
Abstract — An analysis is presented for adaptive selection of 
modes using bifurcation of mode-hopping dynamics in a multi-basin 
system. The analysis utilizes a formalism based on coarse-grained 
state transitions. Stochastic state transition probabilities are used to 
derive expressions for mode search times and adaptation rates. This 
approach can be applied to the tuning of dynamical instabilities in 
flexible control systems. 

Index Terms— multi-stability, multi-basin, multimode, chaotic 
mode hopping, chaotic itinerancy, search, adaptation 

I. INTRODUCTION

A feature of living systems is their flexibility - the ability to 
support a variety of responses. This ability can be viewed as a 
combination of two component abilities - the ability to support a 
variety of modes of behavior and the ability to select a particular 
behavior, either spontaneously or using external signals which 
depends on the environment and situation. Fluctuations associated 
with dynamical instabilities could play an important role in 
facilitating the search and selection of modes of behavior. Hence 
it is of interest to consider mechanisms for adaptive selection of 
complex modes of behavior using perspectives from dynamical 
systems. 
From a dynamical systems perspective, the ability to show 

multiple modes of behavior can be modeled by the co-existence of 
multiple dynamical attractors. The process of changing behavior 
can be described as switching among the attractors. And the 
process of adaptation can be described as the selective switching 
of a particular mode which is in someway suited to the current 
external environment or situation as indicated by a driving or 
feedback signal.
One scenario for attractor switching in response to environment 

changes is the direct switching of an attractor, driven by an 
external input signal. This for example is the idea behind neural 
mode recall mechanisms, as described in reference [1].  

However, in many situations, the correspondence between 
external signals and internal attractor landscape is not 
well-matched, in the sense that the external signals alone do not 
contain enough information to drive the system to an appropriate 
attractor basin. Then some form of intrinsic trial-and-error search 
mechanism is necessary to find the basin of an attractor which is 
fit in the sense of having features which match the external 
constraints. Search among multiple co-existing attractors can be 
realized by using either noise or intrinsic dynamical instabilities, 
or some combination of the two, to make basin transitions.  
If the internal dynamical landscape corresponds to the search 

criterion in the sense that there is a lyapunov function which 
corresponds to the search metric, then it is possible to apply 
stochastic optimization mechanisms known as annealing [2-5]. 
On the other hand, if there is no direct connection between the 
internal basin structure and the external fitness metric, then 
alternative mode selection mechanisms are necessary. This issue 
was first raised in [6]. This work and following works 
demonstrated that adaptive control of the onset of chaos in a 
multi-mode system, that is a multi-attractor system, can be used to 
search among the modes using arbitrary search (fitness) criteria 
[6-17]. Specific applications of this mechanism have been 
described in models of optical systems [6-8] and neural systems 
[16, 17]. Moreover, the mechanism has been demonstrated in 
physical experiments using optical devices [12-15].  Essential 
features of this mechanism were discussed in a general context in 
[9-11], where stochastic models were used to discuss 
characteristic search times, and a proposition that the search time 
could be optimized by tuning a bifurcation parameter near the 
edge of chaos. 
In this paper we extend the theoretical analysis in a way which 

better facilitates analysis and comparison with other noise-driven 
adaptation mechanisms. We explain how the mode search and 
selection mechanism can be described as a stochastic state 
transition process.  And we present a number of prototypical cases 
for which we derive expressions for search times and adaptation 
rates.
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II. ADAPTIVE MULTI-MODE SYSTEM

In this section we introduce the type of multi-mode systems that 
we will consider in this paper, and explain their key features. 

 We consider a nonlinear dynamical system has multiple 
co-existing attractors at parameter value P0 , but only a single 
attractor at parameter value P1. We shall call the co-existing 
attractors the “modal attractors” and the single attractor at P1 the 
“base attractor”. We further assume that the base attractor spans 
all the domains which are basins of the modal attractors. The 
spanning property means that the measure of the base attractor is 
non-zero in each modal basin.  

Examples of systems which are known to have these features 
include nonlinear optical resonators and lasers with delayed 
feedback [12, 13]. These devices can have large numbers of 
oscillation modes which co-exist stably in separate basins at value 
of control parameter, but merge into a single basin with a chaotic 
attractor at another parameter value. Similar behavior is known in 
neural systems and various dynamical models such as 
coupled-map lattices [16-21]. The coexistence of multiple 
oscillatory states in neural systems has also been called 
“multirythmicity” [23]. 
We are interested in searching among the modal attractors by 

switching between the two parameter regimes P0 and P1. The 
reason for introducing the spanning property for the basal 
attractor is that we want that  
(i) when we switch from P1 to P0, there is a finite probability of 

landing in any one of the multiple modal basins, and  
(ii) it is possible to make the system visit all the co-existing 

attractors by repeatedly switching between the two regimes.  
In order to assure reachability of all the basins we require a 

source of stochasticity in the system to spread the distribution 
over the basins even if the initial states are localized on the modal 
attractors. This could be done by adding external noise to the 
multi-stable system so that basin transitions occur. Alternatively, 
the base attractor could be a limit-cycle or chaotic base attractor 
which spans the basins of the modal attractors.  In the case of a 
spanning limit cycle the phase of the cycle should be randomized 
by noise. A chaotic base attractor can be expected to more quickly 
spread an initially localized distribution over the whole base 
attractor.
In order to achieve the adaptation, we want to couple the 

parameter switching dynamics with another module which tests 
the performance or fitness of the system behavior. We assume a 
response signal is returned to the system. For simplicity, we 
assume the response signal is a binary signal which can be used to 
directly switch the parameter between P0 and P1. This response 
function can be defined without loss of generality as a binary 
function of the position in phase space. Note that since the 
external fitness test is arbitrary, the relation between the response 
function and the attractors or basins of the system is arbitrary. In 
this paper we will restrict the discussion to cases where the 
response does not depend on position in the modal attractor. 

However, the discussion could be extended to include this 
possibility. 

III. STATE TRANSITION MODEL

In this section we set-up a transition model describing the 
dynamical structure of the system and its interaction with an 
external response. We identify sets of points in phase space 
corresponding to dynamical structures and label them with 
symbols. In the following sections we will use these symbols to 
describe the coarse grained dynamics of the system during the 
adaptive mode search process.  

A. Coarse-grained State Definitions 
 We define domains in phase space, and their corresponding 
symbols, as follows. 

bi (i=1,.., N): Modal basins at P0, which partition the phase 
space, excluding measure-zero separatrices. 

ai (i=1,..,N): Modal attractors at P0. Each ai is within its 
corresponding modal basin. 

B: Base basin at P1 . Since we assume there is only one basin at 
parameter value P1 , B is the whole space, except for possibly a set 
of measure zero. 

A: Base attractor at P1 . It is assumed that A is the only attractor 
at parameter value P1.

Y: Positive Response set. The set of points in phase space which 
correspond to a positive value (“Yes”) of the response signal.

N: Negative Response set. The set of points in phase space 
which correspond to the negative value (“No”) of the response 
signal. N is the complement of Y. We assumed that all points in a 
basal attractor belong to the same set Y or N. 

ST: Trap states:  The subset of Y which at parameter P0 lie on 
trajectories which subsequently stay within Y. (For example if a 
modal attractor is within Y, then it will be in the trap set ST.)

SNT: False-Alarm states. SNT is the complement of ST in Y. Any 
state in SNT is on an orbit at P0 which eventually leaves Y.

Note that these definitions are not all mutually exclusive, and we 
will on occasion, for convenience, use more than one symbol to 
describe a set.  For example (ai , Y) is used to represent the set of 
points in phase space which are in ai and have response Y. 

B. State transition rules 
We will use the above symbols to describe the coarse grained 

dynamics of the system during the adaptive mode search process. 
Specifically, we will write state transition rules using a table 
format as follows: 

xx
y

y y 
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This table  shows that there is a transition possible from points in 
set x to points in set x or points in set y, and points in set y only 
makes a transition to points in set y.

IV. SEARCH DYNAMICS

In this section we consider the dynamics induced by changing the 
value of parameter between values P0 and P1. The idea is to use 
the dynamics of the base attractor A at P1 to move among the sets 
bi which are basins at parameter value P0. For simplicity we 
assume that there is only one modal attractor which corresponds 
to a positive response. (Extending to the case of multiple good 
attractors is straightforward if we assume that the search ends 
when any good attractor is reached.) 

A. Search by Periodic Parameter Switching 
We first consider the case where parameter P is switched 

between P0  and P1 with a square wave of period 2T, where T is
much larger than the time required for convergence of the 
invariant measure from an initially localized distribution located 
anywhere in the basin. We test the response at the end of each P0
interval, continuing the modulation of parameter until a modal 
attractor with positive response is reached.

Observing the state of the system at intervals 2T, starting 
immediately after the response has been detected at the end of the 
first P0 interval, the state transition rules can be written as follows. 

(aj,N) 
j  k * 

(ak,N) 
k  k* 

(ak*,Y) 
(ak*,Y) (ak*,Y) 

Here the label k* indicates the modal attractor which corresponds 
to a positive response “Y”.

The probability of the transition ak aj is the projection of the 
measure of A, at the time of the switch, on the basin bj. Note that 
due to the assumption that time T is long enough for relaxation of 
the distribution on the base attractor, the probability of the 
transition ak aj is independent of k and can be written pA:j .This 
transition probability pA:j is just the projection of the asymptotic 
distribution over the basal attractor onto the basin of the modal 
attractor with label j. The probability of transition to the target 
modal attractor with label k* is just pA:k* . Hence the average 
search time ts  can be obtained as 

ts   = 2T / pA:k*   ,                                   (1) 

where 2T is the switching period and pA:k* is just the projection of 
the asymptotic distribution over the basal attractor onto the basin 
of the modal attractor with label k*.

B. Search by Adaptive Parameter Control 
In the case of periodic parameter switching described in the 

previous sub-section, the state of the system is tested only after the 
relaxation to a modal attractor. However, if there is a structural 
relation between the modal attractors and the basal attractor, as in 
the case of chaotic itinerancy [12, 19], then when the response in 
the basal attractor is not positive, the probability of falling into the 
basin of a modal attractor with a positive response may also be 
small. With this situation in mind, we modify the periodic 
parameter switching procedure to test the response at the end of 
each interval of T, and if the response detected in the basal 
attractor is not positive, the parameter is not switched from P1 to 
P0; the parameter is kept at P1 so the dynamics persist on the basal 
attractor. In this case, the parameter switching protocol can be 
defined by the following control sequence [11]: 

(step 1) evolve for time T  
(step 2) test for fitness 
(step 3) switch parameter according to the following rules, 

and then return to step 1: 

(P1,N) P1

(P1,Y) P0

(P0,N) P1

(P0,Y) P0

Note that with this protocol, the parameter value automatically 
will stay at P0 after a modal attractor with a positive response is 
reached.
Observing the state of the system immediately after the 

parameter switch we obtain the following transition rules: 

(A,N) (A,N) 
(A,Y) 

(ak,N) k  k* (A,Y) 
(ak*,Y) 
(A,N) (ak,N) 

k  k* (A,Y) 
(ak*,Y) (ak*,Y) 

Now, if there are no false alarm states, that is all states in (A, Y) lie 
in the basin of ak*, the process further simplifies to  

(A,N) (A,N) 
(A,Y) 

(A,Y) (ak*,Y) 
(ak*,Y) (ak*,Y) 

Let us consider the transition probability for transition (A, N) 
(A, Y). Since we assumed interval T is long enough for relaxation 
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of the measure on the attractor, this probability is independent of 
initial state. We can obtain the average search time ts  as 

ts   = T / pA:Y    ,                                   (2) 

where T is the switching period and pA:Y is just the relative 
measure of points on the basal attractor A with positive response.
We emphasize that equation (2) gives the average time required to 
find a modal attractor when the system does not have false-alarms. 

C. Modified Adaptive Parameter Control 
Finally, we mention an alternative parameter switching 

protocol in which we do not require the system to wait time T to 
converge to an attractor before testing. The idea behind this is that 
if the positive response is strongly localized on a modal attractor, 
when a good response state is detected in the basal attractor, then 
it is likely that the system is near a state corresponding to the 
target modal attractor and so one should switch immediately. We 
mention this type of control here for two reasons. Firstly, this 
particular type of control has been used effectively in numerical 
experiments and physical experiments. And secondly, it is useful 
to point out that coarse-grained transition rules can be defined for 
more complicated search protocols.  

The simplest form of this control is to switch from P1 to P0
immediately after the response Y is received and switch from P0 to 
P1 immediately after the response N is received.

In this case, instead of the periodic timing of state transitions, 
we use the change in parameter as the timing to define state 
transitions. Since we can no longer assume that the dynamics have 
relaxed to attractors, the attractor symbols are not appropriate to 
describe the process, and we use the basin symbols instead. We 
obtain the following set of transition rules.  

(bk,Y)  k  k* (B,N) 
(bk*,Y) 

(bk,Y) 
k  k* 

(B, N) 

(bk*,Y) (B, N) 

Note that with this definition of transition, i.e. we only recognize a 
transition when the parameter changes, there are no identical 
transitions in the table. Once the dynamics converge to the unique 
target modal attractor (ak*, Y), which is within (bk*, Y), there are no 
further transitions.

If we now assume that the positive responses are only in the 
basin of the target modal attractor, then the transition rules are 
modified as follows. 

(B,N) (bk*,Y) 
(bk*,Y) (B, N) 

Further, if there are no false alarm states, then there is only one 
type of transition. 

(B,N) (bk*,Y) 

Alternatively, if we use the change in state as the timing to 
define state transitions then we obtain the following more 
complicated set of transition rules. 

(bk,Y)   k k*
(bk*,Y) 

(A,N) 

(ak*,Y)  
(A, N) 

(bk,Y)  k  k* 
(bk*,Y) 

(B,N) 

(ak*,Y)  
(B, N) (bk,Y) 

k  k* (A, N) 
(B, N) 
(A, N) 

(bk*,Y) 

(ak*,Y) 

For simplicity, we exclude the cases where two state 
memberships change at the same time, considering such events to 
be rare. With the simplifying assumption that the positive 
response states only exist in the basin of the target modal attractor, 
then the transition rules are modified as follows. 

(bk*,Y) (A, N) 
(ak*,Y)  
(A, N) 
(bk*,Y) 

(B,N) 

(ak*,Y)  
(B, N) 
(A, N) 

(bk*,Y) 

(ak*,Y) 

Moreover, if there are no false-alarm states, so that all points in 
(A/B, Y) states are in the trap set, converging to (ak*, Y) along 
trajectories which stay in Y.

(bk*,Y) (A, N) 
(ak*,Y)  
(A, N) 
(bk*,Y) 

(B,N) 

(ak*,Y)  
(bk*,Y)  (ak*,Y) 
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D.  Rates for Persistent Adaptation 
If the environment is changing in time so the fitness function and 

target mode k* change in time, then the adaptation process is 
repeated over and over again. If we assume that the target mode 
changes randomly, the persistent adaptation rate, expressed as 
modes per unit time, can be obtained as the inverse of the search 
time. 

RA =   1 / ts  .  (3)  

The search times are as obtained in the previous sub-sections. 
Further, we can express the information generation rate in terms 

of the number of multistable attractors and the mode search time. 
Let the number of coexisting attractors be N, and the search time 
be ts   . The information generation rate RI can be characterized as  

RI =  log N / ts  .  (4)  

In particular, if the search time ts scales linearly with the number 
of attractors, the scaling of information generation rate RI with 
number of attractors N is 

RI  ( log N )  / N   .  (5)  

V. EXAMPLE OF BASIN HOPPING DYNAMICS

In this final section, we consider a particular model of basin 
hopping dynamics on the basal attractor, and show how properties 
of the dynamics determine the search times.  

Specifically, we consider that the basal attractor is formed as a 
result of destabilization of the modal attractors. This is actually 
the situation in the nonlinear optical resonators and chaotic neural 
networks which have been previously studied in physical and 
numerical experiments of adaptive mode selection [12-17]. This 
type of chaos has also been referred to as chaotic itinerancy [12, 
19]. 
We consider the modal attractors are limit cycles or fixed point 

attractors in the multistable regime, and for simplicity consider a 
Poincare map representation of the dynamics where the modal 
attractors correspond to fixed points (“modal points”) of an 
m-dimensional map. At P0 the points are stable with only stable 
exponents 0s (j) (j=1,2,…,m) and at P1 the fixed points are saddle 
points with both stable exponents s (j) (j=1,2,…, m-Du) and
unstable exponents u (j) (j= m+1-Du,…,m), where Du is the 
number of unstable dimensions. For simplicity we assume that all 
the stable exponents are the same value s, and all the unstable 
exponents are the same value u.
Next we assume that one of the modal points ak* corresponds to a 

positive response Y, and that there is a trap set ST centered on this 
modal point. Let L be the typical size of the area of the set of states 
near ak* which get a positive response, relative to the size of the 

trap set, and consider the case that L is larger than 1, i.e. the 
positive response domain near ak* is bigger than the trap set. We 
also assume the injection into the positive response domain is 
uniform random, due to strong mixing of the chaotic dynamics.  
After injection into the positive response domain, and waiting 

time t, the probability pt of actually being in the trap set is  

pt = (1/L u
t) Du    ,  (6)  

as determined by the ratio of orbits which do not escape from the 
trap set along the unstable directions. Then the number of basin 
visits needed to reach a trap set is expected to be

nv = (L u
t)Du    .  (7)  

On the other hand, we can estimate the recurrence time tr between 
visits to the same basin as  

tr  = N / log u   ,  (8)  

where N  is the number of basins, and 1/ log u is the average 
residence time at each basin visit. Average residence time is 
estimated by the time required to escape the vicinity of the saddle 
point along the maximally unstable direction. 
Hence the search time ts is estimated as 

ts   = nv tr

= N(L Du) u
t Du  / log u   .  (9)  

Now due to the tradeoff between reducing u to increase the trap 
probability, and increasing u to reduce the recurrence time, there 
is an optimal value of u. which minimizes the search time. The 
optimal value of u is given by  

D u log u = 1/t  .  (10)  

It is reasonable to assume that the value of u can be varied by 
changing the value of the parameter P1. When the optimal value of 

u applies, the average search time is   

ts   = e N(L Du) D u t   ,  (11)  

or in terms of u , 

ts   = e N(L Du) / log u   .  (12) 

Next we consider the case where the convergence is stronger 
than the divergence, given by the following condition 

u s < 1.  (13)  
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In this case, after injection into the positive response domain, the 
probability of being in the trap set increases up to a certain time tw

which is determined by the condition L s
tw = 1.

tw =log L / log s  (14)  

If we assume that this value of optimal wait time is used, then the 
condition for minimal search time becomes  

D u log u = log s  / log L   .  (15)  

With this condition, the minimal search time is given by,  

ts   = e N(L Du) D u log L / log s    .  (16)  

As mentioned above, in the case that the chaotic basal attractor is 
formed by the de-stabilization of the modal attractors it is 
reasonable to assume that the optimal condition specified in Eqn. 
(15) can be achieved by suitable choice of the value of parameter 
P1. The results of this section illustrate the advantage of tuning 
chaos in basal attractors (in this case using parameter P1, for 
example) to optimize search times by balancing convergence and 
divergence in search dynamics. (Note that the condition Eqn. (15) 
was mentioned previously in references [9-10], with a different 
symbol definition in which the symbol corresponds to log  of 
this paper.) This balance of convergence and divergence in search 
dynamics provides another perspective of the optimality of 
dynamics near “the edge of chaos” [22, 23]. 

VI. CONCLUSIONS

In this paper we have described an approach to modeling 
systems which achieve mode adaptation using basin-hopping 
dynamics. Our modeling approach is based on the specification of 
coarse-grained transition rules. This approach can be used to 
analyze and compare various different basin-hopping systems. 
This approach can provide insights into the search dynamics and 
the factors determining search times.  

Systems which use this type of adaptive stochastic 
basin-hopping can support highly flexible behavior due to the 
flexible nature of the coupling between internal mode dynamics 
and external fitness responses. However, due to the trial-and-error 
nature of the search process the time to find a suitable mode is an 
important practical issue.  

We developed the analysis for a number of different cases 
exploiting specific assumptions about the dynamics and the 
adaptive control. In particular, a common assumption is the 
existence of multiple attractors or one global spanning attractor, 
depending on parameter values. Introduction of the condition that 
the system should be allowed to approach the asymptotic 
distribution on an attractor before switching the parameter greatly 
simplifies the analysis. However, it can result in longer search 

times. Relaxing this condition reduces the search times, but makes 
the analysis more complicated. In the final section we introduced 
a number of extra assumptions about the structure of the basins 
and responses to allow an estimate of search times in terms of 
characteristic lyapunov exponents.  
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