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Abstract— This paper reviews the advances of type-2 fuzzy
sets for pattern classification. The recent success of type-2
fuzzy sets has been largely attributed to their three-dimensional
membership functions to handle more uncertainties in real-world
problems. In pattern classification, both feature and hypothesis
spaces have uncertainties, which motivate us of integrating type-
2 fuzzy sets with traditional classifiers to achieve a better
performance in terms of robustness, generalization ability, or
classification rates. We describe recent type-2 fuzzy classifiers,
from which we summarize a systematic approach to solve pattern
classification problems. Finally, we discuss the trade-off between
complexity and performance when using type-2 fuzzy classifiers,
and explain the current difficulty of applying type-2 fuzzy sets
to pattern classification.

I. INTRODUCTION

As an extension of type-1 fuzzy sets (T1 FSs), type-2 fuzzy
sets (T2 FSs) were initially introduced by Zadeh [1], and a
subsequent investigation of properties of T2 FSs and higher
types was done by Mizumoto and Tanaka [2], [3]. In [4] Klir
and Folger explained that the T1 membership functions (MFs)
might be problematical, because a representation of fuzziness
is made using membership grades that are themselves precise
real numbers. Thus it was natural to extend the concept of T1
FSs to T2 FSs and even higher types of FSs. In particular,
they called interval type-2 fuzzy sets (IT2 FSs) as interval-
valued FSs. Recently Mendel and John [5] introduced all
new terminology to distinguish between T1 and T2 FSs, by
which T2 FSs can be represented in vertical-slice and wavy-
slice manners respectively. They also illustrated the concept
of embedded FSs, which shows potential expressive power of
T2 FSs for handling uncertainty. To rank T2 fuzzy numbers,
Mitchell [6] ranked all embedded T1 fuzzy numbers associated
with different weights. Set operations are foundations in the
theory of T2 FSs, which were first studied by Mizumoto and
Tanaka [2]. Their works were later extended by Karnik and
Mendel [7] for practical algorithms to perform union, intersec-
tion, and complement between T2 FSs. In [5] Mendel and John
reformulated all set operations in both vertical-slice and wavy-
slice manners. They concluded that in practice general T2 FSs
operations are too complex to implement, but operations on
IT2 FSs involve only simple interval arithmetics so that they
have been widely used. As the theoretical foundation of T2
FSs, Liu and Liu [8] established T2 fuzzy possibility theory.
In [9] Mendel summarized developments and applications of
T2 FSs before the year 2001. The recent advances in T2 FSs
and systems since the year 2001 have been introduced in [10].
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Fig. 1. The three-dimensional type-2 fuzzy membership function. (a) shows
the primary membership with lower (thick dashed line) and upper (thick solid
line) membership functions, where h(x) and h(x) are lower and upper bounds
given the input x. The shaded region is the foot print of uncertainty. (b)
shows the Gaussian secondary membership function. (c) shows the interval
secondary membership function.

Recent advances of T2 FSs have been largely attributed
to the three-dimensional type-2 fuzzy membership functions
(MFs) as shown in Fig. 1. The T2 MF evaluates the uncertainty
of the input x by the fuzzy primary membership, [h(x), h(x)],
as shown in Fig. 1 (a), which is further evaluated by the sec-
ondary MF in Fig. 1 (b) and (c). The footprint of uncertainty
(FOU) is the shaded region bounded by lower MF h(x) and
upper MF h(x). The FOU reflects the amount of uncertainty in
the primary membership, i.e., the larger (smaller) the amount
of uncertainty, the larger (smaller) will the FOU be. Fig. 1
(b) shows an example of Gaussian secondary MF. An IT2 FS
has an interval set secondary MF in Fig. 1 (c). Because all the
secondary grades are unity, we can represent the IT2 FS by the
interval of upper and lower MFs, i.e., [h(x), h(x)]. Operations
on general T2 FSs [5], [7], meet “�” and join “�”, involve an
intractable combinatorial problem of the primary membership,
whereas IT2 FSs [11] use only interval arithmetic leading to
very simple operations. Without loss of generality, we focus
on IT2 FSs for pattern classification unless otherwise stated.

The T2 MF can be viewed as a union of embedded T1
MFs with fuzzy parameters. Fig. 1 (a) can be viewed as the
T1 Gaussian MF with uncertain mean μ, which is bounded
by an interval [μ, μ]. We assume the mean vary anywhere in
the interval, which results in the movement of the T1 MF
to form the FOU. It is easy to see that if such movement is
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uniform, i.e., the mean has a uniform MF, then the FOU is also
uniform with equal possibilities, so does the secondary MF in
Fig. 1 (c). In other words, if the mean is a fuzzy variable [8]
with uniform MF in Fig. 1 (a), the output [h(x), h(x)] of the
input x is also a fuzzy variable with uniform MF in Fig. 1
(c). However, if the mean is with Gaussian MF, the output
is definitely not associated with Gaussian secondary MF in
Fig. 1 (b). Therefore, in practice it is convenient to define
the secondary MF directly without considering the MF of the
fuzzy parameters of the original T1 MF, though we know
that there is a complex relationship between MFs of fuzzy
parameters and fuzzy outputs.

T2 FSs may be applicable when [5]:
1) The data-generating system is known to be time-varying

but the mathematical description of the time-variability
is unknown (e.g., as in mobile communications);

2) Measurement noise is non-stationary, and the mathemat-
ical description of the non-stationarity is unknown (e.g.,
as in a time-varying noise);

3) Features in a pattern recognition application have statis-
tical attributes that are non-stationary, and the mathemat-
ical descriptions of the non-stationarity are unknown;

4) Knowledge is mined from a group of experts using
questionnaires that involve uncertain words;

5) Linguistic terms are used that have a nonmeasurable
domain.

Observe that pattern classification is concerned with all of
them, which motivates us of using T2 FSs for handling
uncertainties in pattern classification [12].

In the next section we discuss the types of uncertainty in
pattern classification. In Section III we demonstrate that T2
FSs can provide additional information for pattern classifi-
cation especially for outliers [13] using information theory.
After integrating with other classifiers, T2 fuzzy classifiers
may have the potential to outperform their counterparts. In
Section IV we study recent T2 fuzzy classifiers for real-world
problems, i.e., classification of MPEG VBR video traffic [14],
evaluation of welded structures [15], speech recognition [16]–
[18], handwritten Chinese character recognition [12], [19],
[20], and classification of battlefield ground vehicles [21].
Based on these cases, we summarize a systematic method of
applying T2 FSs to pattern classification. Section V discusses
some implementation problems of T2 fuzzy classifier in terms
of the complexity and performance trade-off.

II. UNCERTAINTY IN PATTERN CLASSIFICATION

Pattern classification typically involves the partition of the
unknown observation X (pattern) according to the class model
(rule) λω, 1 ≤ ω ≤ C. Fig. 2 shows a pattern classification
system [13] including five basic components: sensing, segmen-
tation, feature extraction (feature space), classification, and
post-processing. This system reflects a functional relationship
between the input and output decision. We shall choose
a particular set or class of candidate functions known as
hypotheses before we begin trying to determine the correct
function. The ability of a hypothesis to correctly classify data

input

signal level

semantic level

sensing

segmentation

feature extraction

classification

learning

post-processing

feature space

hypothesis space

decision

Fig. 2. The structure of the pattern classification system.

not in the training set is known as its generalization. The
process of determining the correct function (often a number of
adjustable parameters) on the basis of examples of input/output
functionality is learning. Based on the above, we have three
tasks in pattern classification:

1) Extract features that can be partitioned;
2) Choose a set of hypotheses that contains the correct

representation of the decision function;
3) Design the learning algorithm that determines the

best decision function from the feature and hypothesis
spaces.

Inevitably uncertainties exist in both of the feature and
hypothesis spaces. In statistical pattern recognition [13], we as-
sume randomness in both spaces. In the feature space, random
observations are generally expressed by the class-conditional
probability density functions (PDFs). In the hypothesis space,
the parameters of the decision function are random variables
with some known prior distributions, and training data convert
this distribution on the variables into posterior probability
density. Whereas in T2 FSs we take all possibilities of un-
certain parameters into account, Bayesian methods [13] select
only the best precise parameters to maximize the posterior
probability density. Thus classification is made by minimizing
the probability of error. However, the insufficient and noisy
training data often make the decision function not always the
“best” in practice as shown in Fig. 3 (a) and (b). Furthermore,
we find that randomness may be difficult to characterize the
following uncertainties [12], [22], [23]:

1) Uncertain parameters of the decision function because
of insufficient and noisy training data;

2) Non-stationary observation that has statistical attributes,
and the mathematical description of the non-stationarity
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Fig. 3. In (a) and (b), the distribution of the training data and test data
are the solid line and dotted line. Because of incomplete information and
noise, the two distributions are not close. In (c) and (d), by incorporating
uncertainty in the class model, i.e., letting the model move in a certain way,
one of the models (the thick solid line) is probably to approximate the test data
distribution. The shaded region is the “footprint” of the model uncertainty.

is unknown [5], [14];
3) Uncertain matching degree between the observation and

class model.

One of the best sources of general discussion about un-
certainty is Klir and Wierman [24]. Regarding the nature of
uncertainty, they state that three types of uncertainty are now
recognized:

1) Fuzziness (vagueness), which results from the imprecise
boundaries of FSs;

2) Non-specificity (information-based imprecision), which
is connected with sizes (cardinalities) of relevant sets of
alternatives;

3) Strife (discord), which expresses conflicts among the
various sets of alternatives.

Observe that the uncertainties in pattern classification may
be certain fuzziness and non-specificity resulting from in-
complete information, i.e., fuzzy decision functions (uncertain
mapping), fuzzy observations (non-stationary data), and fuzzy
match (uncertain matching degree).

For example, in Fig. 3 (a) and (b), the solid and dotted
lines denote the distributions of the training and test data
respectively. Because of incomplete information or noise, these
two distributions are not close. In (c) and (d), if we assume
that parameters of the distribution vary within an interval, one
of the embedded distributions, denoted by the thick solid line,
is probably to approximate the distribution of the test data. The
“footprint” of the uncertainty reflects the degree of uncertainty
in decision functions.

III. MOTIVATION

In Section II we argue that some uncertainty is difficult to
describe using randomness alone. Fuzziness is another impor-
tant uncertainty that we have to handle in pattern classification.

h(x)

h(x)

h(x)

x1 x2 x3 x4 x5 x6
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L6
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L

Fig. 4. The length L = | log h(x) − log h(x)| describes the uncertainty of
the input x to the T2 FS. The longer L the more uncertainty, which is marked
by the darker gray. For example, x1 deviates much from the mean, so it has
not only a lower membership grade but a longer L1 as well. Three intervals
L, Lu, and Ll measure the uncertainty of the input x.

It is necessary to deal with both randomness and fuzziness
within the same framework. Hence fuzzy randomness [25],
[26], fuzzy probability [27], and fuzzy statistics [28] come into
being. In contrast to these hybrid concepts, T2 FSs focus on
the union of all possibilities of original T1 FSs simultaneously,
which results in a fuzzy measurement of the primary member-
ship grade called the secondary grade. The input of T2 MFs is
the same with that of T1 MFs, but the output of T2 MFs is a
fuzzy variable instead of a precise membership grade. We will
explain later that such extension makes it possible to measure
subtle distinction between patterns. Therefore, within T2 FSs
framework, if we use the primary membership to describe
the randomness in feature space, and use the secondary MF
to describe the fuzziness of the primary membership, then
both kinds of uncertainties should be accounted for [12],
[16], [23]. Operations on T2 FSs propagate both randomness
and fuzziness in the pattern classification system until final
decision-making.

For analytical purpose, we often use the log-likelihood [13]
in pattern classification. In the Gaussian case, the maximum
log-likelihood estimation is equivalent to the least squares
algorithm [29]. In Fig. 1 (a), the effect of fuzzy parameters
of the Gaussian MF is that the likelihood becomes a fuzzy
variable from a precise real number. This fuzzy variable
contains more information of the input pattern x to the class
model, which can be propagated by operations on T2 FSs. As
shown in Fig. 4, T2 MFs measures each input x by a bounded
interval set, [h(x), h(x)], instead of a precise number h(x) in
T1 MFs or PDFs. In the case of Gaussian primary MF with
uncertain mean (See Fig. 1 (a)), the upper boundary of the
FOU is

h(x) =

⎧⎪⎨
⎪⎩

N(x; μ, σ), x < μ;

1, μ ≤ x ≤ μ;

N(x; μ, σ), x > μ,

(1)

and the lower boundary is

h(x) =

{
N(x; μ, σ), x ≤

μ+μ

2 ;

N(x; μ, σ), x >
μ+μ

2 ,
(2)
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Fig. 5. (a) the singleton and (b) the T2 nonsingleton fuzzification.

where

N(x; μ, σ) � exp

[
−

1

2

(
x − μ

σ

)2]
. (3)

The factor k [12], [16] controls the FOU,

μ = μ − kσ, μ = μ + kσ, k ∈ [0, 3]. (4)

Similar to the entropy of a uniform random variable, the
uncertainty of the interval set is equal to the logarithm of the
length of the interval [30]. Because we use the log-likelihood
for classification, we are interested in lengths of three intervals,
L = | log h − log h|, Ll = | log h − log h| and Lu = | log h −
log h| as shown in Fig. 4. Given the factor k, we have the
lengths (5)-(7). They are all increasing functions in terms of
deviation |x−μ| and the factor k. For example, given a fixed
k, the far the deviation of x from μ, the long the interval
L in (5), which increases its entropy (uncertainty) [30]. This
relationship accords with our prior knowledge. If the input
x deviates far from the class model, so called outlier [13],
[31], [32], it not only has a low membership grade h(x), but
also a long interval L reflecting its uncertainty to the class
model. Indeed, we are often uncertain whether outliers belong
to the class or not. From (5)-(7), we can see that k plays an
important role in controlling uncertainty. If k = 0, then L =
Ll = Lu = 0, which implies that no uncertainty exists so that
the membership grade h(x) is enough to make a classification
decision. If k increases for a fixed deviation |x−μ|, the length
of interval increases representing more uncertainty of the input
x. However, if k is large, Ll and Lu are long so that the two
bounds [h, h] will lose some information of the original h(x).

In T2 fuzzy logic systems (FLSs) [11], [33], the nonsin-
gleton fuzzification (NF) [34] is especially useful in cases
where the available training data are corrupted by noise.
Conceptually, the NF implies that the given input value is
the most likely value to be the correct one from all the values
in its immediate neighborhood; however, because the input is
corrupted by noise, neighboring points are also likely to be
the correct values. Fig. 5 compares the singleton fuzzification

TABLE I

CLASSIFICATION ERROR RATE COMPARISON (%) [15]

Dataset T2 FSs Benchmark

Welded Structures 5 6.8

(SF) with the corresponding T2 NF. Besides uncertainty in
data, T2 FSs are integrated with traditional classifiers to handle
uncertainty in the hypothesis space [35]. For example, Liang
and Mendel combined T2 FSs with T1 FLS-based classifiers
for MPEG VBR video traffic classification [14]. Zeng and Liu
integrated T2 FSs with hidden Markov model and Markov
random fields for speech and handwritten Chinese character
recognition [12], [16], [19], [20], [22], [23]. Wu and Mendel
designed T2 FLS-based classifiers based on T1 counterparts
for battlefield ground vehicles classification [21]. From these
cases, we obtain a systematic design method in (8)-(9) to
handle uncertain feature and hypothesis spaces in pattern
classification.

IV. TYPE-2 FUZZY DATA AND CLASSIFIERS

This section reviews the state-of-the-art T2 fuzzy classifica-
tion systems. We denote the class model with fuzzy parameters
by the T2 FS, λ̃ω, 1 ≤ ω ≤ C, where C is the number
of classes. As discussed in Section III, the SF assumes no
uncertainty in the feature space. The T2 (T1) NF models the
observation as a T2 (T1) FS denoted by X̃.

In [15] Mitchell viewed pattern classification as the similar-
ity measure between two T2 FSs, in which one set accounts
for the uncertain feature space in (8), and the other for
the uncertain hypothesis space in (9). The task of pattern
classification is equivalent to finding the class model which
has the largest similarity between these two T2 FSs:

ω∗ = arg
C

max
ω=1

S(X̃, λ̃ω). (10)

Mitchell [15] defined the similarity measure by the weighted
average of ordinary similarity measure of embedded T1 FSs,

S(Ã, B̃) =
M∑

m=1

N∑
n=1

wmnS(Am
e , Bn

e ), (11)

where wmn is the weight (secondary grade) with mth and nth
embedded T1 sets, and there are totally M and N embedded
T1 sets in Ã and B̃ respectively. Automatic evaluation of
welded structures using radiographic testing was modeled by
T2 FSs, and the classification error rate is 1.8% lower than
the benchmark (See Table I).

In [36] John et al. represented consultant’s interpretation
of the input images by T2 FSs, and classified images of
sports injuries by neuro-fuzzy clustering. They preprocessed
the expertise of clinicians using T2 FSs to describe the
imprecise data in (8). They showed T2 fuzzy preprocessing
and MINMAX clustering produced least confusion in relation
to consultants judgements.

In [14] Liang and Mendel classified video traffic by T2
FLS-based classifiers extended from T1 FLS-based classifiers
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L =

{
2k|x − μ|/σ, x ≤ μ − kσ, x ≥ μ + kσ;

|x − μ|2/2σ2 + k|x − μ|/σ + k2/2, μ − kσ < x < μ + kσ,
(5)

Ll = k|x − μ|/σ + k2/2, (6)

Lu =

{
k|x − μ|/σ + k2/2, x ≤ μ − kσ, x ≥ μ + kσ;

|x − μ|2/2σ2, μ − kσ < x < μ + kσ.
(7)

uncertain feature space: data + T2 FSs = T2 fuzzy data (noise or non-stationarity) (8)

uncertain hypothesis space: classifier + T2 FSs = T2 fuzzy classifier (unknown varieties of parameters) (9)

as in (9), and showed better performance than the Bayesian
classifiers when features have statistical attributes that are non-
stationary. Firstly, they designed the T1 FLS-based classifiers
as follows. Consider the observation, x = [x1, x2, . . . , xd]

′,
and two class models λ1 and λ2. For T1 fuzzy classifiers with
a rule base of M rules, each having d antecedents, the lth rule,
Rl, 1 ≤ l ≤ M , is

Rl : IF x1 is F l
1 and . . . and xd is F l

d, THEN

x is classified to λ1 (+1) [or is classified to λ2 (−1)]. (12)

Suppose that the antecedents F l
i , 1 ≤ i ≤ d, are described by

a T1 Gaussian MF,

hF l

i

(xi) = exp

[
−

1

2

(
xi − μi

σi

)2]
. (13)

They used the unnormalized output in the T1 FLS (the firing
strength of each rule is denoted by f l), namely,

y =

M∑
l=1

(f l
λ1

− f l
λ2

), (14)

and made a decision based on the sign of the output (y >
0,x → λ1). Secondly, they extended T1 FLS-based classifiers
to T2 FLS-based classifiers with a rule base of M rules, the
lth rule, Rl, 1 ≤ l ≤ M , is

Rl : IF x̃1 is F̃ l
1 and . . . and x̃d is F̃ l

d, THEN

x̃ is classified to λ̃1 (+1) [or is classified to λ̃2 (−1)]. (15)

Suppose that the antecedents F̃ l
i , 1 ≤ i ≤ d are described by

a T2 Gaussian primary MF with uncertain mean or standard
deviation [11], [14], [21]. Similar to (14), the output of the T2
FLS,

ỹ = �M
l=1(f̃

l
λ1

− f̃ l
λ2

), (16)

which is an interval rather than a precise number in (14).
For comparison, they also designed the Bayesian classifier
as follows. If equal prior class probability is assumed, the

Bayesian classifiers are

p(x|λ1) =
m∑

l=1

p(x|λl
1), (17)

p(x|λ2) =

n∑
l=1

p(x|λl
2), (18)

where the number of prototypes of class λ1 and λ2 is m and
n respectively. If the conditional probability of each prototype
is described by the Gaussian distribution,

p(x|λ) =
1√

(2π)d|Σ|
e−

1

2
(x−μ)′Σ−1(x−μ), (19)

where the mean vector, μ = [μ1, μ2, . . . , μd]
′, and the diago-

nal covariance matrix, Σ = diag(σ2
1 , σ2

2 , . . . , σ2
d). According

to the Bayesian decision theory [13], the optimal decision rule
is

IF p(x|λ1) − p(x|λ2) > 0, THEN x is classified to λ1,
(20)

IF p(x|λ1) − p(x|λ2) < 0, THEN x is classified to λ2.
(21)

Observe (14), (20), and (21) that the class model in the
Bayesian classifier has a correspondence with each rule in
the T1 classifier. We find that the T1 FLS-based classifier is
mathematically the same with the Bayesian classifier except
the normalization factor 1/

√
(2π)d|Σ| in (19), which gen-

erally does not affect the classification results so that there
is no essential distinction between T1 fuzzy classifiers and
Bayesian classifiers. However, T2 FLS-based classifiers may
make a quite different decision from output interval in (16).

In MPEG VBR video traffic classification (out-of-product
testing) without parameter adjustment, Liang and Mendel [14]
reported the lowest average false alarm rate 14.11% for T1
NF data with T2 FLS-based classifiers (T1NFT2), which was
slightly lower than the average 15.07% for SF data with T1
fuzzy classifiers (SFT1) as well as the average 14.29% for
Bayesain classifiers (BC) as shown in Table II. Furthermore,
they adjusted parameters of fuzzy classifiers by the steepest-
descent algorithm, and obtained the lowest average false alarm
rate 8.03% for T2 NF data with T2 FLS-based classifiers
(T2NFT2) , which was also slightly lower than the average
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TABLE II

FALSE ALARM RATE COMPARISON (%) [14]

Classifiers Without parameter adjustment Parameter adjustment

BC 14.29 -
SFT1 15.07 9.41

T1NFT1 14.35 9.17
SFT2 14.24 13.65

T1NFT2 14.11 8.43
T2NFT2 14.35 8.03

TABLE III

CLASSIFICATION ERROR RATE COMPARISON (%) [21]

Datasets T2 classifiers T1 classifiers

Battlefield ground vehicle 9.13 12.8

9.17% for T1 NF with T1 FLS-based classifiers (T1NFT1).
So they concluded that T2 fuzzy classifiers were substantially
better than their T1 counterparts in terms of robustness and
classification error rate.

Similarly, Wu and Mendel [21] used T2 FLS-based clas-
sifiers to classify multi-category battlefield ground vehicles,
and demonstrated that T2 FSs can model unknown varieties
of features. They reduced the average classification error
rates of T1 FLS-based classifiers by T2 FLS-based classifiers
from 12.8% to 9.13% over more than 800 experiments (See
Table III). Besides, they showed that all FLS-based classifiers
performed much better than the Bayesian classifiers.

In [12], [16]–[20], [22], [23] we view pattern classification
as the labeling problem, which is in fact a compound Bayesian
decision problem [13]. The solution is a set of linguistic labels,
1 ≤ j ≤ J , assigned to a set of sites, 1 ≤ i ≤ I , to explain the
observation, X = {x1,x2, . . . ,xI}, at all sites. The label j at
site i is a random variable, so that the labeling configuration at
all sites, F = {f1, f2, . . . , fI}, is a stochastic process. Given
the model λ, the maximum a posteriori (MAP) estimation [13]
guarantees the single best labeling configuration,

F∗ = argmax
F

P (F|X, λ), (22)

P (F|X, λ) ∝ p(X|F , λ)P (F|λ), (23)

where p(X|F , λ) is the likelihood function for F given X,
and P (F|λ) is the prior probability of F . However, because
of fuzzy data and class model, we incorporate T2 FSs into
MAP (22)-(23) as follows,

F∗ = argmax
F

hλ̃(F|X), (24)

hλ̃(F|X) ∝ hλ̃(X|F) � hλ̃(F), (25)

where λ̃ is the class model with fuzzy parameters. We use
NF to handle fuzzy observations due to noise. Set operations
in (25) convey more information than (23) because we unite
all possibilities of the class model due to fuzzy parameters
into T2 FSs. Especially when λ̃ is certain, equation (25) will
be reduced to (23). The T2 FSs hλ̃(X|F) and hλ̃(F) describe

TABLE IV

CLASSIFICATION RATE (%) COMPARISON [22]

Datasets T2 FGMMs GMMs

IONOSPHERE 77.7 75.3
PENDIGITS 93.3 90.2

WDBC 94.9 93.6
WINE 89.2 85.8

TABLE V

CLASSIFICATION RATE (%) COMPARISON [22]

Classifiers clean 20db 10db 50db 0db -5db -10db

T2 FHMMs 58.1 47.5 32.4 24.2 16.9 11.4 7.0
HMMs 54.9 45.1 30.7 22.6 15.4 10.0 5.9

fuzziness of the likelihood and prior respectively within the
Bayesian framework.

In [22] we have integrated T2 FSs with Gaussian mixture
models (GMMs) referred to as the T2 FGMMs, which de-
scribes fuzzy likelihoods by lower and upper boundaries of the
FOU. In the proposed classification system, we use the gen-
eralized linear model (GLM) to make the final decision from
fuzzy likelihoods. Extensive experiments on datasets from UCI
repository [37] demonstrate that T2 FGMMs have an average
2.5% (the best results) higher classification rate than that of
GMMs (See Table IV). Based on (24)-(25), we also extend
the T2 FGMMs-based hidden Markov model (HMM) referred
to as the T2 FHMM. Forty-six-category phonemes were clas-
sified using T2 FHMMs. To test robustness, we also classified
the phonemes corrupted by multi-talker non-stationary babble
noise with different signal-noise-ratios (SNRs). Table V shows
the best results of T2 FHMMs compared to HMMs. We can
see that on average T2 FHMMs outperform HMMs 1.85% in
classification rate under babble noise with different SNRs.

In [12], [16]–[18] we have used T2 NF to describe fuzzy
observations, and modeled the fuzzy transition probability by
fuzzy numbers in T2 FHMMs. In this classification system,
we propose a heuristic ranking of output fuzzy likelihoods.
A broad-five-category phoneme classification shows that a
significant improvement (7.03% on average) in classification
rate when the white Gaussian noise is added to test data
with different SNRs (See Table VI). Furthermore, a complete
continuous phoneme recognition experiment demonstrates that
T2 FHMMs outperform the competing HMMs 5.55% in
dialect recognition accuracy (See Table VII).

Similarly, in [12], [19], [20] we have integrated T2 FSs with
Markov random fields (MRFs) referred to as the T2 FMRFs
for Chinese character modeling. From experiments on similar
characters [20], we demonstrate that T2 FSs improve the

TABLE VI

CLASSIFICATION RATE (%) COMPARISON [16]

Classifiers 5dB 10dB 15dB 20dB 25dB 30dB

T2NF FHMMs 50.6 59.9 65.4 71.3 75.1 79.3
HMMs 38.7 48.0 58.2 66.0 72.3 76.2

198

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



TABLE VII

RECOGNITION ACCURACY COMPARISON (%) [16]

Datasets T2NF FHMMs HMMs

TIMIT phoneme 62.94 62.59
TIMIT dialect 56.94 51.39

TABLE VIII

CLASSIFICATION ERROR RATE COMPARISON (%) [20]

Datasets T2 FMRFs MRFs

ETL-9B / ETL-9B 3.11 4.25
Hanja1 / Hanja1 3.29 4.67

performance of the MRFs for Chinese character recognition by
1.26% in classification rate on average (See Table VIII). Fur-
thermore, a generalization ability comparison (See Table IX)
shows that T2 FMRFs have a better performance (2.63% on
average) in classifying unknown Chinese character patterns
from different datasets.

In conclusion, the strategies (8) and (9) are effective in most
pattern classification problems. The T2 fuzzy data (8) and T2
fuzzy classifier (9) compose a T2 fuzzy pattern classification
system which generally has a better performance than the
competing T1 and Bayesian classifiers. Though in some cases
the T2 fuzzy system degrades a little than traditional methods,
it is still a reliable approach to improve classification ability of
the traditional methods in terms of robustness, generalization
ability, and classification error rates. Note that, at present, there
is no theory that guarantees that a T2 fuzzy system will always
do this [10].

V. DISCUSSIONS

Occam’s razor [13] has come to be interpreted in pattern
classification as counseling that one should not use classifiers
that are more complicated than are necessary, where “nec-
essary” is determined by the quality of fit to the training
data. Indeed, T2 fuzzy systems have more parameters with
higher computational complexity than their counterparts such
as T1 fuzzy and Bayesian systems [14]–[16], [21], [35], [36].
In most cases, at least twice computations [12] have to be
done in T2 fuzzy systems than traditional methods. Therefore,
when we apply T2 fuzzy classifiers to real-world problems,
we should consider if the problem at hand is needed to pay
more complexity. Currently, we say that T2 fuzzy systems
have the potential to outperform the traditional ones, but in
the meantime they add more complexity to the system leading
to the performance-complexity trade-off.

TABLE IX

CLASSIFICATION ERROR RATE COMPARISON (%) [20]

Datasets T2 FMRFs MRFs

ETL-9B / Hanja1 4.44 6.78
Hanja1 / ETL-9B 4.16 7.08

No Free Lunch Theorem [13] tells us that there are no
context-independent or usage-independent reasons to favor one
learning or classification method over another. Looking back
to the strategies (8) and (9), T2 fuzzy systems are natural
extensions of the original classification systems, which means
the classification performance has been already ensured, and
T2 FSs just improve it. More importantly, we should note that
T2 fuzzy systems do not always outperform their counterparts
in all pattern classification problems. Also T2 fuzzy systems
are not always effective for modeling uncertainties [21]. The
major reason is that the FOU may cover too much or too little
uncertainty that the system does not have. Another reason is
that we may use the ineffective method for final decision-
making.

The great success of statistical pattern classification as
well as Bayesian decision theory [13] has been attributed to
the recognition of randomness in the feature and hypothesis
spaces. Now we realize that it is necessary to incorporate fuzzi-
ness into the same framework to solve real-world problems.
In Section III we have explained the mechanism of T2 FSs
to handle both randomness and fuzziness and demonstrated
that T2 FSs have more expressive power to tackle more
difficult problems. From many case studies, we obtain the
design methods for classification systems in (8) and (9), and
further implement them within the Bayesian framework in (24)
and (25). Based on recent encouraging experimental results,
we are optimistic about the future of T2 FSs for pattern
classification applications.
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