1-4244-0703-6/07/$20.00 ©2007 IEEE

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Simulated Annealing with Opposite Neighbors

Mario Ventresca and Hamid R. Tizhoosh

Abstract— This paper presents an improvement to the vanilla
version of the simulated annealing algorithm by using opposite
neighbors. This new technique, is based on the recently proposed
idea of opposition based learning, as such our proposed algorithm
is termed opposition-based simulated annealing (OSA). In this
paper we provide a theoretical basis for the algorithm as well
as its practical implementation. In order to examine the efficacy
of the approach we compare the new algorithm to SA on six
common real optimization problems. Our findings confirm the
theoretical predictions as well as show a significant improvement
in accuracy and convergence rate over traditional SA. We also
provide experimental evidence for the use of opposite neighbors
over purely random ones.

Index Terms— Opposition based learning, simulated annealing,
optimization.

I. INTRODUCTION

MPROVING properties of accuracy, convergence and re-

liability of a global search algorithm is an important area
of research. There are direct practical effects, in that higher
quality solutions to real world problems can be discovered in
shorter periods of time. This can lead to improved organization
as well as saving money and time for a myriad of applications
from a variety of different areas.

Simulated annealing is a popular global search technique
that has been widely utilized over the past quarter century [1],
[2]. This paper proposes a method based on the concept of
opposition-based learning to improve simulated annealing. We
will provide theoretical evidence to support a claim that using
this concept we are guaranteed a more desirable evaluation
function. By using opposition-based learning we will show an
improvement in the accuracy, convergence rate and reliability
of simulated annealing.

The remainder of this paper is organized as follows: Section
II describes the motivation and required theoretical founda-
tions of opposition-based learning that are needed for this
paper. Section III will describe the OSA algorithm followed
by a description of the benchmark functions in Section IV.
The experimental setup will be outlined in Section V and
our results will be presented in Section VI. Conclusions and
directions for future research will be given in Section VIL

II. OPPOSITION BASED LEARNING

The concept of opposition-based learning (OBL) is a re-
cently proposed computational intelligence idea [3]. OBL is a

This work has been supported in part by Natural Sciences and Engineering
Council of Canada (NSERC).

M. Ventresca is a student member of the Pattern Analysis and Machine
Intelligence (PAMI) laboratory in the Systems Design Engineering Depart-
ment, University of Waterloo, Waterloo, ONT, N2L 3G1, CANADA (email:
mventres @pami.uwaterloo.ca)

H. R. Tizhoosh is a faculty member of the Pattern Analysis and Machine
Intelligence (PAMI) laboratory in the Systems Design Engineering Depart-
ment, University of Waterloo, Waterloo, ONT, N2L 3G1, CANADA (email:
tizhoosh@uwaterloo.ca)

simple concept that can be used to accelerate the convergence
rate and/or accuracy and reliability of a learning algorithm.
In this section we will provide the motivating principles and
theoretical foundations of OBL.

A. Motivating Principles

It seems that nearly everything in nature has an opposite, for
example we can observe male/female sexes, positive/negative
electrical charges, hot/cold temperatures, and so on. We can
also observe opposites in a social context where revolutions
represent a rapid change from one doctrine to another, typi-
cally opposite one. For computational intelligence, this idea
manifests itself as a solution and opposite solution and can be
represented as a pair < s,5 >, respectively. The manner in
which these solutions correspond can be defined according to
some mapping function.

Consider the problem of discovering the minima of
some unknown real function f:f8 — R. In general a
search/optimization algorithm will begin by making some
random guess/solution s over the interval on which f is
defined. If we are not satisfied with f(s) then we can choose
some other solution (either dependant or independent on s) in
the hopes of discovering some s such that | f(s*) — f(s)]| <€,
where € € R is a desired accuracy and s* is the optimal
solution. Alternatively, we may terminate after a maximum
number of guesses have been evaluated. In any event this
stochastic process has an associated computational time. Thus,
it is important to develop algorithms and techniques that can
determine high quality solutions quickly and reliably, which
is where OBL can be used.

The premise of OBL is that in lieu of just selecting some
random guess, it is beneficial to also consider its opposite
guess. If we take two random guesses then it is possible that
they are relatively close to each other in solution space, which
can hinder the performance of the algorithm. On the other
hand, if the two guesses are sufficiently distant from each
other, say on opposite sides, then we cover the search space
more adequately. Effectively, we are maintaining a higher
degree of diversity. With reference to the above example, an
OBL-based search algorithm will simultaneously consider s
and its opposite s and continue with the more desirable of the
two. For a minimization problem this can be accomplished by
taking the minimum of the two guesses (with respect to some
evaluation function). In order to avoid convergence to a local
optima we can probabilistically accept this value.

To date, OBL has been utilized to improve the con-
vergence rate and/or accuracy of differential evolution (by
chromosomes/anti-chromosomes) [4], [5], [6], reinforcement
learning (by opposite actions/states) [7], [8], [9] and backprop-
agation learning in feed forwards neural networks (by opposite

186

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

transfer functions) [10]. This paper will aim to improve yet
another popular global search algorithm, namely simulated
annealing [11], [12].

B. Theoretical Foundations

The key to understanding opposition-based learning, is in
the definition of an opposite, which is accomplished by the
opposition map and opposite evaluation functions. As we will
show below, this map creates a symmetric evaluation function
which is guaranteed to have a more desirable expected value
than otherwise. However, we must first define what it means
to be opposite, as it is used in this paper.

Definition 1 (Opposite): Given a representation space .S,
two solutions s1, so € S are considered opposite if d(s1,7*) =
d(sa,7*), where d(-) is a distance function and 7* is some
reference point in S. We will denote the opposite of s as .
Furthermore, s; and s, must lie on opposite sides of r*.

This definition allows for multiple opposites. However, to be
computationally efficient it is recommended that each element
have only 1 unique opposite. Furthermore, knowledge of d(-)
is not required in practice. Now, we can define the opposite
map as

Definition 2 (Opposite map): Any function ¥: S — S that
given some solution s, returns the set ¢} containing s and the
set of its opposites 5. That is ¥ = s U §, where |§| > 1.

An important consequence of this definition, is that elements
of ¥, can only be opposites of each other. That is, given some
s3 € 8, soNY; = ¢ if and only if s is not an opposite of
some element in ¥J;. Additionally it is possible, although not
practically useful, to define § = {s} (i.e. s is its own opposite).

If we let © be the set of all resulting sets of the represen-
tation space R by some opposite map ¥, then |©| < |R|. If
each element ¥; € O contains 2 elements (each value has a
single unique opposite), then |©| = |R|/2, which effectively
halves the search space. In the event |R| = oo, there will still
be an improvement in expected result as a consequence of the
opposite evaluation function, which results from the opposite
map.

Definition 3 (Opposite evaluation function): Any function
®: S — R that takes an element s € S and returns the most
desirable (w.r.t. the problem) of ¥(s) can be utilized as an
opposite evaluation function.

As an example, if we consider a minimization problem,
evaluation of any s; € 9, returns min(s;) V s; € ¥;. The
dotted line in Figure 1 represents the original evaluation func-
tion f to some hypothetical problem. Assuming an algorithm
not using OBL has selected a solution of 1, then f(1) = 16.
However, if we define an opposite map as ¥(s) = s, —s,
which is symmetric about r* = 0, then using the concept
of opposition f(1) = min(f(1), f(—1)) = —5.1378. Clearly,
—5.1378 is a much more desirable value than 16. The solid
line in Figure 1 represents the opposite evaluation function for
this problem.

100 T

8ol :: g

Evaluation
n
o
;
.

20t e 1

Solution

Fig. 1: Example of an opposite evaluation function w.r.t. the
original evaluation function.

Another possible interpretation is to dynamically alter ©
after each iteration, using the previous solution as the reference
r*. For example, some OBL-based algorithm has solution
st = 1 at time t, then after the algorithm applies some
perturbation method to generate s‘*' = 1.5. Then, we can
modify our opposite map such that 5*t! = 0.5, resulting in
values of f(1.5) = —2.8103 and f(0.5) = 19.0. So, without
using opposition we have a 50% chance of selecting f(1.5),
whereas using OBL it is a guarantee. In either case, it is
required that the opposite map definition is strictly adhered
to. This is a necessary condition to ensure a lower expected
value of the evaluation function than otherwise.

Theorem 1: For any evaluation function f:S — R over
solution space S and opposite evaluation function ®: S — R,
®(s) yields at worst case an equal expected value to f(s).
That is, for a minimization problem E[®(s)] < E[f(s)], and
for a maximization problem, E[®(s)] > E[f(s)].

Proof: The proof is presented without loss of generality
for a minimization problem where each solution has 1 opposite
and follows directly from the definition of expected value of
continuous variables.

E[f(s)] = Sf(S)PV”(S)dS
E[®(s)] = /S‘I>(5)Pr(s)ds
= i min(f(s), f(3))Pr(s)ds
Since min(f(s), f(8)) < f(s) Vs € S then it must follow
that E[®(s)] < E[f(s)]. |

Note that taking the minimum of two purely random solu-
tions 71, 7o does not lead to much improvement over traditional
random sampling since the E[r;] = E[rs]. While, the extra
guess does increase the probability of discovering a better
solution it is not guaranteed. More importantly, r1, 72 are not
dependant on each other to exist. That is for a given rq, ro
can take a different value each time it is evaluated.

187

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Also, the situation where E[®(s)] = E[f(s)] occurs is when
the difference between all pairs of elements for each 9; € © is
zero, i.e. V ©, |s;—s;j| = 0Vs;,s; € 9;. For this to occur, the
opposite map must be a perfectly symmetric function, which
is very highly improbable for real world problems.

Of course for a given problem many possible opposite maps
(which directly influence the opposite evaluation function)
may exist, the best of which will provide the lowest expected
evaluation. However, defining the optimal mapping is not
required to observe beneficial results.

III. OPPOSITION BASED SIMULATED ANNEALING

Simulated annealing (SA) is a stochastic global search
technique developed during the early 1980°s [11], [12]. This
section will present a modified version of the SA algorithm
based on opposition-based learning.

Algorithm 1 presents this new opposition-based simulated
annealing (OSA) approach. Much of the algorithm is identical
to traditional SA, with the exception of lines 14-21, which im-
plement opposition. The function randomGuess() generates
and returns a random solution; evaluate(Guess) evaluates
the quality of the given Guess; neighbor(Guess) returns a
neighbor of the passed Guess; U(0,1) generates a uniform
random value between 0 and 1, and update(Temp) calculates
the cooling schedule, returning the new temperature.

The function opposite(N, Guess) generates a guess that is
opposite to neighbor IV with respect to Guess, effectively cre-
ating an opposite neighbor. Thus, we are utilizing a temporal
version of OBL, as described in Section II. The reasoning for
a time-dependant frame of reference over a constant one is
due to an assumption of the search space and behavior of SA.
Specifically, a search algorithm tends to discover regions of
the space where high quality solutions reside. Additionally we
assume that if we are currently exploring one of these regions,
then the probability of a higher quality solution existing on the
exact opposite side of the search space is small.

Lines 14-21 define the use of opposition in the OSA algo-
rithm (the lines are italicized). In line 14 we probabilistically
consider to take into account the opposite neighbor. This
probability decreases over time, proportional to the number
of iterations completed and the constant K. This accounts for
the fact that opposition tends to be more beneficial during early
stages of learning than later on '. Lines 15 and 16 generate and
evaluate the opposite guess with respect to the current guess,
respectively. In lines 17-20 we decide to choose the best of
the two neighbors.

IV. TEST FUNCTIONS

In order to test the quality of the OSA approach versus
traditional SA we have utilized five common real optimization
functions. Each of these is a minimization problem.

The sphere problem [13] is defined as

IRecall that opposition is embedded into an existing algorithm. Initially an
algorithm is unbiased as to what solutions it guesses and so the influence of
opposition is potentially large. However, as the number of iterations increases
focus of the algorithm changes, resulting in a smaller range of values under
consideration. So, the influence of opposition is likely small. If the algorithm
did behave in this manner, it would be purely random.

Algorithm 1 Opposition-based Simulated Annealing (OSA)

Require: K := constant
1: {Initial Conditions}

2: CurGuess < randomGuess()
3: BestGuess <= Guess
4: CurScore < evaluate(CurGuess)
5. BestScore <= CurScore
6: Temp < BestScore
7: iteration < 0
8:
9: while termination criteria not satisfied do
10: N < neighbor(CurGuess)
11: Ne < evaluate(N)
12:
13: {Check opposite neighbor}
14: ifU0,1) < eiteration/K tpop
15: O < opposite(N, CurGuess)
16: Oe < evaluate(O)
17: if Oe < Ne then
18: N <0
19: Ne <= Oe
20: end if
21: endif
22:
23: {Found new best?}
24: if Ne < BestScore then
25: BestGuess < N
26: BestScore <= Ne
27: end if
28:
29: {Do we accept N?}
30: if u(o’ 1) < e(CurScorche)/Temp) then
31 CurGuess <= N
32: CurScore < Ne
33: end if
34:

35: ateration < iteration + 1
36: Temp < update(Temp)
37: end while

sphere(x) = Z x;? Y]
i=1

where —5.12 < z; < 5.12. The minimum of this function is
0 and occurs at x = 0, ..., 0.
Rosenbrock’s Valley function [13] is evaluated according to

n—1
rosenbrock(x) = Z[lOO(xiH -2+ (1-z)% @

=1

where —2 < z; < 2. This function has a minimum at x =
1,...1, with a corresponding value of 0.

A solution to Rastrigin’s function [14] shown in equation
(3) is defined over —5.12 < z; < 5.12. The optimal value of

188

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

this function is rastrigin(0, ...,0) = 0.

rastrigin(x) = 10n + Z(x? —10cos(2mx;)) (3)

i=1
We also have utilized a Schwefel function [15] (equation 4)
which is bounded according to —10 < z; < 10. The function

has a minimum at schwefel(0,...,0) == 0.
schwefel(x) = Z || + H |i)
i=1 i=1

The Alpine function is calculated according to

n
alpine(x) = Z |2 sin(z;) + 0.1, 3)
i=1
where —10 < z; < 10. The minimum of this function occurs
at alpine(0,...,0) = 0.
The final function we have utilized is De Jong’s noiseless
function #4 [13], which is defined as

n
dejong(x) = Z izt (6)
i=1
where —1.28 < z; < 1.28. The corresponding minimum value
is found at dejong(0, ...,0) = 0.

V. EXPERIMENTAL SETUP

This section will describe the behavior of the functions
needed for OSA to operate, as described in Section III. Specifi-
cally, we will outline the randomGuess(), neighbor(Guess),
update(Temp) and opposite(N, Guess) functions.

A. Generating Guesses

Both the SA and OSA algorithms commence by generating
a random starting solution via the randomGuess() function.
This is accomplished by randomly selecting a uniform value
for each variable of an n-dimensional solution. That is, x; =
U(L,H), where L and H are the bounds of each variable as
described in Section IV.

B. Neighborhood Function

A neighbor of some current guess CurGuess is generated
using the neighbor(Guess) function. Specifically, we select
m of the n variables in CurGuess and add a uniform
random value +A where A = (L + H)/15, where L and H
represent the lower and upper bound of the current problem,
respectively. This operator is not optimal, but performs well
on each test function.

C. Temperature Update

Fundamental to the operation of simulated annealing is the
temperature update function, update(T'emp). For these exper-
iments we have empirically decided to update the temperature
according to

Temp' = o- Temp'™!)

for iteration . Initially, we set the decay constant o = 0.95.

D. Determining Opposites

As mentioned in Section III, we are utilizing a dynamic ref-
erence point in determining opposites, which is accomplished
by the opposite(N, Guess) function. Here, IV is a neighbor
of Guess as generated by the neighbor(Guess) function. An
opposite of N with respect to Guess is a point N directly
opposite to N. We can summarize this as

N = Guess; + A ®)

where A represents the opposite value added to the i*" variable
of Guess to arrive at N by the neighbor function. For
example, if the neighbor function adds a value of 0.1 to Guess
to arrive at IV, then N = Guess — 0.1.

VI. EXPERIMENTAL RESULTS

This section describes the experimental results using the test
functions described in Section IV. The results that we present
have been taken from runs of length 5000 and averaged over
250 runs. For experiments using the OSA algorithm, the con-
stant K = 500 was empirically decided, but not optimal. This
resulted in an additional 500 calls to the evaluate(Guess)
function.

Our aim in these experiments is to examine the influence of
dimensionality and neighborhood function on the performance
of the OSA and SA algorithms in order to determine any sig-
nificant differences. Additionally, we confirm the influence of
opposition by considering a second random neighbor instead
of an opposite one.

A. Dimensionality

Here, we vary the dimensionality of each benchmark func-
tion in order to determine the sensitivity of OSA to various
sized problems. We will compare the results to those found
with traditional simulated annealing. The neighbor function
will alter only 1 variable as is described in Section V for these
experiments. The results for varying the problem dimension-
ality size of {10,25,50,100} are presented in Table I.

The results found using OSA show a much lower expected
value (u) and standard deviation (o) than with SA. In each
case the results of the OSA approach are more desirable than
those found with SA. For the 24 experiments 19 were better
using OSA, and 5 were equal (for ; 3 decimal places OSA
outperforms SA on all the experiments).

We tested the null hypothesis that the two means are equal
using a t-test with a 0.95 confidence. From the results we find
that all results except for rosenbrock with 10 dimensions are
statistically significant. Additionally, the results found by OSA
exhibited a lower standard deviation, meaning that the results
are more reliable.

Figure 2 shows the influence of dimensionality on con-
vergence of the OSA algorithm for the Schwefel function.
Increasing the dimensionality has the typical effect of requiring
more computation time for the algorithm to converge. The
behavior of the convergence curve is also very similar as the
dimensionality increases.

189

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE I: Results for experiments on dimensionality with
fixed variable change=1. The bolded values represent a sta-
tistically significant results at 0.95 confidence.

—5A i
—TT05A

Ewaluation

Fig. 3: Convergence of OSA versus SA on the De Jong

L
100

—_ "
150 200 250

Iteration

function of dimensionality 25.

TABLE II: Results for experiments on neighborhood with
fixed dimensionality = 100. The bolded values represent a
statistically significant results at 0.95 confidence.

300

350

400

SA OSA
dim o o o o

1 0.269 0.449 0.151 0.487

sphere 3 0.909 0.111 0.818 0.094
5 1.846 0.187 1.727 0.177
1 263.658 66.382 | 240.794 63.877

rosenbrock 3 190.613 62386 | 181.011 54.081
5 202.753 56.991 | 196.079 59.565

1 849.204 77.428 | 806.422 76.165
rastrigin 3 882.186 76.033 | 832.605 79.160
5 957.445 72301 | 899.624 73.026

1 4.633 1.144 3.550 0.572

schwefel 3 14.018 1.091 13.095 0.991
5 20.406 1.334 19.428 1.318

1 12.789 1.935 11.139 1.674

alpine 3 35.514 4.500 31.862 4.192
5 55.293 6.538 49.644 5.989

1 0.138 0.991 0.019 0.143

dejong 3 0.004 0.001 0.003 0.001
5 0.017 0.003 0.015 0.003

SA OSA

dim o I o
10 0.000 0.000 0.000
sphere 25 0.001 0.001 0.000
50 0.007 0.005 0.002
100 0.269 0.151 0.487
10 7.678 . 7.674 6.890
rosenbrock 25 38.218 25.779 35.465 23.910
50 89.842 42.118 87.762 41.673
100 263.658 66.382 | 240.794 60.877
10 82.371 24.925 63.258 22.654
rastrigin 25 215.611 38.620 | 182.938 36.001
50 422267 56.710 | 390.629 54.155
100 849.204 77.428 | 806.422 76.165
10 0.028 0.025 0.009
schwefel 25 0.178 0.159 0.033
50 0.793 0.692 0.093
100 4.633 3.550 0.572
10 0.128 0.099 0.047
alpine 25 0.798 0.682 0.225
50 3.080 2.809 0.512
100 12.789 11.139 1.674
10 0.000 0.000 0.000
dejong 25 0.000 0.000 0.000
50 0.000 0.000 0.000
100 0.138 0.019 0.143

500 T T T T
450+ B
. dim=10
400 - ———-dim=25 1
250l dim=50 _
dirm=100

- 300+ B

2

S 250t 4

bl .

W g+ 4
180+ 4
oo, B

.
S0F A
~ .
1 Rk . .
a 500 1000 1500 2000 2500 3000

[teration

Fig. 2: Influence of dimensionality on convergence of OSA on
the Schwefel function.

A comparison of the convergence of the OSA and SA algo-
rithms on the 25-dimensional De Jong function is presented
in Figure 3. Although both approaches eventually achieve a
similar final result, the OSA approach exhibits a much more
rapid convergence. This characteristic curve is can also be seen
above in Figure 2 for the Schwefel function.

B. Neighborhood

This experiment is aimed to discover the degree to which
the neighborhood function influences the outcome. We ran the
experiments for a fixed dimensionality of 100 and varied the
number variables that are altered by the neighbor function
from {1, 3,5}.

As with the dimensionality experiments, the average OSA
outcomes are relatively low compared to those achieved with
SA. In fact all results obtained using the OSA algorithm were
more desirable than those reached using SA. A t-test with a
0.95 confidence level confirmed that all the results are indeed
statistically significant. Furthermore, the standard deviations of
results found via the OSA algorithm are also relatively low,
and so the results are more reliable.

The influence of the number of variables altered at each
call of the neighbor(Guess) function can be seen in Figure
4 for the Alpine function. When the neighbor function only
perturbs a single variable the algorithm converges more rapidly
than when more variables are considered. This is reasonable
since the likelihood of escaping a local optima is lower if
the operator makes only a small change to the solution. Nev-
ertheless, the behavior of the convergence curve is relatively
similar.

190

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

350 T T T T T T T T T

300+ vars=5 b
———-vars=3
a0 e vars=1 i

Ewaluation

0
i 500

1 1 1 1 1 !
1000 1500 2000 2500 3000 3500 4000 4500 5000
[teration

Fig. 4: Influence of neighbor generation on convergence of
100-dimensional OSA for the Alpine function.

C. Randomness

As described by Yao [16] increasing the neighborhood size
corresponds to a higher probability of arriving at a global
minimum. So, to examine whether the observed improvements
are a result of opposition or just increased neighborhood
size we compare them against the results obtained by a
randomized version of OSA. If the results obtained by OSA
are of higher quality, then the results are not simply due to a
larger neighborhood. This is simply accomplished by replacing
line 15 in Algorithm 1 with neighbor(CurGuess), which
effectively generates two random, independent neighbors. The
randomized version of the OSA algorithm is referred to as
RSA below.

The results for this experiment are presented in Table III
where we fixed the dimensionality at 100. We also vary the
number of variables altered by each call to the neighbor
function as above.

TABLE III: Comparing OSA vs RSA, fixed dimension=100

RSA OSA
dim " o N o

1 0.220 0.530 0.151 0.487

sphere 3 0.826 0.096 0.818 0.094
5 1.787 0.185 1.727 0.177
1 230.556 63.818 | 240.794 63.877

rosenbrock 3 182.201 54387 | 181.011 54.081
5 192.794 49.155 | 196.079 59.565
1 843.953 78.029 | 806.422 76.165
rastrigin 3 864.800 71.285 | 832.605 79.160
5 934.826 77.407 | 899.624 73.026

1 3.890 0.858 3.550 0.572

schwefel 3 13.249 0.983 13.095 0.991
5 19.522 1.365 19.428 1.318

1 11.508 1.447 11.139 1.674

alpine 3 33.430 4.440 31.862 4.192
5 52.503 6.299 49.644 5.989

1 0.024 0.224 0.019 0.143

dejong 3 0.003 0.001 0.003 0.001
5 0.015 0.003 0.015 0.003

Most of the final results obtained with OSA are relatively

lower than those obtained with RSA. In total 14/18=78%
results favored OSA, 2/18=11% for RSA and 2/18=11% were
equal. The rosenbrock experiments yielded a slightly more
favorable result for the RSA algorithm. However, according
to a t-test at a 0.95 confidence level all but the dejong-5
and rosenbrock-3 experiments exhibit a statistically significant
difference in p. Also, as with the previous experiments, the o
values are lower, indicating a more reliable result. The average
number of function calls to the evaluate(Guess) function is
the same for both techniques.

D. Summary

The above experiments provide evidence to support the
theoretical expectation that opposition-based algorithms tend
to achieve a more desirable accuracy than those without.
The experiments considered both problem dimensionality and
neighbor generating functions to arrive at this conclusion.
As was also briefly discussed in Section II, OBL algorithms
should also converge at a more rapid rate. This behavior was
also observed in our experimentation.

The efficacy of opposite neighbors was also tested against
random neighbor generation. We find that in nearly all cases,
OSA outperformed the RSA algorithm in terms of final accu-
racy. Although, the RSA approach was able to also improve on
the vanilla version of SA. Convergence of OSA and RSA was
not significantly different, perhaps as a result of the respective
benchmark problem difficulties.

Figure 5 shows a plot of the results of the 100 dimensional
Rastrigin function with 5-variable neighbor generation. In this
case, the convergence trajectories are similar for each approach
since the dynamics of the underlying search process have not
been drastically altered. However, this is another example of
the improved accuracy that can be achieved with OBL.

1000 T T T T

Evaluation

300

o 1000 2000 3000 4000 5000

lteration

Fig. 5: Comparison of convergence for OSA, RSA and SA
on the Rastrigin function with dimension=100 and 5-variable
neighbor generation.

Another important result that was discovered concerns the
reliability of the final results. That is, the OSA algorithms
was able to not only achieve a more desirable result, but also

191

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

do so with less standard deviation. This means that the OSA
algorithm tends to yield more reliable results than either the
RSA or SA approaches.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a modification to the simulated annealing
algorithm based on the concept of opposition-based learning.
We first provided theoretical reasoning behind OBL, and
proved that it’s associated opposite evaluation function is
more desirable with respect to expected value than originally.
From these theoretical properties of OBL the new algorithm,
termed OSA, should be able to achieve more accurate results
than traditional SA. We conducted experiments varying the
dimensionality and neighbor generation to confirm this. Our
experimentation also revealed that the convergence of OSA
was at a higher rate than SA, and that the final results exhibited
less variance.

Additionally, we conducted experiments aimed at showing
the benefit of OSA over a random version, RSA. From these
results it was determined that opposition indeed did yield more
desirable results, which was also predicted theoretically.

Since the concept of OBL is in its infancy, there is a need
to further study its theoretical properties. In this direction we
may be able to provide recommendations regarding opposite
maps, as well as how to best incorporate OBL into existing
algorithms. It is possible that this could also lead to the
development of a new search algorithm. Other future work
involves examination of a wider array of benchmark and
practical applications. Also, exploration of possible methods
to extend existing algorithms using the concept of opposition
is an important research direction.

REFERENCES

[1] J. D. Pinter, Global Optimization: Scientific and Engineering Case
Studies. Springer, 2006.

[2] P.J. M. Van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory
and Applications. Springer, 1987.

[3] H. R. Tizhoosh, “Opposition-based Learning: A New Scheme for
Machine Intelligence,” in International Conference on Computational
Intelligence for Modelling, Control and Automation, 2005.

[4] S. Rahnamayn, H. R. Tizhoosh, and S. Salama, “A Novel Population
Initialization Method for Accelerating Evolutionary Algorithms,” (to
appear) Computers and Mathematics with Applications, 2006.

[5] S. Rahnamayn, H. R. Tizhoosh, and S. Salama, “Opposition-based
Differential Evolution Algorithms,” in IEEE Congress on Evolutionary
Computation, pp. 7363-7370, 2006.

[6] S. Rahnamayn, H. R. Tizhoosh, and S. Salama, “Opposition-based
Differential Evolution Algorithms for Optimization of Noisy Problems,”
in IEEE Congress on Evolutionary Computation, pp. 6756-6763, 2006.

[71 M. Shokri, H. R. Tizhoosh, and M. Kamel, “Opposition-based Q(\) Al-
gorithm,” in IEEE International Joint Conference on Neural Networks,
pp. 646-653, 2006.

[8] H. R. Tizhoosh, “Opposition-based Reinforcement Learning,” Journal
of Advanced Computational Intelligence and Intelligent Informatics,
vol. 10, no. 4, pp. 578-585, 2006.

[9] H. R. Tizhoosh, “Reinforcement Learning Based on Actions and Oppo-
site Actions,” in International Conference on Artificial Intelligence and
Machine Learning, 2005.

[10] M. Ventresca and H. R. Tizhoosh, “Improving the Convergence of

Backpropagation by Opposite Transfer Functions,” in IEEE International

Joint Conference on Neural Networks, pp. 9527-9534, 2006.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by

Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

[12] V. Cerney, “A Thermodynamical Approach to the Travelling Salesman
Problem: an Efficient Simulation Algorithm,” Journal of Optimization
Theory and Applications, vol. 45, pp. 41-51, 1985.

[13] K. A. De Jong, An Analysis of the Behavior of a class of Genetic
Adaptive Systems. PhD thesis, University of Michigan, 1975.

[14] D. Mhlenbein, H. Schomisch, and J. Born, “The Parallel Genetic
Algorithm as Function Optimizer,” Parallel Computing, pp. 619-632,
1991.

[15] J. P. Schwefel, Evolution and Optimum Seeking. John Wiley & Sons,
1995.

[16] X. Yao, “Simulated Annealing with Extended Neighbourhood,” Interna-
tional Journal of Computer Mathematics, vol. 40, pp. 169-189, 1991.

192

