changes the
fitness of all the species connected to the weakest one randomly.
Thus, the fitness of the worst species and its neighbors will
always change together, which can be considered a
co-evolutionary activity. This co-evolutionary activity gives
rise to chain reactions or “avalanches”: large (non-equilibrium)
fluctuations that rearrange major parts of the system, potentially
making any configuration accessible. Large fluctuations allow
the method to escape from local minima and explore the
configuration space efficiently, while the extremal selection
process enforces frequent returns to near-optimal solutions.

Third, the mechanism of EO can be studied from the
perspective of ecosystem. An ecosystem is defined as a
biological community of interacting organisms and their
surrounding environment. That is to say, the fitness of any
species living in an ecosystem will be affected by the fitness of
any other species in the same ecosystem, whereas the change in
the fitness of any species will affect the fitness landscape (i.e.
environment) of the whole ecosystem. The interaction
relationship between any two species in the ecosystem can be
regarded as the inherent fundamental mechanism which drives
all the species to co-evolving. The food chain may be one of the
ways in which the interaction between any two species takes
place. The food chain provides energy that all living things in
the ecosystem must have in order to survive. In the food chain,
there exit direct or intermediate connections between any
species. According to natural selection or 'survival of the fittest'
proposed by Darwin, those species with higher fitness will
survive while those with lower fitness will die out. Thus, the
species with the lower fitness will die out with larger probability
than other species. When one species with lower fitness dies
out, those species above the extinct species in the food chain
will be also in threat of extinction, no matter how high the

Extremal Optimization

Statistical Physics Ecosystem

Biological Evolution

Fig. 1. Extremal Optimization: A Multi-disciplinary Technique.
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fitness value of them is. Similarly, EO considers those species
with lower fitness more easily to die out than others. Hence EO
always selects those “weakest” to update. The change in the
fitness of the worst species will impact the fitness landscape of
the whole system. At the same time, the fitness of those species
connected to the weakest species will also be affected by the
altered environment and be changed simultaneously.

IV. APPLICATIONS OFEO IN SOLVINGD ISCRETE OPTIMIZATION

EO and its variations have been successfully applied to solve
some combinatorial optimization problems as follows.

A. Representative Applications
So far, most of the implementation of EO in solving discrete

optimization is quite straightforward. Following will briefly
review the EO implementations on those well-studied
combinatorial optimization problems.

1) The graph bi-partitioning [9] is to partition a set of N points
into two N/2 subsets, in which edges connects certain pairs of
points. The optimization objective is to minimize the number of
edges cutting across the partition (so called “cutsize”). From the
local evaluation criteria of EO, the fitness of each point ix is

defined as 2ii b , where ib is the number of bad edges

connecting ix to the other subset. The next feasible solution is
generated by exchanging the least fit point with a random point
from the other subset. The results on a series of well-studied
large graphs proved that EO can provide superior performance.

2) A spin glass [11] consists of a lattice or a graph with a spin
variable }1,1{i placed on each vertex i, ni 1 . Every
spin is connected to each of its nearest neighbors j via a fixed
bond variable ijJ , drawn at random from a distribution of zero

mean and unit variance. Spins may be coupled to an arbitrary
external field ih . The optimization objective to find the
minimum cost states minS . In the EO implementation, the

energy function can be defined as 



n

i
iSC

1

)(  ,

where irepresents the fitness for each spin variable i .
3) The graph coloring problem K-COL [10] is to give K

different colors to label the vertices of a graph, the objective is
to find a coloring solution that minimizes the number of edges
connecting vertices with identical color. The fitness for each
vertex ix is defined as 2ii b , where ib is the number of
equally colored vertices connected to it.

In all the above implementations, EO drives the optimizing
process through sequential changes on a single species. The
cost )(SC is assumed to consist of the individual cost

contributions ifor each variable ix , which correspond to the
fitness values in the BS model. The fitness i of

variable ix depends on its state in relation to other variables to

which ix is connected. Straightforwardly, EO can play its
overwhelming advantages while the optimization

objective 



n

i
iSC

1

)( .

So, the definition of fitness function and neighbor )(SN are
crucial to the implementation of EO for solving various
combinatorial optimization problems. The latter have been
widely studied and the former need further researches for the
aspects of local evaluation.

B. EO Implementations on TSP
The TSP is probably the most famous combinatorial

optimization problem [31]. It has been frequently used as a test
bed for the study of optimization techniques.
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the TSP, N points (“cities”) are given, and every pair of
i and j is separated by a distance ijd . The objective is to

ct the cities using the shortest closed “tour”, passing
gh each city exactly once.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.4

0.6

0.8

1

1.2

1.4

1.6

Number of updates

O
bj

ec
tiv

e

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 104

Number of updates

O
bj

ec
tiv

e

Simulated Annealing

Current solution
Optimal

. 2. Comparative computational results of EO and SA on TSP
ance-gr48 from TSPLIB. The vertical axis stands for the objective values
the current generation.
ally, a city would want to be connected to its first and
d nearest neighbor, but is often “frustrated” by the
etition of other cities, causing it to be connected instead to
its pth and qth neighbors, Boettcher [9] defined the fitness
y i to be iii qp 3 . Compared the simulation results of
o other methods, the author asserted that EO is not
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competitive for this problem. However, the key point is that the
fitness function has no close relationship with the global
optimization objective.

Alternatively, we can define the fitness of city i to be the
potential optimized length, i.e. )min( ijii dd  , where id is

the length of edge starting from city i, So, the optimization

objective 



n

i
ij

n

i
i dSC

11

)min()(  , and 


n

i
ijd

1

)min( is a

constant for a given distance matrix. The comparative
computation results on TSP instance-gr48 from TSPLIB [31]
are illustrated in Fig.2.

In the simulation, the neighbor is the 2-opt solution space in
both SA and EO. In contrast to SA, which has large fluctuations
in early stages and then converges to a local optimum, EO
quickly approaches an acceptable solution where broadly
distributed fluctuations allow it to exploit the global optima.

[41].

V. APPLICATIONS OF EO IN SOLVING NUMERICAL
OPTIMIZATION PROBLEMS

Up to now, some variations of EO have been proposed to solve
the numerical optimization problems. The Generalized
Extremal Optimization (GEO) [16] was developed to operate on
bit strings where the component quality is determined by the bits
contribution to holistic solution quality. This work includes the
applications to numerical optimization problems [16] as well as
engineering problem domains [17]. Another extension to EO is
the continuous extremal optimization (CEO) algorithm [18].
CEO consists of two components: one is the classical EO
algorithm responsible for global searching and the other is a
certain local searching algorithm. The effectiveness of CEO is
demonstrated via solving the Lennard-Jones cluster
optimization problem.

It is worth reminding that EO performs a search through
sequential changes on a single individual, namely, the
point-to-point search rather than the population based search
applied in GAs. In order to accelerate the convergence speed,
we developed a novel real-coded EO search algorithm,
so-called Population-based Extremal Optimization (PEO) [19],
through introducing the population search strategies being
popularly used in evolutionary algorithms to EO. Similar to the
evolutionary algorithms, the PEO operates on the evolution of
chromosomes generation after generation. By uniformly placing
the population of initial random solutions on the search space,
PEO can explore the wide search space, avoiding getting
trapped into local optima. On the other hand, similar to EO, the
PEO performs only one operation, i.e. mutation, on each
variable. In addition, we adopted the adaptive Lévy mutation
operator, which makes our approach able to carry out not only
coarse-grained but also fine-grained search. It is worth noting
that there exists no adjustable parameter in our approach, which
makes our approach more charming than other methods. Our
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C. Industrial Application
Consider the EO implementation on a practical scheduling

problem arisen from steel hot strip mill [15]. A set of
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Fig. 3. Comparisons in the localized fitness between MGA and MGA -
-EO
manufacturing orders  nN ,,2,1  is to be processed, and the

sequence-dependent transition cost ijc is incurred while

processing order j immediately after order i ( Nji , ). The
scheduling objective is to find an optimal production sequence

 mjjjS ,,, 21
*  ( nm  ) from the feasible solution space.

The local fitness of each manufacturing orders are defined
as )( iisi c , where )( iisc is sequence-dependent transition cost

between order i and its successor )(is in the production
sequence. The move class is selecting an unscheduled order to
replace the least fit order, which was usually employed by
manual schedulers.

Through simulating the production scale data, Fig.3 shows
the comparisons in the localized fitness between MGA and
MGA - -EO, in which the scheduling solution of MGA is
further optimized by -EO. -EO can significantly improve the
scheduling solution inherited from modified GA (MGA) by
successively eliminating a majority of undesirable variables

approach was successfully applied in solving constrained
numerical optimization and shows competitive performance in
comparison with three state-of-the-art search methods, i.e., SR
[20], ASCHEA [21] and SMES [22].

Recently, there have been some papers studying on the
multiobjective optimization using extremal dynamics. Ahmed et
al. [23] and Elettreby[36] introduced random version of BS
model. They also generalized the single objective BS model to a
multiobjective one by weighted sum of objectives method. The
method is easy to implement but its most serious drawback is
that it can not generate proper members of the Pareto-optimal
set when the Pareto front is concave regardless of the weights
used [24]. Galski et al . [25] applied the Generalized Extremal
Optimization (GEO) algorithm to design a spacecraft thermal
control system. The design procedure is tackled as a
multiobjective optimization problem. They also resorted to the
weighted sum of objectives method to solve the problem.

To extend EO to handle multiobjective problems in an
effective and efficient way, we presented a novel algorithm,
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called Multiobjective Population-based Extremal Optimization
(MOPEO) [26]. Being different from the aforementioned
methods, the fitness assignment of MOPEO is based on the
Pareto domination, which is popularly used by many existing
multiobjective evolutionary algorithms.

For a multiobjective optimization problem, the flowchart of
the MOPEO algorithm as shown in Fig.4 is developed in terms
of the marriage of EO and evolutionary algorithms.

Our approach has been validated by three test functions
ZDT1, ZDT3 and ZDT6 proposed by Zitzler et al. [27]. These
problems are minimization problems with two objectives and
described in Table I. Fig.5 shows one of ten runs with MOPEO
on these problems. From Fig. 5, we can see that, with respect to
convergence and diversity of the obtained set of nondominated
solutions, MOPEO performs well in the three test problems.
MOPEO is also compared against three highly competitive
multiobjective evolutionary algorithms: the real-coded
Nondominated Sorting Genetic Algorithm-II (NSGA-II) [28],
the Strength Pareto Evolutionary Algorithm (SPEA) [29] and
the Pareto Archived Evolution Strategy (PAES) [30]. The

comparison results is shown in Table II, where we use two
performance metrics proposed by Deb et al. [28] to assess the
performance of our approach. The experimental results of
NSGA-II, SPEA and PAES in Table II come from [28]. As can
be seen from Table II, MOPEO outperforms any other
algorithm in both aspect of convergence and diversity of
nondominated solutions. In all the cases with MOPEO, the
variance in ten runs is small. The simulation results illustrate
that MOPEO is less susceptible to the shape or continuity of the
Pareto front and has good performance in both aspects of
convergence and distribution of solutions. Hence, MOPEO may
be a good alternative to solve the multiobjective optimization
problems

(c)
Fig. 5 (a)~(c) show the nondominated solutions with MOPEO on problems
ZDT1, ZDT3 and ZDT6, respectively. The horizontal and vertical axes stand
for the values of two objective functions, respectively.

(b)

(a)

Fig. 4. Flowchart of MOPEO algorithm.
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TABLE I
TEST PROBLEMS

Problem n
Variable
bounds

Objective functions Optimal solutions Comments

ZDT1 30 [0,1]

( )
1 1

( ) ( )[1 / ( )]2 1
( ) 1 9( ) /( 1)2

f X x
f X g X x g X

ng X x ni i


 
   

1 [0,1]

0,
2, ,

i

x

x
i n




 
convex

ZDT3 30 [0,1]

( )
1 1

1( ) ( )[1 / ( ) sin(10 )]2 1 1( )
( ) 1 9( ) /( 1)2

f X x
x

f X g X x g X x
g X

ng X x ni i

p



  

  

1 [0,1]

0,

2, ,
i

x

x

i n




 

convex,
disconnected

ZDT6 10 [0,1]

6( ) 1 exp( 4 ) sin (6 )1 1 1 2( ) ( )[1 ( ( ) / ( )) ]2 1 0 .25( ) 1 9[( ) /( 1)]2

f X x x

f X g X f X g X
ng X x ni i

p  
 
   

1 [0,1]

0,
2, ,

i

x

x
i n




 

nonconvex,
nonuniformly
spaced

TABLE II
MEAN(FIRST ROWS) AND VARIANCE (SECOND ROWS) OF THE TWO PERFORMANCEMETRICS

convergence metric  diversity metric Algorithm
ZDT1 ZDT3 ZDT6 ZDT1 ZDT3 ZDT6

0.001062 0.004175 0.013400 1.24E-05 0.249489 0.047618
MOPEO

7.53E-05 0.012972 0.020698 1.18E-04 0.036808 0.123937
0.033482 0.114500 0.296564 0.390307 0.738540 0.668025

NSGA-Ⅱ
0.004750 0.007940 0.013135 0.001876 0.019706 0.009923
0.001799 0.047517 0.221138 0.784525 0.672938 0.849389

SPEA
0.000001 0.000047 0.000449 0.004440 0.003587 0.002713
0.082085 0.023872 0.085469 1.229794 0.789920 1.153052

PAES
0.008679 0.00001 0.006664 0.004839 0.001653 0.003916

VI. ADVANTAGES AND DISADVANTAGES OF EO

From the above descriptions, it can be seen that EO has the
following advantages:

-- The co-evolutionary mechanism makes EO able to find the
near-optimal solutions quickly.

-- The extremal driving mechanism generates long-term
memory for EO. Most species preserve a good fitness for long
times unless they are connected to poorly adapted species,
providing the system with a long memory.

-- The system retains a potential for large, hill-climbing
fluctuations at any stage. The large fluctuations make any
configuration accessible.

-- There is no any control parameters in EO except in -EO.
-- There exists only mutation operation. This makes EO

simple and convenient to be implemented.
Every coin has two sides. There also exist some shortcomings

in EO. For example, it is hard to give an appropriate definition
to the fitness in many specific cases.

VII. CONCLUDING REMARKS

In this paper, we make studies on the fundamental of EO and its
applications in solving the real world optimization problems.
First, we explore the mechanism of EO from three points of
view: statistical physics, biological evolution and ecosystem.

In this work, we also introduce our contributions to the
applications of EO in discrete and numerical optimization

problems.
On the aspect of discrete optimization, the definition of local

evaluation fitness function and neighbor )(SN is especially
important for EO to solve the discrete optimization problem.
Through an effective implementation on TSP and a scheduling
problem, we illuminate that the optimization method inspired by
extremal dynamics has great potentials to solve combinatorial
optimization problems.

On the aspect of numerical optimization, we proposed two
novel real-coded algorithms to solve numerical constrained
optimization and multiobjective optimization problems,
respectively. One is the PEO algorithm, which is able to solve
numerical constrained optimization problem, through
introducing population search strategy associated with adaptive
Lévy mutation to EO. The experimental results demonstrate that
PEO is competitive in comparison with three state-of-the-art
algorithms. The other is MOPEO, in which the fitness
assignment is based on the Pareto domination and the
population search strategy is also introduced to EO. The
proposed approach has been validated by five benchmark
functions and compared with three highly competitive
algorithms. The simulation results show that MOPEO has good
performance in both aspects of convergence and diversity of
nondominated solutions. Thus MOPEO can be considered as a
good alternative to handle multiobjective optimization
problems.

There are many advantages of EO such as extremal dynamics
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mechanism, co-evolution, only mutation operator and long-term
memory. Thus, EO can be considered a good heuristic method
which is competitive in comparison with many state-of-the-art
heuristics.

More fundamental research on EO dynamics, dealing with
the optimization problem with phase transitions and real-world
applications is the major future work for EO optimization.
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