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Abstract— The understandability of rule sets is an important
issue in knowledge discovery, where classification rules, for
example, are extracted from large data sets. An important
criterion in this context is the goodness of fit of a given
classifier, i.e., a measure that gives an quantitative answer to
the question, how good a classifier fits to the data it has to
classify. In this article we provide an appropriate measure for a
Mamdani-type fuzzy classifier with Gaussians and singletons as
membership functions, sum-prod inference, and height method
for defuzzification. That is, goodness of fit must be measured
for multivariate Gaussian mixture models. Therefore, we adopt
conventional test methods for univariate, unimodal probability
distributions (e.g., Kolmogorov-Smirnov for chi-square), provide
a measure for the goodness of fit of our fuzzy classifier, and
discuss its properties. In a second step we go even beyond
this point by showing how this measure could be extended to
an analysis tool that gives detailed hints which rules or which
membership functions are not suitably realized.

I. INTRODUCTION

The parameters of fuzzy classifiers (i.e., the parameters of
membership functions and the rules) can be found in various
ways:
• Unsupervised training methods (e.g., clustering tech-

niques, [1]) require unlabeled data (samples).
• Supervised training methods without a continuously dif-

ferentiable error function require labeled data (e.g., evo-
lutionary algorithms [2] or iterative adaptation rules for
certain neuro-fuzzy classifiers [3]).

• Supervised techniques with a continuously differentiable
error function (e.g., first-order training methods such as
Resilient Propagation [4] or second-order methods such
as Scaled Conjugate Gradients [5]) also require labeled
data but also a suitably defined fuzzy paradigm.

• Experts may also be able to adjust the parameters of a
fuzzy classifier according to their needs [6].

One important motivation for the use of a fuzzy system is often
the interpretability and understandability of the contained
rules. The former says that the rules can easily be read by
humans. This is always possible in the case of fuzzy rules
(in contrast to rules embodied in a backpropagation neural
network, for instance). The latter says that an application
expert comprehends the meaning of each rule within the
context of a given application. For a fuzzy rule, for example,
this is easier if the premises of these fuzzy rules model clusters
within the data and harder if the rules do not model the data,
but the decision boundary between different classes. Fuzzy
rules model the data, for example, if membership function are
found by means of expectation maximization algorithms (e.g.,

[7]). They model the decision boundary, for example, if they
were extracted from Support Vector Machine classifiers (e.g.,
[8], [9]). In a nutshell: There are many ways to build a fuzzy
classifier but only a few result in actually understandable rule
sets.

Here, we change the viewpoint: Given a fuzzy classifier
(produced by a supervised training method, a human expert,
or any other suitable technique), how can we measure how
good this classifier does fit to the data it has to classify (so-
called goodness of fit, GoF)? Given an appropriate solution
for that problem we can also estimate whether the classifier
can be understood by humans (cf. [10]) and it might even
be possible to give hints which rules or which membership
functions are not suitably realized. In order to achieve this goal
we first define an appropriate Mamdani-type fuzzy classifier
paradigm (Section II). Then we adopt methods from the field
of statistics to measure GoF, demonstrate their properties, and
discuss approaches to improve them (Section III). Finally, we
summarize the major findings and give an outlook to our future
work (Section IV).

II. FUZZY CLASSIFIER PARADIGM

In this section we define the fuzzy classifier paradigm for
which we provide appropriate measures for GoF. Basically,
this classifier is a Mamdani-type fuzzy system (FS) with
Gaussians and singletons as membership functions, sum-prod
inference, and height method for defuzzification.

We are given a rule set H as shown in Table I, consisting of
rules h = 1, . . . ,H with the xi (i = 1, . . . , I) being linguistic
input variables and the yo (o = 1, . . . , O) being linguistic
output variables each corresponding to a class. The ϕ(i,h) are
membership functions (linguistic terms) belonging to input
variables and rules, realized by Gaussians as follows:

ϕ(i,h)
def= e

 
−

(c(i,h)−xi)
2

r(i,h)
2

!
,

with c(i,h), r(i,h) ∈ R being the parameters of the Gaussians
(so-called center and radius). The w(h,o) ∈ [0; 1] are member-
ship functions (linguistic terms) belonging to rules and output
variables which are realized by singletons. The values can be
interpreted as class membership degrees.

The rule set is evaluated as follows:
• The evaluation of the premise of a single rule is realized

by the product operator.
• An implication is realized by the product operator, too.
• The sum operator is taken to combine the rules.
• For defuzzification we apply the height method.
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TABLE I
FUZZY RULE SET H.

if x1 is ϕ(1,1) . . . and xi is ϕ(i,1) . . . and xI is ϕ(I,1) then y1 is w(1,1) . . . and yo is w(1,o) . . . and yO is w(1,O)

...
...

if x1 is ϕ(1,h) . . . and xi is ϕ(i,h) . . . and xI is ϕ(I,h) then y1 is w(h,1) . . . and yo is w(h,o) . . . and yO is w(h,O)

...
...

if x1 is ϕ(1,H) . . . and xi is ϕ(i,H) . . . and xI is ϕ(I,H) then y1 is w(H,1) . . . and yo is w(H,o) . . . and yO is w(H,O)

• A winner-takes-all approach is used to decide on the class
assignment of the input.

That is, we compute the output vector (class vector) y(k) def=
(y1(k), ..., yo(k), ..., yO(k)) with

yo(x(k)) =
H∑

h=1

w(h,o) ·
ϕh(x(k))∑H

h=1 ϕh(x(k))
,

where

ϕh(x(k)) =
I∏

i=1

ϕ(i,h)(xi(k)) =

=
I∏

i=1

e

 
−

(c(i,h)−xi(k))2

r(i,h)
2

!
,

the input vector x(k) def= (x1(k), ..., xi(k), ..., xI(k)) (sample)
and the number of the input vector k = 1, . . . , N . Finally, we
select the class o with the highest output value yo(x(k)).

-2 0 2

-2

0

2

x1

lowlow

highhigh

x2

lowlow highhigh

If x (k) is low and x (k) is high 1 2

          then y (k) is 0.9 and y (k) is 0.11 2

If x (k) is low and x (k) is high 1 2

          then y (k) is 0.9 and y (k) is 0.11 2

If x (k) is high and x (k) is low 1 2

          then y (k) is 0.2 and y (k) is 0.81 2

If x (k) is high and x (k) is low 1 2

          then y (k) is 0.2 and y (k) is 0.81 2

xx

xx

Fig. 1. Example of a fuzzy classifier consisting of two rules operating in a
two-dimensional input space (I = 2 and H = 2).

The vectors ch
def= (c(1,h), ..., c(i,h), ..., c(I,h)) and rh

def=
(r(1,h), ..., r(i,h), ..., r(I,h)) describe an axes-oriented hyperel-
lipsoid in the input space of the fuzzy classifier. Thus, ch can
be regarded as a center of a hyperellipsoidal cluster – big x in
Figure 1 – and rh defines the shape of the cluster – ellipses in
Figure 1. The activation of a rule describes the similarity of
an input pattern x(k) and a center based on a certain matrix

norm (Mahalanobis distance measure with diagonal covariance
matrix).

The parameters of a fuzzy classifier can be determined
by means of training algorithms such as gradient-based tech-
niques or clustering techniques in combination with methods
for the solution of linear least-squares (LLS) problems (see,
e.g., [11] and our own work in [12], [13]). However, linguistic
terms and rules could be defined by experts as well.

In accordance with the discussions and suggestions in [14],
[15], [16] we defined this fuzzy classifier in a way such
that it can also be interpreted as a neural network (radial
basis function network, cf. [17], [18]). Thus, we gain the
advantages of two worlds: Trainability of neural networks and
interpretability – not yet understandability! – of FS. Here, we
described the classifier as a Mamdani-type FS, but we could
also see it as a special case of a Takagi-Sugeno-type FS.

III. MEASURES AND RESULTS

In this section we introduce a technique that can be used to
evaluate the understandability of fuzzy rule systems (as defined
above) by measuring the GoF. Formally, for a given set of rules
H def= {h | h = 1, . . . ,H} we want to determine a value ηF,H
that represents the GoF. Here, we have chosen a statistical
solution for this problem. H is interpreted as a statistical model
of an underlying stochastic process X that produces the data
being observed. Each rule premise describes a (local) function
on the input space, which can be seen as a density function.
Thus, when the SUM-operator is used for rule composition,
the whole rule system defines a density function of a mixture
model (in our case, a multivariate Gaussian mixture model).
The usage of rules with Gaussian premises is motivated by the
generalized central limit theorem: Processes with multi-causal
origination tend to be normally distributed.

In the following, a short overview of classical GoF tests is
given, which are typically applied to univariate and unimodal
models. After that, a simple extension is introduced which
allows to apply such a GoF test to multivariate, unimodal mod-
els, and some of its basic properties are demonstrated using
simple examples. Then, a further improvement is proposed
that gives even more detailed insight into the GoF of each
rule. Finally, the method is extended to mixture models.
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A. Statistical GoF Tests

In the literature there are basically two well-known statis-
tical methods to determine the GoF of a given model (see,
e.g., [19], [20]): the χ2-test (chi-square) and the Kolmogorov-
Smirnov (KS) statistics. The former is computed by partition-
ing the input space into bins. For each bin the actual number
of data points and the expected number of data points are
determined. The χ2-test delivers a value that can then be
used to discard the model (hypothesis) at a given level of
significance. In general, the computation of the integral of the
distribution function is very difficult or even impossible. Thus,
this method is not appropriate in our case. The KS-test is based
on the empirical cumulative distribution function (ECDF) of
the data. The ECDF is compared to the cumulative distribution
function F (CDF) of the assumed model. The statistic is
computed as the maximum absolute difference between the
ECDF and the CDF. A detailed description of this method
can be found in [21], for instance. Algorithm 1 describes a
more general variant of this approach, that allows weighted
data points which we need for the methods introduced in a
later section. Therefore, we define weights λh(k) for each
rule h and each pattern k that are probabilistic, i.e., they are
positive and sum up to one. In the standard KS-test the data are
weighted uniformly, i.e., λh(k) def= 1

N . It has to be emphasized
that the KS-test can be applied to any arbitrary model for
which the CDF is known.

Input: CDF F(x), data points x(k), weights λh(k), with
k ∈ 1, . . . , N .

Output: KS-statistic ηF .
Determine the permutation π(k) such that x(π(k)) are in
ascending order (k ∈ 1, . . . , N ).
Set E(0) def= 0.
for k ∈ 1, . . . , N do

Set E(k) def= E(k − 1) + λh(π(k)).
Set dl(k)

def= F(x(π(k)))− E(k − 1).
Set du(k) def= E(k)−F(x(π(k))).
Set ηF (k) def= max (dl(k), du(k)).

end
Set ηF

def= max
k∈1,...,N

ηF (k).

Algorithm 1: Computation of the KS-statistic ηF for
weighted data.

Figure 2 shows the CDF of the normal distribution and the
ECDF for 100 data points generated randomly with the same
distribution. The KS-statistic represents the maximum absolute
difference between these two curves.

To apply this test to our problem (multivariate Gaussian
mixture models) there are two key problems that must be
solved: First, we have to extend the statistic to be applicable
to multivariate Gaussian distributions. Second, we must find a
way to adopt the test to Gaussian mixture models.
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Fig. 2. CDF and ECDF for a normally distributed data set.

B. Testing Multivariate Normal Models

The basic idea of a test for the multivariate case based on
the proposed KS-statistic is to find an appropriate mapping
function ψ : RI 7→ R and to perform the KS-test on the
transformed univariate data. However, to apply the test it is
necessary to know the distribution function of the transformed
data.

KS-Test Using χ2: A very useful transformation is moti-
vated by the following property of the χ2-distribution: Given
data points x(k) with k = 1, . . . , N that are multinormally dis-
tributed with parameters µ = (µ1, ..., µI) and σ = (σ1, ..., σI),
then the squared Mahalanobis distances of x(k) to µ are χ2-
distributed with parameter I − 1 (cf., e.g., [22]). In our case,
the squared Mahalanobis distance for a rule h is defined by

dh(k) def=
I∑

i=1

(
xi(k)− c(i,h)

r(i,h)

)2

.

The CDF Fχ2 can be computed using the Γ-function (see,
e.g., [22]).

Input: Rule h with parameters ch and rh, data points
x(k), weights λh(k), with k ∈ 1, . . . , N .

Output: KS-statistic ηFχ2 ,h for rule h.
for k ∈ 1, . . . , N do

Compute the squared Mahalanobis distance dh(k).
end
Compute the KS-statistic ηFχ2 ,h using Algorithm 1 for
the values dh(k) with weights λh(k) and CDF Fχ2 .

Algorithm 2: KS-statistic ηFχ2 ,h for a single rule using the
χ2-CDF.

Figure 3 demonstrates the test for a simple one-rule model
(i.e., fuzzy classifier with one rule): There is almost no
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Fig. 3. Example 1: KS-test for a one-rule model that has a good data fit.

difference between the CDF and the ECDF. By contrast, Figure
4 shows the test for a rule that does not fit the data very well.

One advantage of this method is that the determination of
the squared Mahalanobis distance is a side-product of the rule
activation and, therefore, has not to be computed explicitly.
However, there is one major drawback of this approach which
is illustrated in Figure 5. As the transformation is radial-
symmetric, it is not possible to take the actual spatial distri-
bution of the patterns correctly into account. Only the scalar
distances to the prototype of a rule are considered.

Combination of Univariate KS-Tests: Another solution to
the mapping problem is to use projections onto the main
axes. In our case we assume the data to be uncorrelated
in the different dimensions of the input space (i.e., we
have diagonal covariance matrices). Thus, the projection of
multivariate, normally distributed data results in univariate,
normally distributed data and we can apply a KS-test using
the CDF of a Gaussian distribution. To assess a complete rule,
we compute the statistic for each of the input dimensions.
The CDF FN (µ,σ) of a normal distribution can be computed
efficiently using the complementary error function (see, e.g.,
[22]). Algorithm 3 describes this computation more formally.
The univariate squared Mahalanobis distance di,h(k) for a rule
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Fig. 4. Example 2: KS-test for a one-rule model that has a bad data fit.

h, an input dimension i and a pattern xi(k) is defined by

di,h(k) def=
(
xi(k)− c(i,h)

r(i,h)

)2

.

Input: Rule h with parameters ch and rh, data points
x(k), weights λh(k) with k ∈ 1, . . . , N .

Output: KS-statistic ηFN(ch,rh),h
for rule h, KS-statistic

η
(i)
FN(ch,rh),h

for rule h and each input dimension
i ∈ 1, . . . , I .

for i ∈ 1, . . . , I do
for k ∈ 1, . . . , N do

Compute the (univariate) Mahalanobis squared
distance di,h(k).

end
Compute the KS-statistcs η(i)

FN(ch,rh),h
using

Algorithm 1 for values di,h(k) with weights λh(k)
and CDF FN (ch,rh).

end
Set ηFN(ch,rh),h

def= max
i∈1,...,I

η
(i)
FN(ch,rh),h

.

Algorithm 3: KS-statistic ηFN(ch,rh),h
for a single rule h.

Figure 6 shows this test applied to example 3 (cf. Figure

204

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



-2,00 -1,75 -1,50 -1,25 -1,00 -0,75 -0,50 -0,25 0,00 0,25 0,50 0,75 1,00 1,25 1,50 1,75 2,00
-2,00

-1,75

-1,50

-1,25

-1,00

-0,75

-0,50

-0,25

0,00

0,25

0,50

0,75

1,00

1,25

1,50

1,75

2,00

x2

x1

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

ECDF

CDF

distance

Fig. 5. Example 3a: The χ2 based test does not reveal the spatial anomaly.
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Fig. 6. Example 3b: The combination of univariate tests allows the detection
of the spatial anomaly.

5). Here, the degenerated spatial distribution is represented by
the curves. A major advantage of this method can be seen in
Figure 7: A more detailed assessment of rules is possible.
Certain weaknesses of a given model can be identified by
the characteristics of the ECDF (bad radius, bad center)
and, moreover, this information is available for each input
dimension separately.
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Fig. 7. Example 4: The combination of univariate tests reveals more detailed
information about single parameters: Bad center in input dimension 1 and too
large radius in input dimension 2.

C. GoF Tests for Mixture Models

To allow the application of the proposed statistics to Gaus-
sian mixture models we introduce the following method which
is motivated by techniques known from fuzzy clustering (see,
e.g., [23]). The basic idea is to decompose the problem of
testing a mixture model into several tests of unimodal models.
This is done by associating the data points to the different
rules. As displayed in Figure 8, it is possible that different
unimodal distributions may be very close to each other and
their data may overlap. To preserve the spatial distribution,
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Fig. 8. Example 5: Mixture model containing very close rules.

a “fuzzy” association of data to rules is necessary. For each
pair of pattern x(k) and rule h a weight λh(k) is computed
using Algorithm 4 where λh(k) can be seen as the probability
that a pattern x(k) is associated to a rule h in presence of
all rules 1, . . . ,H . Then, the proposed statistics are applied to
each rule separately. The computation of a test for a complete
mixture model (i.e., a whole rule set) is defined by Algorithm
5. Figure 9 shows the ECDF and the CDF for Rule 1 for input
dimensions 1 and 2.

Input: Rule set H, data points x(k) with k ∈ 1, . . . , N .
Output: Weights λh(k) with k ∈ 1, . . . , N .
for k ∈ 1, . . . , N do

for h ∈ 1, . . . ,H do
Compute ϕh(x(k)).

end

Set λ̃h(k) def=
ϕh(x(k))

H∑
j=1

ϕj(x(k))
.

end
for k ∈ 1, . . . , N do

for h ∈ 1, . . . ,H do

Set λh(k) def=
λ̃h(k)

N∑
l=1

λ̃h(l)
.

end
end

Algorithm 4: Computation of weights λh(k).

Input: Rule set H, data points x(k), weights λh(k) with
k ∈ 1, . . . , N .

Output: KS-statistic ηF,H.
for h ∈ 1, . . . ,H do

Compute a KS-statistic ηF,h using Algorithms 2 or 3.
end
Set ηF,H

def= max
h∈1,...,H

ηF,h.

Algorithm 5: KS-statistic ηF,H for a complete rule set H.
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Fig. 9. Example 4: Robust decomposition of test for a mixture model into
tests for single rules.

IV. CONCLUSION AND OUTLOOK

In this article, we have shown how the GoF of multivariate
Gaussian mixture models can be rated. This allows the as-
sessment of certain Mamdani-type fuzzy classifiers which also
can be regarded as radial basis function neural networks which
constitute a suitable way to achieve interpretable rules. We also
introduced techniques that can be used to assess their “fitness”
in some more detail (single rules or membership functions).
This way, we are equipped with techniques that enable us to
measure the probably most important property regarding the
understandability of rules.

In our future work we want to increase the information
gain of single parameters. E.g., it is possible to recognize
properties of single parameters (center and radii) of a rule
premise by evaluating the characteristics of the ECDF. Apply-
ing methods known from regression tests this could be done
automatically. Furthermore, alternative evaluations using the
ECDF could base upon correlation coefficients, for example.
As the proposed approach allows the application of arbitrary
distribution functions, it is not restricted to the assessment
of Gaussian mixture models. Other kinds of fuzzy systems,
e.g., fuzzy systems that are able to process categorical data,
could be considered easily. This way, many more well-known
classifier paradigms could be assessed.
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In principle, the techniques introduced in this article can
be utilized in any classification application. An important
application area where we need those techniques is the field of
Organic Computing [24]: We will enable intelligent distributed
systems (“individuals”) – e.g., teams of robots, software
agents, animats, or smart nodes of sensor networks – to learn
from each other by exchanging knowledge in form of rules
[17], [25]. We assume that the individuals’ environment is
dynamic. That is, rules must be adapted (learned) on-line.
To learn from each other, these individuals must – besides
other tasks – assess their own knowledge by means of self-
awareness mechanisms and it must be assured that single
rules are potentially useful for other individuals. “Potentially”
means that they actually are useful if the other individuals
must classify similar input data (i.e., with the same underlying
distribution). Both is possible if the classifiers actually model
the data and this can be verified by means of the measures
presented in this article. As we must adapt the rules on-line, we
need techniques that enforce a good fit during on-line training
of a fuzzy classifier.
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