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Abstract— A fuzzy c-means (FCM) classifier derived from
a generalized FCM clustering is proposed. The clssifier de-
sign is based on FCM. The classifier is not initialized with
random numbers, hence being deterministic. The parameters
are optimized by cross validation (CV) protocol and golden
section search method. A method for dealing with missing
values without eliminating them but with estimating them is
also proposed. Instead of using the terminology “conditional
expectation”, the imputation is done by the least square method
of Mahalanobis distances between the datum with missing
values and cluster centers. The FCM classifier outperforms well
established methods such as support vector machine, k-nearest
neighbor and Gaussian mixture classifiers for datasets with and
without missing values.

I. INTRODUCTION

The standard fuzzy c-means (FCM) clustering objective
function [1] is generalized a little further, and iterative rules
for clustering is derived. The clustering algorithm, which
is derived from the generalized FCM and the iteratively
reweighted least square (IRLS) technique [2] is applied to
a post-supervised classifier. Cluster memberships are defined
by a function of Mahalanobis distances between data vectors
and cluster centroids. The algorithm is called FCM classifier
[3], [4], [5]. In the post-supervised design, the clustering is
done on a per class basis and is implemented by using the
data from one class at a time. When working with the data
class by class, the prototypes that are found for each labeled
class already have the assigned physical labels.

High performance classifiers usually have parameters to be
selected. For example, support vector machine (SVM) [6], [7]
has the regularization parameter and kernel parameters. After
selecting the best parameters by some procedure, we use the
parameters to train the whole training set, and then test new
unseen data. For making our FCM classifier deterministic,
this paper proposes a way of determining initial cluster
centroids based on principal component (PC) basis vectors.
No random initializatin is used and this enables us to evaluate
the classifier performance by a single run of cross varidation
test with a default partition of benchmark data. A parameter
optimization procedure with grid search and golden section
search is proposed.

FCM classifier outperforms well-established presupervised
methods, i.e., SVM, decision tree approach C4.5 [8], k-
nearest neighbor classier (k-NN), learning vector quantiza-
tion (LVQ) [9], [10] and Gausian mixture classifier (GMC)
[11], [12] on the benchmark data sets from the UCI ML
repository [13].

Missing values are common in many real world data sets.
The interest in dealing with missing values has continued
with the applications to data mining and microarrays [14].
These applications include supervised classification as well
as unsupervised classification (clustering).

Usually entire incomplete data samples with missing
values are eliminated in preprocessing (the case deletion
method). Other well known methods are the mean imputa-
tion, median imputation and nearest neighbor imputation [15]
procedure. The nearest neighbor algorithm searches through
all the dataset looking for the most similar instances. This is
a very time consuming process and it can be very critical in
data mining where large databases are analyzed.

In the multiple imputation method the missing values in
a feature are filled in with values drawn randomly (with
replacement) from a fitted distribution for that feature. This
procedure is repeated a number of times [16].

In the local principal component analysis (PCA) with
clustering [17], [18], not the entire data samples but only
the missing values are ignored by multiplying “0” weights
over the corresponding reconstruction errors.

Maximum likelihood procedures that use variants of the
Expectation-Maximization algorithm can handle parameter
estimation in the presence of missing data. These methods
are generally superior to case deletion methods, because they
utilize all the observed data. However, they suffer from a
strict assumption of a model distribution for the variables,
such as a multivariate normal model, which has a high
sensitivity to outliers.

This paper proposes an approach to clustering and classi-
fication without eliminating or ignoring missing values but
with estimating the values. Instead of computing conditional
expectation using a probability distribution, the estimation is
done by the least squares method of Mahalanobis distances
between the datum with missing values and cluster centroids.

We carry out experiments with benchmark datasets to
evaluate the effect on the classification error rate of the
methods for dealing with missing values: the proposed, EM
algorithm of GMC, k-NN with nearest neighbor imputation
procedure.

The paper is organized as follows. Section II gives a
brief description of the generalized FCM clustering and the
classifier design based on IRLS. A parameter optimization
procedure with grid search and golden section search is pro-
posed in Section III. Our imputation methods by minimizing
Mahalanobis distances between data and cluster centers will
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be described in Section IV. Section V provides the results of
numerical experiments. Section VI concludes the paper.

II. GENERALIZED FCM CLUSTERING AND CLASSIFIER

The clustering is used as an unsupervised phase of the
classifier design. FCM clustering partitions data set by in-
troducing memberships to fuzzy clusters. Let r dimensional
vector vi denote prototype parameter (i.e., cluster centroid).
uik denotes the membership of k-th object data xk ∈ Rr to
i-th cluster.

We first summarize the three kinds of objective functions,
i.e., the standard, entropy-based, and quadratic-term-based
fuzzy c-means. The objective function of the standard method
is:

Jfcm =
c∑

i=1

n∑
k=1

(uik)λd2
ik, (λ > 1). (1)

c denotes the number of clusters. d2
ik denotes the squared

distance between data vector xk and centroid vector vi, so
the standard FCM objective function is the weighted sum of
squared distances. Following objective function is used for
the entropy-based method.

Jefc =
c∑

i=1

n∑
k=1

uikd2
ik + η

c∑
i=1

n∑
k=1

uik log uki, (η > 0).

(2)

The objective function of the quadratic-term-based method
[19] is:

Jqfc =
c∑

i=1

n∑
k=1

uikd2
ik + η

c∑
i=1

n∑
k=1

(uik)2 (η > 0). (3)

λ and η serves as fuzzifiers and the larger the λ and η the
fuzzier the partition. From the above comparison we can
generalize the standard objective function a little further as:

Jgfc =
c∑

i=1

n∑
k=1

(uki)λd2
ik + η

c∑
i=1

n∑
k=1

(uik)λ, (4)

where η > 0, λ > 1. From the necessary condition of
optimality under the condition that

∑c
i=1 uik = 1, we have

uik =


 c∑

j=1

(
η + d2

ik

η + d2
jk

) 1
λ−1


−1

, (5)

vi =
∑n

k=1(uik)λxk∑n
k=1(uik)λ

. (6)

where, xk is the data vector of k-th sample. For more details
of the generalized FCM clustering, see [20].

The objective function (2) includes the entropy term and
is the only case where covariance matrices (Ai) can be taken
into account. Although Gustafson and Kessel’s modified
FCM [21] is derived from an objective function with fuzzifier
λ, we need to specify the values of determinant |Ai| for all
i. In order to deal with covariance structure within the scope
of fuzzy c-means clustering, we need some simplifications

based on the IRLS technique. Runkler and Bezdek’s [22]
fuzzy clustering scheme called alternating cluster estimation
(ACE) is this kind of simplification.

Now we consider to deploy a technique from the robust
M-estimation [2], [23]. The M-estimators try to reduce the
effect of outliers by replacing the squared residuals with ρ-
function, which is chosen to be less increasing than square.
Instead of solving directly this problem, we can implement it
as the IRLS. While the IRLS approach does not guarantee the
convergence to a global minimum, experimental results have
shown reasonable convergence points. If one is concerned
about local minima, the algorithm can be run multiple times
with different initial conditions.

Let the objective function of the IRLS-FCM be

Jifc =
c∑

i=1

n∑
k=1

uik

(
d2

ik + log|Ai|
)
, (7)

where

d2
ik = (xk − vi)�A−1

i (xk − vi) (8)

is Mahalanobis distance from xk to i-th cluster centroid. Ai

is a covariance matrix of data samples of the i-th cluster,
which is derived from (7) as:

Ai =
∑n

k=1 uik(xk − vi)(xk − vi)�∑n
k=1 uik

, (9)

and vi is derived as:

vi =
∑n

k=1 uikxk∑n
k=1 uik

. (10)

Membership function uik is not derived from the objective
function and is a pre-defined weight function. We confine our
discussion to the function

u∗
ik =

πi|Ai|−1/γ

(η + d2
ik/0.1)1/λ.

(11)

To facilitate competitive movements of cluster centroids, we
need to define the weight function to be normalized as:

uik =
u∗

ik∑c
l=1 u∗

lk

, (12)

then uik is written as:

uik = πi|Ai|−1/γ


 c∑

j=1

(
η + d2

ik/0.1
η + d2

jk/0.1

) 1
λ

πj|Aj |−1/γ



−1

.

(13)

πi =
∑n

k=1 uik∑c
j=1

∑n
k=1 ujk

=
1
n

n∑
k=1

uik. (14)

The clustering algorithm can be written as follows:

Algorithm: IRLS-FCM
Step 1: Initialize uik, i = 1, ..., c, k = 1, ..., n randomly.
Step 2: Calculate vi, i = 1, ..., c by using (10).
Step 3: Calculate Ai, i = 1, ..., c by using (9).
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Step 4: Calculate uik and πi, i = 1, ..., c, k = 1, ..., n by
using (13) and (14).

Step 5: If iteration number exceeds the predetermined
value then terminate, else go to Step 2.

The termination criterion is simplified in the above algo-
rithm, but it should be recommended to check the conver-
gence of the objective function (7).

The clustering is done on a per class basis and is imple-
mented by using the data from one class at a time. After
completing the clustering for all classes, the classification is
performed by computing class memberships. Let αq denote
the mixing proportion of class q, i.e., the a priori probability
of class q. Class membership of k-th data xk to class q is
computed as:

u∗
qjk = πqj|Aqj |−1/γ/(η + d2

qjk/0.1)1/λ, (15)

ũqk = αq

c∑
j=1

u∗
qjk/

Q∑
s=1

αs

c∑
j=1

u∗
sjk, (16)

where c denotes the number of clusters of each class. The de-
nominator in (16) can be disregarded when applied solely for
classification. The FCM classifier performs somewhat better
than alternative approaches do [4] and requires comparable
computation time with Gaussian mixture classifier beacuse
the mathematical structure is quite similar.

The modification of covariance matrices in the mixture
of probabilistic principal component analysis (MPCA) [24]
or the character recognition [25] is applied in our FCM
classifier. Pi is an r × r matrix of eigenvectors of Ai. r
equals the dimensionality of input samples. Let A′

i denotes
an approximation of Ai in (9). P p

i is an r × p matrix
of eigenvectors corresponding to the p largest eigenvalues,
where p < r− 1. ∆p

i is a p× p diagonal matrix. p is chosen
so that all A′

is are nonsingular and the classifier maximizes
its generalization capability.

σi = (trace(Ai) − Σp
l=1δil)/(r − p). (17)

Inverse of A′
i becomes

A
′−1
i = P p

i ((∆p
i )

−1 − σ−1
i Ip)P p�

i + σ−1
i Ir . (18)

When p=0, Ai is reduced to a unit matrix and dik in (8) is
reduced to Euclidean distance. Then, uik in (13) is reduced
to (5) when πi = 1 for all i and one is subtracted from λ.

Parameters λ, γ, and η are optimized by the golden section
search method.

III. PARAMETER OPTIMIZATION WITH CV PROTOCOL

AND DETERMINISTIC FCM

High performance classifiers usually have parameters to be
selected. For example, SVM has the regularization parameter
and kernel parameters. After selecting the best parameters
by some procedure, we use the parameters to train the
whole training set, and then test new unseen data. Therefore,
if the performance of classifier is dependent of random
initialization, we need to select parameters with the best

average performance and the result of final single run on
the whole training set does not necessarily guarantee the
averaged accuracy. This is a crucial problem and for making
our FCM classifier deterministic, we propose a way of
determining initial centroids based on principal component
(PC) basis vectors.

As we will show in the numerical experiment section, the
proposed classifier with two clusters for each class (i.e., c=2)
performs well, so we let c=2. p∗

1 is a PC basis vector of data
set D = (x1, ..., xn)� of a class, which is associated with
the largest singular value σ∗

1 .
Initial locations of the two cluster centroids for the class

are given by

v1 = v∗ + σ∗
1p

∗
1,

v2 = v∗ − σ∗
1p

∗
1, (19)

where v∗ is the class mean vector. We choose the initial
centroids in this way, since we know that, for a normal
distribution N (µ, σ2), the probability of encountering a point
outside µ ± 2σ is 5% and outside µ ± 3σ is 0.3%.

When many cluster centroids are necessary, we set as:

v1 = v∗ + σ∗
1p∗

1 + σ∗
2p∗

2,

v2 = v∗ − σ∗
1p∗

1 + σ∗
2p∗

2,

v3 = v∗ + σ∗
1p∗

1 − σ∗
2p∗

2,

v4 = v∗ − σ∗
1p∗

1 − σ∗
2p∗

2. (20)

or it can be written more generally as:

vi = v∗ ± σ∗
1p

∗
1 ± σ∗

2p
∗
2 ± ... ± σ∗

mp∗
m,

(i = 1, ..., 2m, 2 ≤ m ≤ r). (21)

FCM classifier has some parameters, whose best values are
not known beforehand, consequently some kind of model
selection (parameter search) must be done. The goal is to
identify good values so that the classifier can accurately
predict unseen data (i.e., testing/checking data). Because
it may not be useful to achieve high training accuracy
(i.e., classifiers accurately predict training data whose class
labels are known), a common way is to separate training
data to two parts of which one is considered unknown in
training the classifier. Then the prediction accuracy on this
set can more precisely reflect the performance on classifying
unknown data. The cross-validation procedure can prevent
the overfitting problem. In 10-fold cross-validation (10-CV),
we first divide the training set into 10 subsets of equal
size. Sequentially one subset is tested using the classifier
trained on the remaining 9 subsets. Thus, each instance of the
whole training set is predicted once so the cross-validation
error rate is the percentage of data which are misclassified.
The best setting of the parameters is picked via 10-CV and
a recommend procedure is “grid-search”. The grid-search
is a methodologically simple algorithm and can be easily
parallelized while many of advanced methods are iterative
processes, e.g. walking along a path, which might be difficult
for parallelization. In our proposed approach, the grid-search
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is applied for λ in the unsupervised clustering. We denote
this value as λ∗.

The golden section search [26] is a technique with iterative
processes for finding the extremum (minimum or maximum)
of a mathematical function, by successively narrowing brack-
ets by upper bounds and lower bounds. The technique derives
its name from the fact that the most efficient bracket ratios
are in a golden ratio. In our proposed approach parameters
λ, η and γ are optimized in the post-supervised classification
phase by using the golden section search method applied to
the parameters one after another. The parameters are initial-
ized randomly and updated iteratively, and this procedure is
repeated many times, so the procedure can be parallelized.

Our parameter optimization (POPT) algorithm by grid
search and golden section search is as follows:

Algorithm: POPT

Step 1: Initialize vi, i = 1, 2 by using (21) and set lower
limit (LL) and upper limit (UL) of λ∗. Let λ∗ =
LL.

Step 2: Partition the training set in 10-CV by IRLS-FCM
clustering with γ = η = 1. The clustering is done
on a per class basis, then all Ai’s and vi’s are
fixed. Set t:=1.

Step 3: Choose γ and η randomly from interval [0.1 50].
Step 4: Optimize λ for the test set in 10-CV by the golden

section search in interval [0.1 1].
Step 5: Optimize γ for the test set in 10-CV by the golden

section search in interval [0.1 50].
Step 6: Optimize η for the test set in 10-CV by the golden

section search in interval [0.1 50].
Step 7: If iteration t < 50, t := t + 1, go to Step 3 else

go to Step 8.
Step 8: λ := λ + 0.1. If λ > UL, terminate else go to

Step 2.

In the grid search for λ∗ and golden section search for λ, γ
and η, the best setting of the parameters is picked via 10-
CV, which minimizes the error rate on test sets. The iteration
number for clustering is fixed to 50, which is adequate for
the objective function to converge in our experiments. More
small iteration number such as 20 may be enough for some
specific data sets.

When p=0, Ai is reduced to a unit matrix and dik in (8)
is reduced to Euclidean distance. So we change only λ by
the golden section search method and set πqj = 1, αq = 1
for all j and q.

IV. IMPUTATION OF MISSING VALUES

In this section, we propose an approach to clustering and
classification without eliminating or ignoring missing values
but with estimating the values. Since we are not concerned
about probability distribution such as multivariate normal, in-
stead of using the terminology “conditional expectation”, the
estimation is done by the least square method of Mahalanobis
distances (8). The first term of (7) is the weighted sum
of Mahalanobis distances between data points and cluster

centroids. The missing values are some elements of data
vector xk, which are estimated by the least square technique,
that is, the missing elements are the solution to the system of
linear equations derived from differentiating (8) with respect
to the missing elements of data vector xk.

Let xi
kl, l = 1, ..., r, be the elements of centered data xi

k

(i.e., xi
kl = xkl − vil) and the j-th element xi

kj be a missing
element. The objective function for minimizing Mhalanobis
distance with respect to the missing value can be written as:

L = x∗�A−1
i x∗ − µ(x∗ − xi

k), (22)

where x∗ is the vector of decision variables and µ is the
vector of Lagrange multipliers. The elements of µ, x∗ and
xi

k corresponding to the missing values are zero.
Then, the system of linear equations can be written as:(

2A−1
i U

U Z

)
x∗ = bi

k, (23)

where

U = diag(1 · · · 1 0j 1 · · ·1), (24)

x∗ = (x∗
1 · · ·x∗

r µ1 · · ·µj−1 0 µj+1 · · ·µr), (25)

and

bi
k = (01 · · ·0r xi

k1 · · ·xi
k j−1 0 xi

k j+1 · · ·xi
kr). (26)

“diag” denotes diagonal matrix and 0j denotes that the j-th
element is zero. Z is an r× r zero matrix. When more than
two elements of xk are missing, corresponding elements in
(24)-(26) are also replaced by 0. All zero rows and all zero
columns are eliminated from (23) and then we obtain the
least square estimates of all the missing values by adding
the element of centroid vij to x∗

j . We use this estimation
method both for clustering and classification. Note that the
clustering is done on a per class basis.

Figs.1-2 show the classification and imputation results on
the well known Iris plant data by the FCM classifier with
λ = 0.5, γ = 2.5, η = 1. Only the two variables, namely x3

and x4 are used and the problem is binary classification.
These figures exemplifies the case where we can easily
undestand that two clusters are suitable for a class of data
with two separate distributions. Open and closed marks of
triangle and circle represent the classification decision and
the true class (ground truth) respectively. The five artificial
data with a missing feature value are added and the values are
depicted by solid line segments. Squares mark the estimated
values. A vertical line segment shows the x3 coordinate
of an observation for which the x4 coordinate is missing.
A horizontal line segment shows the x4 coordinate for
which the x3 coordinate is missing. Because the number
of clusters is one (c = 1) for each class in Fig.1, the
single class consisted of two subspecies (i.e., Iris setosa
and Iris verginica) forms a slim and long ellipsoidal cluster.
Therefore, the missing values on the right side and on the
upper side are estimated at upper right corner of the figure.
This problem is alleviated when the number of cluster is
increased by one for each class as shown in Fig.2.
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Fig. 1. Classification (triangle and circle marks) and imputation (square
marks) on Iris 2-class 2D data with missing values by FCM classifier with
single cluster for each class (c = 1).

Fig. 2. Classification (triangle and circle marks) and imputation (square
marks) on Iris 2-class 2D data with missing values by FCM classifier with
two clusters for each class (c = 2).

V. NUMERICAL EXPERIMENTS

We used 8 data sets of Iris plant, Wisconsin breast
cancer, Ionosphere, Glass, Liver disorder, Pima Indian di-
abetes, Sonar and Wine as shown in Table I. These
data sets are available from the UCI ML repository
(http://www.ics.uci.edu/˜ mlearn/) and were used for com-
parisons among several prototype-based methods in [10].
Incomplete samples in the breast cancer data set were elimi-
nated from the training and test sets. All categorical attributes
were encoded with multivalue (integer) variables. And, then
all attribute values were normalized to zero mean and unit
variance.

Iris is the set with three classes, though it is known that Iris
setosa is clearly separated from the other two subspecies [11]
and Iris versicolor is between Iris setosa and Iris verginica
in the feature space as shown in Fig. 1. If the problem is
defined as binary one we can easily find that two clustes

are necessary for the setosa-verginica class. Iris-Vc and Iris-
Vg in the tables represent the Iris subspecies and each of
them is two-class binary problem, i.e., one class consists
of one subspecies and the other consists of remaining two
subspecies. In the same way, Wine-1, Wine-2 and Wine-3
are the binary problems.

The algorithm is evaluated using 10-CV, which is applied
to each data set once for the deterministic classifiers and 10
times for the classifiers with random initialization. We use
a default partition into ten subsets of the same size. The
performance is the average and standard deviation (s.d.) of
classification errors (%).

Table II shows the results. FCM classifier based on IRLS-
FCM is abbreviated to FCMC and “FCMC” column shows
the results by the classifier. POPT algorithm by grid search
and golden section search in section III is used. Optimum
number (p) of eigen vectors is chosen from 0 (Euclidean
distance) up to data dimension. Number of clusters is fixed
to two, except for Sonar data where p = 0 and Euclidean
distance is used. The iteration number for the FCM clasifier
was fixed to 50, which was adequate for the objective
function value to converge in our experiments.

For comparison with SVM, we used downloadable
SVM toolbox for MATLAB interface to SVMlight[27]
by Anton Schwaighofer (http://ida.first.fraunhofer.de/˜ an-
ton/software.html). The decomposition algorithm is imple-
mented for the training routine, together with efficient work-
ing set selection strategies, which is based on random ini-
tialization. Average error rate and standard deviation by 10
separate runs of 10-CV are shown. The parameter of the RBF
kernel is optimized for each run by the grid search method,
so the different parameter values are used for each run.
Since SVM is basically for binary classification, we used the
binary problems of Iris and Wine. The classification software
DTREG (http://www.dtreg.com/index.htm) has SVM option.
The benchmark test results (10-CV) placed on the DTREG
web site reports the error rate for the multi-class cases, i.e.,
3% on Iris, 34% on Glass, and 1% on Wine.

The third column of the upper table shows the best result
among six variants of C4.5 using 10 complete runs of 10-CV
reported in [29]. The similar best average error rate among
C4.5, Bagging C4.5 and Boosting C4.5 repoted in [30] is also
displayed in parentheses (standard deviation is not reported).

Nearest neighbor classifier does not abstract the data, but
rather uses all training data to label unseen data objects
with the same label as the nearest object in the training set.
The nearest neighbor classifer easily overfits to the training
data. Accordingly, instead of 1-nearest neighbor, generally
k nearest neighboring data objects are considered in k-
NN classifier. Then, the class label of unseen objects is
established by majority vote. For the parameter of k-NN
(i.e.,k), we tested all integer values from 1 to 50. LVQ
algorithm we used is LVQ1, which was a top performer
(averaged over several data sets) in [28]. Initial value of the
learning constant of LVQ is set as 0.3 and is changed as in
[10], [28], i.e., β(t + 1) = β(t) × 0.8 where t (=1, ..., 100)
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denotes iteration number. For the parameter of LVQ (i.e., c),
we tested all integer values from 1 to 50.

For GMC, the number of clustes c was chosen from 1
or 2, and optimum number (p) of eigen vectors is chosen
similarly with FCMC. GMC frequently suffers from the
problem of singular matrices and we need to decrease the
number of eigenvectors (p) for approximating covariance
matrices, though the FCM classifier alleviates the problem.

We show in Table IV the results on the benchmark datasets
by artificially deleting values. These results were obtained by
deleting, at random, observations from a proportion of the
instances. The rate of missing feature values with respect
to the whole dataset is 25%. From Iris data for example,
150 feature values are randomly deleted. The classification
process by 10-CV with a default partition was repeated 10
times for the classifiers with random initializations.

In Table IV, FCMC uses missing value imputation method
by the least square Mahalanobis distances. The classification
error rates decay only slightly, though the proportion of
instances with missing values is large.

FCMC(M) stands for the FCM classifier with the mean
imputation method. Global mean is zero since the data are
stnadardized to zero mean and zero is substituted for the
missing value. The proposed FCMC is better than the zero
imputation method.

GMC uses EM algorithm and conditional expectation for
missing value imputation.

k-NN(NN) is the k-NN classifier with the nearest neighbor
imputation method [15]. When the dataset volume is not
extremely large, the NN imputation is an efficient method
for dealing with missing values in supervised classification.
The NN imputation algorithm is as follows:

Step 1: Divide the data set D into two parts. Let Dm

be the set containing the instances in which at
least one of the features is missing. The remaining
instances with complete feature information form
a set called Dc.

Step 2: Divide the instance vector into observed and
missing parts as x = [xo; xm].

Step 3: Calculate the distance between the xo and all the
instance vectors from Dc. Use only those features
in the instance vectors from the complete set Dc ,
which are observed in the vector x.

Step 4: Impute missing values from the closest instance
vector (nearest neighbor).

Note that all training instances must be stored in computer
memory for NN imputation. Sufficient amount of complete
data is needed, otherwise it may happen that no complete
data exists for substituting the missing value and the compu-
tation unexpectedly terminates. k-NN classifier unexpectedly
terminated for Ionosphere and Sonar data due to the lack of
complete data for nearest neighbor imputation and the result
is denoted by “-” in the k-NN(NN) column of Table IV.

As shown in Table III and V, different parameter values
are chosen depending on the data sets without or with
missing values. When λ∗ (a.k.a. fuzzifier) is large, cluster

TABLE I

DATA SETS USED IN THE EXPERIMENTS

features objects classes
Iris 4 150 3

Breast 9 683 2
Ionosphere 33 351 2

Glass 9 214 6
Liver 6 345 2
Pima 8 768 2
Sonar 60 208 2
Wine 13 178 3

TABLE II

CLASSIFICATION ERROR RATES BY 10-FOLD CV WITH A DEFAULT

PARTITION.

FCMC SVM C4.5
Iris 1.33 – 5.7 ± 1.3 (4.80)

Iris-Vc 0.67 3.33 ± 0.63 –
Iris-Vg 1.33 2.73 ± 0.49 –
Breast 2.79 2.69 ± 0.17 5.1 ± 0.4 (4.09)

Ionosphere 3.43 4.60 ± 0.31 –
Glass 28.10 – 27.3 ± 1.5 (23.55)
Liver 27.94 29.65 ± 0.76 33.2 ± 1.4
Pima 22.50 22.38 ± 0.44 25.0 ± 1.0 (23.63)
Sonar 10.50 14.75 ± 1.36 24.6 ± 2.7 (19.62)
Wine 0.00 – 5.6 ± 1.0

Wine-1 0.00 0.47 ± 0.25 –
Wine-2 0.00 1.12 ± 0.33 –
Wine-3 0.00 0.59 ± 0.00 –

k-NN LVQ1 GMC
Iris 2.67 5.40 ± 0.87 2.00 c=1

Iris-Vc 2.67 4.87 ± 0.79 2.80 ± 0.98 c=2
Iris-Vg 2.67 4.40 ± 0.80 4.00 c=1
Breast 2.65 3.16 ± 0.16 2.97 ± 0.13 c=2

Ionosphere 13.43 10.60 ± 0.35 5.71 c=1
Glass 27.62 30.10 ± 1.38 42.38 c=1
Liver 32.65 35.24 ± 1.44 31.68 ± 1.01 c=2
Pima 23.42 24.11 ± 0.52 25.13 c=1
Sonar 13.50 14.85 ± 2.07 17.35 ± 2.19 c=2
Wine 1.76 2.35 ± 0.00 0.59 c=1

Wine-1 1.18 1.59 ± 0.46 0.00 c=1
Wine-2 1.76 3.00 ± 0.49 1.18 c=1
Wine-3 0.59 1.35 ± 0.27 0.00 c=1

centers come closer each other, so the λ∗ values determin
the position of centroids. We see from Tables III and V, λ
assumes different values from λ∗, which optimizes classifier
performance in the post-supervise phase.

Different types of models work best for different types of
data, though the FCM classifier outperforms well established
classifiers for almost all data sets used in our experiments.

VI. CONCLUSION

We have proposed an approach to classifier design within
the frame work of FCM clustering.
1) The optimized FCM classifier with deterministic initializa-
tion of cluster centroids surpassed well established classifiers
such as SVM, k-NN, and C4.5.
2) The accuracy of the FCM classifier with missing value
imputation option only slightly deteriorates according to the
increase of missing values.
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TABLE III

OPTIMIZED PARAMETER VALUES USED FOR FCM CLASSIFIER WITH

TWO CLUSTERS FOR EACH CLASS (c = 2).

λ∗ λ γ η p
Iris 0.5 1.0000 8.8014 30.7428 3

Iris-Vc 0.3 0.1118 0.6177 31.3914 4
Iris-Vg 0.1 0.8185 0.6177 31.3914 2
Breast 0.2 0.1000 – 1.0000 0

Ionosphere 0.6 0.4866 21.7859 49.3433 4
Glass 1.6 0.1000 2.6307 18.0977 4
Liver 0.1 0.4703 7.7867 30.9382 4
Pima 0.7 0.1812 2.0955 17.1634 1
Sonar 0.2 0.3125 – 1.0000 0 c = 16
Wine 0.4 0.9927 16.3793 10.4402 4

Wine-1 0.1 0.5176 7.3816 10.4402 4
Wine-2 0.4 0.1000 4.2285 25.5607 4
Wine-3 0.2 0.1812 4.6000 4.5229 4

TABLE IV

CLASSIFICATION ERROR RATES (%) ON BENCHMARK DATSETS BY

ARTIFICIALLY DELETING VALUES (25%). THE RESULTS OF 10-CV WITH

A DEFAULT PARTITION.

FCMC FCMC(M) GMC k-NN(NN)
Iris 2.67 4.67 3.33 c=1 9.33

Iris-Vc 2.67 5.33 4.67 c=1 9.33
Iris-Vg 2.67 6.00 4.67 c=1 6.00
Breast 3.68 3.97 3.93 ± 0.11 c=2 4.12

Ionosphere 4.86 5.43 7.26 ± 0.68 c=2 –
Glass 34.76 35.71 44.29 c=1 48.10
Liver 33.82 34.71 39.12 c=1 37.06
Pima 25.53 25.00 28.16 c=1 26.05
Sonar 13.50 14.00 19.50 c=1 –
Wine 1.76 3.53 2.94 c=1 10.59

Wine-1 0.59 1.76 3.35 ± 0.95 c=2 4.71
Wine-2 2.94 3.53 3.53 c=1 8.82
Wine-3 0.59 2.35 1.76 c=1 3.53

3) Computation for classifying unseen instances and imput-
ing missing values is not intense since the FCM classifier
does not require to store all training data in computer storage,
hence the FCM classifier outferforms k-NN classifier and NN
imputation method in computational efficency.

For parameter optimization, we adopted the simple grid
and golden section search, which are by no means the
most efficient methods and more efficient ways are under
investigation.
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