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Abstract – When performing data analysis on a
computing device no mathematically idealized real number
set IR is available. A basic resolution is given, so that a
fuzzy model is in fact always a discrete model and not a
continuous one. Due to the limited preciseness the
computing device offers only a limited number of decimals
in a limited discrete number space IIR. This contribution
considers effects on the generalization and fuzziness of
data when replacing IR by IIR. The effects are studied for
data, that are numerically rounded or when intervals are
considered. Often part of the data is missing or is of
limited quality, so that it is of practical interest to consider
the exact underlying space IIR and not the hypothetical
space IR. We calculate precisely type-1 and type-2 fuzzy
membership functions under preciseness assumptions of
the elements in IIR.

I. INTRODUCTION

Numerical data (in one dimension) are commonly
assumed to be a subset of the real number space IR. This
assumption is an ideal one. A computing device might handle
numbers with a fixed or varying precision (fixed-point or
floating point numbers), a software might handle numbers with
a different accuracy, and the measurements could have again
another preciseness due to noise, although many decimals
were measured. Generally spoken, the mere assumption that all
these data spaces are equally the set of real numbers IR is
wrong and might be the cause for errors or unreliable results.
Such problems are usually considered in numerical
mathematics, but with respect to fuzzy data analysis not much
work has been done so far. Classification analysis or fuzzy
modeling is not being as precise as possible without any
preciseness assumptions for the data in the involved data
spaces. Often, we use intuitively terms like ‘classification,’
‘generalization,’ and ‘fuzziness,’ although they can be defined
exactly [1]. Several approaches exist that are concerned with
modeling imprecise data in an exact manner. Besides interval
arithmetic [2], granular computing [3] is the main research
area where data is divided for analysis in so called granules,
i.e., parts of the underlying data space. The granularity can be
given in many ways: [4] describes three-valued shadowed sets

composed of certain regions with and without a property and
an uncertain region, [5] compares the partitioning of data with
different strategies, [6] investigates effects of granularity in
fuzzy systems, [7] partitions data with morphological
operators. Many approaches for modeling fuzzy systems are
available [8]-[14] for example. An extension of fuzzy sets are
type-2 fuzzy sets and systems [15]-[17], that allow for
modeling uncertainty in (type-1) fuzzy sets and systems.

We develop an approach that allows for the exact
modeling of numerical data in an underlying exact space IIR by
calculating membership degrees for with elementary elements.
The next section is concerned with the formalization of the
space IIR and the preciseness of numerical data, including
generalization and classification. Section III demonstrates the
relations of preciseness to the generalization of data. Fuzzy
models are considered in Section IV where the models are
investigated in IR and IIR . Fuzzy membership functions are
calculated for different examples. Due to the uncertain
preciseness assumptions, we extend the approach to general
type-2 fuzzy membership functions.

II. PRECISENESS IN THE EXACT SPACE IIR

Mathematical abstraction led to the definition of the field of
the real numbers IR. Although this continuous model IR is
useful for mathematical calculations, numerical calculations on
a computing device are not based on real numbers, but on a
subset of the rational numbers only. The binary digits can only
represent rational numbers. For example the number  is
approximated when using a computer. Thus, we have to
assume a basic exactness of 2m with a fixed m  IN. On a
physically-biologically inspired computer the exactness might
be finer or based on objects like atoms, but it would be limited
as well. Since we are used to the basis 10 we can assume a
basic exactness of 10m’. To avoid writing commas, decimals,
and signs it is no loss of generality if we multiply the numbers
by 10m’ or to shift negative numbers to positive ones. Then, the
basic exactness is g = 1.

Definition 1. Let g be the basic exactness. We define the space
IIR(g,n) as the finite set {g,2g,…,(n1)g,ng} with a fixed n 
IN. If g = 1, then we write shortly IIR = {1,2, ,…,(n1),n}. We
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name IIR(g,n) the exact space (with exactness g and maximal
multiplier n). To the symbol IR another I is added in front to
distinguish IIR from IR.

The basic exactness needs not to be a number representing a
binary computer value, but could also be an artificial property
like a minimal possible distance or another elementary unit.
The exact space contains unique, distinguishable elements. We
will consider technical aspects of generalization and fuzzy
modeling in IR compared to IIR. Since we cannot distinguish
elements in the exact space IIR, that are more precisely defined
than the elementary exactness g, we have to define what we
mean with ‘preciseness’ in the context of exact spaces.

Definition 2. A subset M of the exact space IIR = {1,2,…,
(n1),n} with exactness 1 is said to be k-precise (k IN) (with
respect to IIR) if there exist a partition {Pi} of M with k
elementsIIR in each Pi, so that every a IIR can be assigned
to a Pi. Each element in Pi is not distinguishable from a in M.
An element a  IIR is said to be k-precise if k elements are
assigned.

Example 1. Consider the set M = {1,11,21,31} and the exact
space IIR = {1,2,3,…,38,39,40}. If we assign P1 =
{1,2,…,9,10} to 1, P2 = {11,12,…,19,20} to 11, P3 =
{21,22,…,29,30} to 21, and P4 = {31,32,…,39,40} to 31, and
set M = P1 P2 P3 P4, then M is 10-precise. Remember,
that number 40 in IIR means the basic element number 40. The
exact space IIR itself is 1-precise. In Example 1 the mapping
G: PiIIR  a M can be interpreted as a kind of rounding
operation, increasing the preciseness from 1 to 10. The
mapping G generalizes IIR to M. The situation is depicted in
Fig. 1. A noise operator, applied to M decreases the
preciseness. For example, if the measurement of 1, 11, 21, 31
is possible in M only with random noise of 5 elements, then
the measured set M’ could be M’ = IIR, when the elements are
measured repeated times. Noise lead to a finer exactness than
it is originally given.

When considering a data analysis task (in one dimension
at the moment) like clustering, where elements of a set D are
generalized to clusters, the data in the set need not to be k-
precise in the sense of Def. 2 for any k.

Example 2. Consider the set D = {3,5,7,10,11,12,13,20,25,
33,39} and the exact space IIR = {1,2,3,…,38,39,40}. D is not
k-precise in IIR for any k. If we consider only element 3 in D,
then it could be up to 4-precise, representing {1,2,3,4} in IIR.
The element 5 could be up to 3-precise, element 12 is 1-

precise, etc. If we list all possibilities we could assume that the
elements 3, 5, and 7 are 2-precise, but not knowing if 3
represents {2,3} or {3,4}, 10 to 13 seem to be 1-precise, 20,
25, 33, and 39 could be 4-precise, for example with 25
representing {24,25,26,27}.

The problem in generalizing properties of a dataset is the
missing information about elements in the exact space. With
missing information it cannot be determined uniquely how k-
precise an element is (if it is not known a-priori).

If we assign any property to the set D in Example 2 like
colors, then we can only assume which colors should be
assigned to the elements of IIR\D. If 3, 5, and 7 are assigned to
‘blue,’ then we could assume that the elements 4, 6 and 8
should be assigned to ‘blue,’ too, under the assumption that the
data is 2-precise. If it is 1-precise, the approximation might be
wrong, if it is 2-precise, it would be correct locally.

Since we consider the elements in the exact space as
elementary, they are assigned uniquely to properties when
considering data analysis. A set containing more than one
element could have more than one property. We remark that
several exact spaces with different exactness values g can be
combined, for example when considering floating point
numbers. In the next section we focus on the problem of data
generalization.

III. GENERALIZATION IN IR AND IIR

The preciseness of a set is related to its generalization
capability. The more precise a set is, the less general it is and
vice versa. If our environmental world is seen as an exact
space, the information about all 1-precise elements builds the
exact model. The aim of generalization is to consider only a
subset of all elements that already defines the exact space or
gives an acceptable approximation to the exact model.

Definition 3. Consider a subset M of the exact space IIR. Let N
be a subset of M with M N. The set N is defined as being
more general than M if at least one element a  N has an
increased k-preciseness compared to a M, i.e., it becomes
more general. – It follows that a k-precise set N M is more
general than a k’-precise set M if k > k’.

Example 3. If we consider the set D = {3,5,7,10,11,
12,13,20,25,33,39} in Example 2 and another set C = D\{11},
both subsets of IIR = {1,2,3,…,38,39,40}, then C is more
general than D. The 1-precise element 12 in D is considered as
being 2-precise in the set C.

The rounding operation in Example 1 leads to more general
elements and sets. If the 1-precise elements of the exact space
carry an exact information, e.g., a class label, a generalized k-
precise element can have more than one class label. The
generalization lead to vague information.

In the following we compare the underlying spaces IR and
IIR = {1,2,3,…,38,39,40} with respect to a given finite dataset

6 36 401
IIR...
M...

[1,40]

Fig. 1. The exact space IIR = {1,2,…,39,40}, the 10-precise set M,
and the hypothetical real valued interval [1,40].
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M. While IIR\M is finite, IR\M is infinite with M being
mathematically a null set. In IR there is no minimal exactness
as in IIR with g = 1, because to a given exactness more
decimals could always be added. Let us consider the case that
the elements 5, 10, and 15 are labeled with ‘class 1’ and the
elements 20, 25, and 30 with ‘class 2.’ An algorithm for
generalization would try to make class assignments to elements
IIR\M or IR\M, respectively. A canonical generalization could
be done in the real space by assigning I1 = [5,15] (interval of
all real numbers between 5 and 15) to class 1, and I2 = [20,30]
to class 2. In the exact space we would canonically assign J1 =
{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, formally defined as
[5,15]IIR , to an 11-precise element 10 with class assignment
‘class 1.’ J2 = [20,30] IIR could be assigned to an 11-precise
element 25 of ‘class 2.’ The difference is the following: If the
set of real numbers is considered, then with 3 elements an
assumption for an infinite number of elements has been made.
In the exact space with 3 elements an assumption of further 8
elements has been made. For both spaces the generalized
models might be totally right or totally wrong as extreme
cases. This is not known a priori. In the real space the model
might be correct for a null set only, meaning calculated 0%
correctness. In the exact space we know that the model is at
least correct for 3 out of 11 elements, meaning calculated
27.27% correctness.

Without a correct assumption of the exactness of the
underlying space generalizations might lead to models with a
higher number of wrong outputs, especially for unknown data.

IV. FUZZY MODELING IN IIR

In data analysis it is desired to have the complete information
about the exact space of interest, i.e., knowing everything
about the elements of IIR. Then, a generalization could be done
perfectly. The generalized properties could be calculated
precisely, including the probability of one generalized element
having one out of many different properties. Considering real-
world data, usually knowledge of a subset of the exact space is
known or measured. The common task is to predict the
properties of the remaining elements in the exact space.
Another task is compression. If the exact space is a pixel space
P in image processing, the compression task would be the
finding of a space Q P, so that the information about P can
exactly or approximately reconstructed from Q . In this case,
the exact space is a well defined artificial space, that makes its
analysis a well defined task.

Example 4. a) Consider again the exact space IIR =
{1,2,3,…,38,39,40} with (1,white), (2,white), (6,white),
(7,white), (8,white), (14,black), (15,black), (16,black),
(17,white), (18,white), (19,white), (20,white), and (s,unknown)
for s = 9, 10, 11, 12, 13, 21, 22, …, 39, 40.
b) We have a look at patients P1 ,…,P10 with a measured value
and a certain disease: (P1,50,ill), (P2,55.7,ill), (P3,75,ill),
(P4,53.337,ill), (P5,60,ill), (P6 ,58,healthy), (P7,76.5,healthy),
(P8,81,healthy), (P9 ,84.4,healthy), (P10,75,healthy).

We discuss at first Example 4a. Remember, in the exact space
each element is an entity and an 1-precise element. Since we
do not have class labels for 28 of the 40 elements, a model
should predict these class properties. The question is which
one of the models is the best one. If we assume all elements as
being 1-precise, resulting in a 1-precise space, then no
prediction at all is possible. Each element can either be black
or white and it does not depend on the elements for which the
class labels are already known. The visualization might
pretend neighborhood relations, but in the exact space they
need not to be considered. The 19 th element is black while the
18th and 20th elements are white, so that the 19 th element must
be modeled 1-precisely if no uncertainty should be introduced
in the model. A global 1-precise model, with 1-precise
elements only, remains as it is.

The solution for finding a more sophisticated model is to
allow for k-precise elements with different k’s locally. The
problem with considering different k’s for each element is a
combinatorial exploding number of models. If we assume the
elements 2, 6, 8, 14, and 20 to be 2-precise, we could predict
the elements 3, 5, 9 , and 21 as being white, and the element 13
as being black, cf. Fig. 2. Another model could be the
following: elements 2 and 6 are 3-precise, so that element 4
can be predicted uniquely as being white, too. Element 20 is
modeled as being 21-precise, predicting elements 21 to 40 as
being white. Element 8 is 3-precise with elements 9 and 10
predicted as being white. Element 14 is 3-precise (in the left
direction), predicting elements 12 and 13 as being black, cf.
Fig. 3. It is inherent to the definition of the exact space that
unknown information cannot be predicted uniquely.
Assumptions about the preciseness of elements can make
predictions unique.

We consider again the elements in Fig. 2. We assume that
the model is mainly 5-precise. Symmetrically to the left and
right two elements can be predicted. We do not use this
assumption for elements where 5-preciseness is not justified,
i.e., it is not used for the elements 16, …, 20. Elements 3, 4,
and 5 can clearly be predicted under the assumption as being
white. No prediction can be made for the elements 21, …, 40.
The predictions for the elements 9, …, 13 are shown in Table
I. From the numbers of elements that predict each color it
becomes possible to calculate a degree of preciseness. These
degrees are depicted in Fig. 4. Element 11 cannot be predicted
uniquely with the model assumptions. Comparing the two
models in Figs. 2 and 4 element 10 is not predicted in Fig. 2

221
IIR

Fig. 2. The exact space is modeled with elements 2, 6, 8, 14, and 20
being 2-precise.

221
IIR

40
…

Fig. 3. The exact space is modeled with elements 2, 6, 8, and 14
being 3-precise and 20 being 21-precise.
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(degree equal to 0). In Fig. 4 it is predicted as being white with
degree 0.75. In Fig. 2 element 4 could not be predicted with 2-
precise elements. With 5-precise elements it was predicted as
being white in Fig. 4.

The relation to fuzzy logic is obvious. One can model the
1-precise elements in the exact space as fuzzy singletons. The
degrees of preciseness gives membership degrees for fuzzy
membership functions. The membership function is defined
on the basic elements in the exact space. In the real space the
membership functions are defined in the continuum. With
respect to fuzzy logic all the degrees of preciseness might be
referred to as exact membership functions under certain
preciseness assumptions.

Let us now consider the Example 4b. Two patients have
the same measurement (P3 ,75,ill) and (P10,75,healthy), but
with different class assignments. Two reasons might be the
cause for that. The measurement was not done exactly, maybe
rounded, so that no decimals are available. Other
measurements are available with decimals. There is no
underlying common model of an exact space. Secondly, this
variable is not representing the exact space needed for a
unique classification. The problem space might be higher
dimensional for example. If an exact space with three decimals
precision is assumed (the element 50.000 could formerly be
shifted to 1), then 34401 elements are in the whole exact
space. With ten elements and assumed 5000-preciseness (2500
to left, element, 2499 to the right) we would obtain a model
no. 1. Another possibility would be the rounding of all values,
so that no decimals are remaining. Then, between 50 and 84
the number of 35 elements have to be analysed by ten not
uniquely labeled elements. We assume 5-preciseness and
obtain a model no. 2. We give the characteristics of the two
resulting models.

Model 1: For example 58.000 with 5000-preciseness is
assigned to the interval [55.500,60.499]IIR with status ‘healthy.’
The other intervals are assigned as given in Table II. For each
subinterval the degrees of preciseness for the classes ‘ill’ and
‘healthy’ are calculated. From these degrees classes can be
predicted. If both degrees are 0.5, no class can be assigned. In
the case that both degrees are zero, the class is unknown.
Model 2: 58 is modeled with 5-preciseness (2 left, element, 2
right) and is thus assigned in the exact space to the interval
[56,60]IIR with elements 56, 57, 58, 59, and 60. The other
intervals are given in Table III with interval degrees and class
assignments.

We will discuss some values and the results using the two
models as classifiers. The value 58 was measured actually on a
healthy patient. In model 1 the patient would be classified
incorrectly as ‘ill’ and in model 2 no clear assignment is
possible. These effects are due to a k-preciseness with a high k
> 1, introducing uncertainty to the model and possible
incorrect classification decisions. If a new patient has the value
74.4, he would be classified as a healthy patient in model 1.
The exact space of model 2 does not support decimals, so
round(74.4) = 74 lead to no class decision in model 2.

An exact fuzzy model can be modeled based on the
preciseness degrees of Tables II or III for example. Let us
consider data points of one class with assumed either
(symmetrical) 5- or 11-preciseness in the exact space of Figs. 5

221
IIR

elements in
the exact

space

degree of
preciseness

1

0

both degrees = 0.5

Fig. 4. Under the assumption that the elements 1, …, 15 are 5-
precise the degrees of preciseness give a prediction for a priori
elements without color information.

TABLE I
BASIC 5-PRECISE ELEMENTS THAT PREDICT THE ELEMENTS IN THE

COLUMNS AS BEING BLACK OR WHITE

9 10 11 12 13
black - 14 14,15 14,15 14,15
white 6,7,8 6,7,8 7,8 8 -

TABLE II
MODEL 1: INTERVALS WITH DEGREES OF PRECISENESS AND ASSIGNED

CLASS LABEL (5000-PRECISE DATA)
Interval dill dhealthy Class label

[47.500,55.499]IIR 1 0 ill
[55.500,55.836]IIR 2/3 1/3 ill
[55.837,57.499]IIR 1/2 1/2 -
[57.500,58.199]IIR 2/3 1/3 ill
[58.200,60.499]IIR 1/2 1/2 -
[60.500,62.499]IIR 1 0 ill
[62.500,72.499]IIR 0 0 unknown
[72.500,73.999]IIR 1/2 1/2 -
[74.000,77.499]IIR 1/3 2/3 healthy
[77.500,86.899]IIR 0 0 healthy

TABLE III
MODEL 2: INTERVALS WITH DEGREES OF PRECISENESS AND ASSIGNED

CLASS LABEL (5-PRECISE DATA)

Interval dill dhealthy Class label
[48,55] IIR 1 0 ill
[56,60] IIR 1/2 1/2 -
[61,62] IIR 1 0 ill
[63,72] IIR 0 0 unknown
[73,74] IIR 1/2 1/2 -
[75,77] IIR 1/3 2/3 healthy
[78,86]IIR 0 1 healthy
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and 6. In Fig. 5 the resulting fuzzy membership functions are
shown with assumed 5-preciseness. The membership degrees
were identified with the preciseness degrees as it was done for
the models 1 and 2 before. The membership functions for class
‘white’ might lead to two fuzzy terms ‘low’ and ‘high.’ With
11-preciseness (Fig. 6) we have one fuzzy-term for the white
and one for the black class. Due to the exact determination of
the shape of the membership functions they are not ideal
trapezes. Figure 7 shows an imprecise fuzzy modeling in the
real space that might be based on visual exploration of the
data. No assumptions about an exact space are made here. In
Fig. 7 the white point at position 13 is treated as an outlier.
Compared to the models with an underlying assumption of an
exact space (Figs. 5 and 6) the model in the real space (Fig. 7)
is more artificial and imprecise, but smoother due to missing
assumptions of the k-preciseness for all elements.

The sum of the membership degrees for every element in
the exact space is either 1 or 0. In the latter case the element
was not covered by any k-precise element. In the literature
such a fuzzy system is called intuitionistic [18]. For example
unknown knowledge in medical applications can be modeled
with intuitionistic fuzzy sets [19]. The main advantages
between our approach and the approach in [7] are the
definition of an exact space and of k-preciseness for all data
elements while in [7] gaps of a certain length between the data
are generated (dilatation) or deleted (erosion). This process
does not support numerical preciseness since ‘outliers’ are
deleted and not included in the calculation. With the elements
17, 18, 20, and 25, a gap between 17 and 20 is considered in
the same way as a gap between 18 and 25, so that the exact
space {17,18,19,20,21,22,23,24,25} and the resulting
membership functions are distorted as a consequence.

V. EXTENSION TO TYPE-2 FUZZY SETS

The ideas of modeling type-1 fuzzy sets in the exact space IIR
can be extended to exact type-2 fuzzy sets. Originally, type-2
fuzzy sets were introduced in [15]. With this model uncertainty
about uncertainty is expressed. For example different persons
might model the fuzzy number 4 with different membership
functions. To obtain a common model, a second membership
degree is assigned to each value of the first membership
function, representing the uncertainty of the first membership

degree. The type-2 fuzzy sets in the real space IR are defined in
[16], where examples for applying operators on such sets are
given.

Definition 4. A type-2 fuzzy set M~ is characterized by a type-2
membership function ),,(~ uxA where x X and u Jx 

[0,1], i.e.,

]}1,0[,|)),(),,{((
~

~  xA JuXxuxuxA  (1)

with .1),(0 ~  uxA Given a fixed ,'x if all secondary
membership degrees of a secondary membership function

),'(~ uxxA  are set to 1, then the type-2 fuzzy set is called an
interval type-2 fuzzy set.

Until now mainly interval type-2 fuzzy sets were used [16],
[17] due to the complexity of the general approach. In Fig. 7 a
real valued type-1 membership function has been depicted. An
interval type-2 modeling could be given by assigning an
uncertainty region around the first membership function (x).
Such a model is only an imprecise or approximate modeling of
general type-2 uncertainty.

We consider the exact space IIR in Fig. 5, where we have
modeled the type-1 membership functions under the
assumption of 5-preciseness. In Fig. 6 we assumed 11-
preciseness. In the following we model a type-2 fuzzy system
under the assumption that 5- to 11-preciseness is possible. The
minimal and maximal values define the borders of the
uncertainty regions, that are visualized in Fig. 8. We notice
that the uncertainty of class ‘white’ allows for either one or
two linguistic terms when a type-1 system should be

IIR

x

(x)
1

0

Fig. 5. Exact fuzzy modeling for the elements under the assumption
that all elements are 5-precise.

IIR

x

(x)
1

0

Fig. 6. Exact fuzzy modeling for the elements under the assumption
that all elements are 11-precise.

IR

x

(x)
1

0

Fig. 7. Visual fuzzy modeling in IR for the elements in Fig. 5.

212

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



considered. The (interval) type-2 system is capable of
modeling the uncertainty about the number of linguistic terms.
If a general type-2 fuzzy system should be modeled, an exact
model in IIR can be generated by the membership degrees,
counting the number of values for each point and calculating
relative proportions between 0 and 1. For example the degree
0 appears 5 times for element 18, the degree 1/6 appears 2
times (class ‘white’). We obtain white(x,0) = 5/7 and
white(x,1/6) = 2/7. The (general) secondary membership
functionwhite(x,u) is depicted in Fig. 9.

VI. CONCLUSION

In numerical data analysis and algorithmic design it is mostly
assumed that the underlying space is IR. But the computing
device, the software, and the data is restricted to assumptions
about the preciseness used for calculation or measurement. To
deal with the situation, the assumption of an underlying exact
space IIR was made, that can be interpreted as a lattice. In the
exact space assumptions about impreciseness of elements can
be modeled exactly. The generalization of data and the fuzzy
modeling in the exact space lead to models that are better
motivated by the given preciseness assumptions. With the k-

preciseness unknown data, that cannot be classified upon the
training data, can be labeled as ‘unknown.’ The approach
helps to find more exact models for modeling impreciseness.
Furthermore, it helps in modeling interval or general type-2
fuzzy systems based on k-preciseness of the data. For the case
that no assumption about k-preciseness is available, a task for
the future could be the finding of a data driven heuristic for it.
A next step is the extension of the approach to a higher
dimensional exact space IIRn where the generalization is
possible in many directions in the exact space. This might be a
step towards a more universal data theory, in which a precise
model of uncertainty can be given.
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Fig. 9. The secondary membership degrees (x,u) for class ‘white’
are plotted as bars. The light grey area in Fig. 8 can be embedded in
the x-u plane.

Fig. 8. Fuzzy type-2 modeling of the data in Fig. 5. The light grey
area is the uncertainty region of class ‘white,’ the dark grey area the
uncertainty region of class ‘black.’

213

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)


