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Abstract— We study a sparsely connected oscillator network
by using the methods of statistical mechanical, in particular, the
replica method. First, we study the conjecture of Ichinomiya
on the equivalence of a sparsely connected oscillator network
with ferromagnetic interactions to a fully connected network with
disordered interactions. Then, we study the dynamical behaviour
of the oscillator network on the Bethe lattice by using dynamical
replica theory. Theoretical results are confirmed by numerical
simulations.

I. INTRODUCTION

In recent years, much attention has been paid to interacting
systems where the network of interactions between the dif-
ferent units is of a sparse (i.e. finite average connectivity in
the infinite system limit), random and often complex nature
[1], [2], [3]. This current enthusiasm has been fueled by the
abundance of natural systems whose interactions appear to
be generally of this sparse, random type. Among these many
and varied models, we have a particular interest in systems
where elements have their own dynamics, i.e. the nodes of
the network are dynamic objects themselves. As an example,
we have been studying a immune network dynamical system
model. In this model, each element or node is composed of B-
cells and antibodies with the same idiotype, and the dynamics
of each element is described by a pair of ordinary differential
equations (odes). One particular feature of the immune system
is that each element interacts with only a finite number of
other elements irrespective of the number of elements (i.e.
number of idiotypes in the system), N . We have derived a
partial differential equation to describe the population of B-
cells and antibodies by using the dynamical replica theory[4].
However, this model is rather complicated and is difficult to
analyze theoretically. It is desirable to study a model in which
each element has a dynamical nature is simple enough to be
able to analyze theoretically.

In this paper, as an example of such a tractable system,
we study N coupled phase oscillators as introduced by
Kuramoto[5]. In this model, each oscillator has a definite
amplitude, and the state of a given oscillator is described by
its phase φ ∈ R. The evolution equation for phase φi of i-th
oscillator is given by

d

dt
φi = ωi +

∑
j �=i

Jij sin(φj − φi) + ηi, (1)

where ηi(t) is Gaussian white noise with variance 2T ,

〈ηi(t)ηj(t′)〉 = 2Tδijδ(t − t′). (2)

In this paper, we examine the case where ωi = ω for any
i. Then, without loss of generality, we may assume ω = 0.
Further, we assume Jij = Jji. Then eq. (1) can be rewritten
as

d

dt
φi = − ∂

∂φi
H + ηi, (3)

H = −
∑
i<j

Jij cos(φi − φj). (4)

Thus our assumptions allow us to to investigate a Hamiltonian
system.

Now, we define three models by giving different specifica-
tions to the {Jij},

Model A P (Jij) =
c

N
δJij ,J + (1 − c

N
)δJij ,0 i < j (5)

Model B P (Jij) = J(
c

N
+

√
c

N
zij) i < j (6)

Model C
∑

j

Jij = cJ for any i, Jij = Jji, Jij ∈ {0, J}.

(7)

where zij = zji are identically independently distributed
Gaussian zero mean, unit variance random variables.

In particular, we focus on the following result of Ichi-
momiya [6]: the sparse random network with finite connec-
tivity (model A) behaves similarly to the fully connected
model with disordered bonds (model B). This can be seen
intuitively, since model B describes interactions on an Erdös-
Reyni random graph, which has average connectivity c and
variance in connectivity c so the first two moments of the
interaction strength agree with model A. In fact, in the large
c limit, the Poisson distributed number of bonds can be
approximated by a Gaussian distributed number of bonds
and since the first two moments agree the distributions will
converge (as c → ∞).

We examine Ichinomiya’s result in the more interesting
regime of finite c comparing phase diagrams and the order
parameters in these three models. Further, we examine the
dynamical behaviour of model C using dynamical replica
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theory. Also, we perform numerical simulations and compare
our theoretical and numerical results.

The paper is organized as follows. In §2, we analyze statics
of three models and examine Ichinomiya’s result. In §3, we
investigate dynamical behaviour of the model C. A summary
is given in §4.

II. STATIC BEHAVIOUR OF OUR THREE MODELS

The probability density of φ at time t, Pt(φ) obeys the
following Fokker-Planck equation,

∂

∂t
Pt(φ) =

∑
i

∂

∂φi
(

∂

∂φi
H)Pt(φ) + T

∑
i

∂2

∂φ2
i

Pt(φ). (8)

Thus, the stationary state of the equation is given by the
canonical distribution Peq(φ),

Peq(φ) =
1
Z

e−βH , (9)

Z =
∫

dφe−βH , (10)

where β = 1/T . Thus, to examine the statics of the models,
we can use the methods of statistical mechanics.

We define order parameters as follows,

m =
√

m2
c + m2

s, (11)

ms =
1
N

∑
i

〈sin(φi)〉, (12)

mc =
1
N

∑
i

〈cos(φi)〉, (13)

and

Qcc =
1
N

∑
i

〈cos2(φi)〉, Qss =
1
N

∑
i

〈sin2(φi)〉,

Qcs = Qsc =
1
N

∑
i

〈sin(φi) cos(φi)〉,

qcc =
1
N

∑
i

〈cos(φi)〉2, qss =
1
N

∑
i

〈sin(φi)〉2,

qcs = qsc =
1
N

∑
i

〈sin(φi)〉〈cos(φi)〉.

where 〈· · ·〉 denotes the thermal average and · · · denotes the
average over the quenched randomness {Jij}.

The statics of the models A and C have been studied
previously[7], [8] and in terms of m, the transition tempera-
tures between the ordered phase of m > 0 (F) to the disordered
phase m = 0 (P) are given by

Model A c =
I0(βJ)
I1(βJ)

, (14)

Model C c − 1 =
I0(βJ)
I1(βJ)

, (15)

where In are the modified Bessel functions and are defined as

In(z) =
∫ π

−π

dφ

2π
cos(nφ)ez cos(φ).

So, in this section, we focus on the analysis of the model B.
This model is the XY version of the Sherrington-Kirkpatrick
(SK) model of the Ising spin-glass[9], [10] and can be solved
by using the replica method [11]. The disorder averaged
free energy per oscillator f = − limN→∞(βN)−1lnZ is
calculated as

f = −cβ

4
[q2

cc + q2
ss + 2q2

sc − 1] − c

2
(m2

c + m2
s)

−cβ

2
[Qcc(Qcc − 1) + Q2

sc]

+
1
β

∫
DxDy ln

∫
dφM(φ|x, y). (16)

where

M(φ|x, y) = exp[cβmc cos(φ) + cβ sin(φ)

+
1
2
cβ2(1 − Qcc − qss)

+
1
2
cβ2 cos2(φ)(2Qcc − qcc + qss − 1)

+cβ2(Qsc − qsc) sin(φ) cos(φ)

+βx

√
c
qccqss − q2

sc

qss
cos(φ)

+
√

qss sin(φ)], (17)

and

ms = [〈sin(φ)〉], mc = [〈cos(φ)〉],
Qcc = [〈cos2(φ)〉] Qss = [〈sin2(φ)〉],
Qcs = Qsc = [〈sin(φ) cos(φ)〉],
qcc = [〈cos(φ)〉2], qss = [〈sin(φ)〉2],
qcs = qsc = [〈sin(φ)〉〈cos(φ)〉],
[· · · ] =

∫
DxDy · · · ,

〈· · ·〉 =
∫

dφM(φ|x, y) · · ·∫
dφM(φ|x, y)

.

We set J = 1. The critical temperatures for P → F and P→
SG are given by

P → F T =
c

2
, (18)

P → SG T =
√

c

2
, (19)

where SG denotes the spin-glass phase and it is characterized
by m = 0 and qcc > 0. We display the critical temperatures
for models A, B and C in Figs.1 and 2.

In Figs.3 and 4, we display the temperature dependence of
the order parameter m for the three models.

Thus we see that by restricting our investigation to these
Hamiltonian models we can measure the quality of Ichi-
nomiya’s analytically. We have control over the model in terms
of both temperature and average connectivity and studies in
this regime will aid inference in the more challenging case
where the system is non-equilibrium in nature.
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Fig. 1. Phase diagram in T − c plane. Solid curve: sparse model (A model),
dotted curve: fully connected model (B model), dotted-dashed curve: Bethe
lattice (C model). The dotted-dashed curve is obtained by shifting the solid
curve in the vertical direction by 1.
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Fig. 2. Phase diagram in T − c plane. Enlargement of Fig.1
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Fig. 3. T dependence of m for c = 2 (c = 3 for Bethe lattice). Curves:
theoretical results. Symbols: numerical results of the Langavin eq.(1) for N =
2000. Solid curve and + : sparse model (A model), dashed curve and ×: fully
connected model (B model), dotted curve and *: Bethe lattice (C model).

0

0.2

0.4

0.6

0.8

1

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

Fig. 4. T dependence of m for c = 5 (c = 6 for Bethe lattice). Curves:
theoretical results. Symbols: numerical results of the Langavin eq.(1) for N =
2000. Solid curve and + : sparse model (A model), dashed curve and ×: fully
connected model (B model), dotted curve and *: Bethe lattice (C model).

III. DYNAMIC BEHAVIOUR OF MODEL C

We next turn to the dynamic behaviour of model C, which
we investigate using the tools of dynamical replica theory.
There is no theoretical difficulty with applying dynamical
replica theory to model B but the numerical solution of
resulting equations is more challenging.

Dynamical replica theory provides a tool that allows us to
model the dynamics approximately (in this case), but still in a
finite connectivity setting, with the properties of good accuracy
at short times and very long times (in fact it is exact one the
system has equilibrated). Further, the level of approximation
can be built up in stages allowing for further improvements,
albeit at significant computational cost in terms of solving the
equations.

The approach we use is to introduce a set of intensive
macroscopic observables Ω(φ) = (Ω1(φ), . . . ,Ωk(φ)) and
define

pt(Ω) =
∫

dφpt(φ)δ[Ω − Ω(φ)] (20)

This distribution evolves according to a Fokker-Planck equa-
tion but it can be shown that for the choices we make for Ω(φ)
the diffusion terms disappear and we are left merely with a
Liouville equation for our observables describing deterministic
flow in phase space. This Liouville equation is given by:

d
dt

Ωμ(t) =

〈
∑

i

⎡
⎣∑

j

cij sin(φj − φi) + T
∂

∂φi

⎤
⎦ ∂

∂φi
Ωμ(φ)〉Ω (21)

where the 〈. . .〉 denotes averaging over the microscopic prob-
ability measure pt(φ) for those states where the macroscopic
observables Ω(φ) = Ω. This evolution equation for our
observables is exact but intractable since it still contains the
full microscopic distribution pt(φ). However, the approach of
dynamical replica theory is to view these observables as pa-
rameters describing the probability distribution of the system,
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much as specifying the energy of the system describes the dis-
tribution in equilibrium statistical mechanics. This leads us to
the approximation underlying dynamical replica theory: to use
the maximum entropy distribution given the observable values
as an approximation to the true non-equilibrium distribution
pt(φ). Alternatively, one could view this as projecting the
non-equilibrium microscopic distribution onto an exponential
family parameterised by these observables via minimising
the KL divergence between the true microscopic probability
measure and this exponential family. Hence, the average in eq.
(21) simplifies under this approximation to:

〈. . .〉Ω =
∫

dφδ[Ω − Ω(φ)](. . .)∫
dφδ[Ω − Ω(φ)]

(22)

To begin with consider the simplest set of three observables
that could be hoped to describe the system:

mc(φ) =
1
N

∑
i

cos(φi) (23)

ms(φ) =
1
N

∑
i

sin(φi) (24)

e(φ) =
1
N

∑
i<j

cij cos(φi − φj) (25)

the energy is an obvious choice, it means that the above set of
equations will be exact at long times (i.e. in equilibrium) while
mc and ms allow the description of overall ordering among
the oscillators. Inserting these observables into the equation
(21) in turn gives us coupled odes which describe the system’s
behaviour:

d
dt

mc(t) =

− 1
N

∑
i

〈
∑

j

cij sin(φj − φi) sin(φi)〉mc(t),ms(t),e(t)

−Tmc(t) (26)
d
dt

ms(t) =

1
N

∑
i

〈
∑

j

cij sin(φj − φi) cos(φi)〉mc(t),ms(t),e(t)

−Tms(t) (27)

d
dt

e(t) =
1
N

∑
i

〈
⎛
⎝∑

j

cij sin(φj − φi)

⎞
⎠

2

〉mc(t),ms(t),e(t)

−2Te(t) (28)

The non-trivial aspect of these coupled odes is the measure.
We have to average over all states φ according to definition
(22). To do this we move to the canonical framework, writing:

δ[Ω − Ω(φ)] =

exp[ê
∑
i<j

cij cos(φi − φj) + m̂c

∑
i

cos(φi)

+m̂s

∑
i

sin(φi)] (29)
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Fig. 5. Time series of the order parameter m. T = 0.7. Solid curve: 3DRT,
dashed curve: 4DRT, dotted-dashed curve: simulation (N = 4000). Dotted
line indicates the equilibrium value of m.

The problem is reduced to finding the triple {ê, m̂c, m̂s} at
each time t for which the canonical measure satisfies the
equalities:

mc = 〈mc(φ)〉mc,ms,e (30)

ms = 〈ms(φ)〉mc,ms,e (31)

e = 〈e(φ)〉mc,ms,e (32)

This is a highly non-linear three dimensional inverse problem
and computationally this is the most challenging part of
implementing dynamical replica theory for finitely connected
random systems, since this inverse problem must be solved
for each time t. These equations were solved using Brent’s
method. By solving this inverse problem, the measure can be
specified at any point in time and the odes can be solved
using standard numerical techniques. In Figs. 5 and 6, we
compare our numerical solutions with that given by Monte
Carlo simulation of the problem:

It is natural at this stage to see if more observables can
be introduced. Intuitively, the richer the parameter space
spanned by the observables, the closer the maximum entropy
distribution will be to the microscopic probability distribution
and the better the theory. To this end we make the following
choice:

mss(φ) =
1
N

∑
ij

cij sin(φi) sin(φj − φi), (33)

which has the appealing nature that the eq. (26) becomes more
explicit in terms of the observables. This additional observable
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Fig. 6. Time dependence of phase distribution P (φ). T = 0.7. Curves are
theoretical results (3DRT) and symbols are simulations for N = 4000. solid
curve and + : t = 0, dashed curve and ×: t = 0.1, dotted-dashed curve and
* : t = 0.5, dotted curve and square : t = 2.

changes the canonical maximum entropy distribution to:

δ[Ω − Ω(φ)] =

exp[ê
∑
i<j

cij cos(φi − φj) + m̂c

∑
i

cos(φi)

+m̂s

∑
i

sin(φi)

+m̂ss

∑
i<j

cij(sin(φi) − sin(φj)) sin(φj − φi)] (34)

In Fig.5, we see how the addition of the observable improves
the theory.

The observables thus far introduced all involve single site
measures or correlations between at most two neighbouring
sites. It is highly likely that addition of correlations between
three or more sites would significantly improve the efficacy of
the method, however, this has proved to be computationally
challenging to date.

IV. SUMMARY

In this paper, we studied sparsely connected oscillator
networks ( Model A and C ) and a fully connected network
(Model B) examining the conjecture by Ichinomiya on the
equivalence of the Models A and B. First, we investigated
statics of these models and found that the phase transition
temeratures and the temperature dependence of the order
parameter m for three models become more similar as the
value of the connectivity c increases, and that any divergence
can be measured quantitatively. We also studied the dynamical
behaviour of the Model C by using dynamical replica theory.
Further, we performed Monte Carlo simulations and found that
our theoretical results were well confirmed by the simulations.
Details of the present study will be reported elsewhere, and
the dynamical behaviour for A and B models is under inves-
tigation.
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