
 
 

 

  

Abstract — Recent studies show that evolutionary algorithms 
are effective optimization tools for their success in solving real-
world problem with complex and competing specifications. 
Although their performances are greatly influenced by the type 
of representation adopted, this choice often arises from intuition 
and guesswork due to the absence of proper guidelines and 
framework. This paper considers binary representation and 
presents a study on the key factors that affect its algorithmic 
performance. Subsequently, an encoding scheme is proposed to 
resolve the problem of positional dependency in binary coding, 
which is the commonly used genotype-phenotype mapping for 
this representation. This is achieved by introducing redundancy 
into the genotype-phenotype mapping, which will better preserve 
the similarities between the genotype and phenotype search space 
by resolving the exponential orderings between the alleles. 
Theoretical analysis and empirical study were conducted to 
investigate the characteristics of the proposed representation. 

I. INTRODUCTION 
volutionary algorithm (EA) is a class of stochastic search 
technique that has been gaining significant attention from 

the research community in the recent years for its success in 
solving complex real-world problems with various competing 
specifications. The EA paradigm is largely inspired by the 
biological process of evolution, where potential solutions are 
encoded as chromosomes to epitome the mechanics of DNA 
blueprint of living organisms. This allows the propagation of 
information through the operation of recombination and the 
inheritance of desirable properties to offspring solutions. As 
such, the representation scheme for the individual 
chromosome has always been a fundamental design issue in 
EA and the choice of an appropriate representation is vital for 
satisfactory algorithmic performance.  

Specifically, representation defines “the window” at which 
the algorithm views the optimization problem. Pseudo-
chromosomal (binary) strings, real-number vectors and 
complex data structures are some classical representation 
schemes available and the choice of usage is highly dependent 
on the type of optimization problems involved. Despite the 
wide range of representation available, binary representation 
is still widely adopted in many recently proposed EA and EA 
applications, mainly due to its ease in implementation and 
compatibility with classical variation operators.  

Binary representation stems from the early work of genetic 
algorithm where potential solutions for the optimization 
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problems are represented by pseudo-chromosomal strings. 
The genotype exists strictly in the form of binary string, while 
the phenotype can be in the form of bits, integers, real 
number, etc., depending on the problem. Although using 
genotype and phenotype with identical nature seems to be the 
most direct approach, denoting continuous phenotype with 
binary genotype, which represents a form of indirect 
encoding, is still a viable form of representation in EA. This is 
best explained by Veldhuizen and Lamont [1] in the context of 
multiobjective optimization: 

 
“When the real (continuous) world is modeled (e.g., via 

objective functions) on a computer (a discrete machine), there 
is a fidelity loss between the real world and implemented 
model. However, at a standardized resolution and 
representation, MOEA (multi-objective evolutionary 
algorithms) results can be compared against both each other 
and PFtrue (global Pareto Front). Thus, whether or not a given 
MOP’s (multi-objective optimization problem) true Pareto 
front is actually continuous or discrete is then not a major 
concern, as the computed front is always composed of discrete 
points at a specified computational resolution.” 

 

Due to the indirect representation, genotype-phenotype 
mapping are necessary and the most commonly used is the 
binary code. However, binary code suffers from the problem 
of positional dependency, where the amplitude of phenotype 
variation is dependent on the position of altered genotype bit.  
This is contrary to the classical variation operators, which 
regards each genotype bit as equal. While there have been 
attempts to induce positional bias into the variation operation 
to synchronize itself with the representation [2], this 
fundamental problem has not been resolved from the 
perspective of representation. 

Hence, to address the issue of positional dependency, this 
paper proposes a new coding scheme that alleviates this 
problem by introducing redundancy into the genotype-
phenotype mapping. Its characteristics will be investigated via 
theoretical and empirical studies. The term, binary 
representation, will conveniently refer to the representation of 
continuous phenotype with binary genotypes in this paper.  

II. GENOTYPE-PHENOTYPE MAPPING 
By virtue of the indirect encoding in binary representation, 

fitness evaluation is decomposed into a genotype-phenotype 
mapping, fg and a phenotype-fitness mapping, fp. The former 
will map the genotype search space, Φg into the phenotype 
search space range, Φp, from which the latter will then map it 
to the fitness space, ℜ [3]. The mathematical formulation is 

Eliminating Positional Dependency in Binary 
Representation via Redundancy 

C. Y. Cheong, S. C. Chiam and C. K. Goh 

E 

251

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE



 
 

 

given in (1) and (2). Specifically, fg represents the decoding of 
the binary string, gxr  into its corresponding set of decision 
variables, gxr , while fp calculates the corresponding fitness, 
depending on the optimization problem at hand. 

 

:g g pf Φ → Φ  (1)

:p pf Φ → ℜ  (2)
 

The overall difficulty of an optimization problem, F thus 
depends on the composite function, :p g gf f Φ → ℜo . Since 
fp is normally fixed as it depends on the problem at hand, the 
choice of fg will have a significant influence on F, and is thus 
one of the fundamental design issues in EA. This section will 
present a formal definition of fg and discuss some issues 
related to it. 

A. Effect of Redundancy on the Definition of Genotype-
Phenotype Mapping  
Biologically, the genotype-phenotype mapping emulates the 

protein biosynthesis process that dictates how proteins are 
built in cells by representing variables with pseudo-
chromosomal binary stings. Protein biosynthesis is a two stage 
process where the particular DNA sequence is first copied by 
an RNA polymerase to produce a complementary RNA; the 
RNA is then decoded to produce a functional protein 
according to the rules specified by the genetic code. The two 
distinct stages are termed as transcription and translation 
respectively. Essentially, the former extract the relevant genes 
from the entire DNA strand by filtering away all the redundant 
genes, while the latter then decodes these genes to obtain the 
necessary information. 

 

Genotype Bits

Phenotype Bits

Phenotype Value [0,216-1]

48 Bits

16 Bits

 
Fig. 1. Illustration of trivial voting mapping 

 

While such definition might be superfluous for the binary 
coding scheme, the advent of redundancy has complicated fg, 
where a single phenotype might be represented by several 
genotypes. Hence, before applying binary code to determine 
the phenotype value represented by the genotype, some 
preprocessing is required. This can be explained clearer by 
using trivial voting mapping [4] as an example. This mapping 
exercises redundancy by representing each phenotype bit with 
several genotype bits (three in this case) as shown in Fig. 1. 
To obtain the phenotype value, the genotype must first be 
transformed to a phenotypic binary string; after which binary 
code can then be applied to obtain the phenotype value. 

As such, redundancy has extended fg into a two-stage 
process which adheres closer to the biological process of 
transcription and translation. Hence, (1) can be rewritten as, 

 

'1 :g g p
f Φ → Φ  (3)

'2 :g pp
f Φ → Φ  (4)

 

where (3) and (4) denote the transcription and translation 
function respectively and Φp denotes the phenotype search 
space described in binary bits. The resultant fg is the 
composite function 2 1 :g g g pf f Φ → Φo . 

The redefinition of phenotype-genotype mapping is largely 
motivated by the development in redundancy. Besides the 
straightforward mapping as in trivial voting mapping, other 
existing implementations of redundancy on binary 
representation include defining rules to map genotype into 
their corresponding phenotype bits like in static random 
mapping, cellular automaton mapping and random Boolean 
network mapping [4]. Redundancy allows neutral mutations, 
where it is possible that a change in a genotype might not 
change its corresponding phenotype, allowing new properties 
that can be advantageous in the future to be designed, without 
interfering with the current phenotype [5].  

On the other hand, the development in translation has been 
less significant. The only alternative available for binary code 
is gray code which was proposed to alleviate the Hamming 
cliff problem in binary code. 

B. Issues of Genotype-Phenotype Mapping  
Binary representation essentially discretized the continuous 

phenotype search space into distinct points. Ideally, all these 
points should be evenly distributed to prevent any bias 
towards any particular region. Redundancy will decrease the 
total unique number of phenotype points, as some regions in 
the phenotype space might be overrepresented. Another aspect 
of distribution is resolution which refers to the distance 
between each phenotype points. A coarse resolution will result 
in a model with poor predictive ability as the actual phenotype 
search space is poorly represented [1]. Conversely, if the 
resolution is too fine, the model is generally intractable.  

Besides distribution, locality, which quantifies the 
similarities between the genotype and phenotype search space, 
greatly influences the algorithmic performance of the EA 
depending on how much the original structure of the 
phenotype search space is maintained after the transformation. 
For this purpose, a correlation based analysis [6] and a 
probabilistic causality model [7] are developed to quantify the 
impact of genotype-phenotype mapping. Recently, Rothlauf 
[3] uses locality and distance distortion to measure how well a 
representation preserves the phenotype search space. The 
former describes how well neighboring phenotypes 
correspond to neighboring genotypes and the latter extends 
this concept to include large changes.  

This measure was subsequently extended by Chiam et al 
[8], where the concept of proximity preservation, PP was 
introduced. Essentially, it measures how well the proximity 
between neighboring phenotypes and genotypes is maintained. 
Besides considering the mean genotype distance for all 
neighboring phenotypes as in Rothlauf’s locality measure [3], 
the converse which corresponds to the mean phenotype 
distance of all neighboring genotypes was accounted as well.  

Before these two metrics are introduced, it is necessary to 
define certain measures to quantify the distance in gΦ  and 
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pΦ  respectively. In this paper, distance in gΦ  will be 
measured by the Hamming distance, which is defined as 

 
1

, ,, 0
| |

g g

g
g i g ix y i

d x y−

=
= −∑ l

uur uuur  (5)

 

where gx
uur

 and gy
uur

 represent two binary strings, ,g ix  denotes 

the i-th bit of gx
uur

 and l  symbolize the length of the binary 

strings. As for pΦ , the distance between two phenotype px
uur

 

and py
uur

 is defined as 
 

( )2

, ,, 0p p

np
p i p ix y i

d x y
=

= −∑uur uuur  (6)

 

where n represents the dimension of the search space which 
normally corresponds to the number of objectives in the 
optimization problem, ,p ix  and ,p iy  represents of ith 

component of px
uur

 and py
uur

  and the phenotype range in each 
dimension are normalized to [0,1].  

Proximity preservation in the genotype space, PPg is 
defined as such, 

 

,

,
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minx xi j

g
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d d
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=

= × ∑
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(7)

 

where ,i j

p
x xd  and 

,i j

g
x x

duur uur   refer to the phenotype and genotype 

distance between ix
uur

 and jx
uur

, and p
mind  is the minimum 

distance between the phenotype points. We see that PPg only 
considers neighboring phenotypes ( ,i j

p p
x x mind d= ) and in the 

event of tie, the average genotypic distance will be 
considered. The sum of the genotype distance is divided by 
2l , which denotes the number of phenotype points 
considered.  

Though this means that neighboring phenotypes are situated 
closely in the genotype space, this is only applicable if the 
correct bit is altered. Hence, the average phenotype distance 
moved when altering each of the bits must also be considered 
and this corresponds to the proximity preservation in the 
phenotypic space, PPp which is defined as, 

 

,

,

1
1

1
2

i j

g
x xi j

p
x x

p p
d min

d
PP

d−
=

= ×
⋅ ∑l l

 
(8)

 

Since each binary string has l  neighbors, the sum of the 
phenotype distance is divided by 12 − ⋅l l , which is the number 
of genotype points considered. A low value of PPp represents 
the case when locally, the phenotype structure is preserved in 
the genotype structure, and hence, F retains the same level of 
difficulty in close proximity. These metrics will be used later 
to measure how well the proximity between neighboring 
phenotypes and genotypes is maintained for the various 
translation codes. 

III. TRANSLATION FUNCTION AND POSITIONAL DEPENDENCY  
Although there have been quite a substantial amount of 

work in transcription, where different type of redundancy 
schemes had been proposed, there has been limited 
development in translation after gray coding. In this section, 
the proposed translation code will be introduced. It introduces 
redundancy into translation directly, and by doing so, the issue 
of positional dependency was alleviated as well.  

A. Classical Translation Functions  
Binary code, BIN is the most extensively used translation 

function in literature. For a binary string of length l , BIN is 
defined as  

 
1

,
0

1 2
2 1

i
p g i

i

x x
−

=

= ⋅
− ∑

l

l
 

(9)

 

where xg,i denote the ith bit of the genotype, xg. 
BIN is a simple one-to-one mapping where the discretized 

points will be evenly distributed in the phenotype search space 
without any redundancy. Its main drawback however is the 
Hamming cliff, where for some neighboring points in the 
phenotype search space, their distance is amplified 
significantly in the genotype space. To alleviate this problem, 
gray code (GRA) was subsequently proposed as an 
alternative. GRA ensures that genotypes of neighboring 
phenotype differ by at most a single genotype bit.  

Besides these two widely used translation schemes, there is 
also unary code (UNA) which is simply the unitation, number 
of ones, of a fixed length binary string. Its mathematical 
formulation is defined in (10). 

 
1

,
0

1
p g j

i
x x

−

=

= ⋅∑
l

l
 

(10)

 

UNA is however not considered in practical EA 
applications, as a binary string of length l  can only represent 

1+l  distinct phenotype points using UNA, due to the high 
degree of redundancy. 

B. Reducing Positional Dependency via Redundancy  
Although, there have been extensive theoretical and 

empirical comparison studies between these codes [9]-[10], no 
common consensus has been reached and furthermore, the 
problem of positional dependency still persists. For BIN, a 
change in the significant bits will result in larger variation in 
the phenotype space as opposed to a change in the less 
significant bits. In fact, the ordering is exponential! Even 
though GRA ensures that neighboring phenotypes differ by at 
least one genotype bit, it fails to minimize the phenotype 
distance between each genotype neighbor. This is a case of 
low PPg with high PPp. 

Fig. 2 illustrates this concept clearer by showing the 
genotype and phenotype space of GRA,. For each neighboring 
phenotypes, their genotype differ by at most a single bit. The 
high locality between the phenotypes is desirable. However, in 
the genotype space, PPp is actually quite high. For example, 
the nearest genotype neighbors for chromosome 000 are 001, 
010, and 100. But, their phenotype distance differs by 1, 3 and 
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7 respectively. As the evolutionary operators are actually 
working on the genotype space, locality in the genotype space 
is more crucial then in the phenotype space. 

 

(5)

(4) (6) (2)

(1) (3) (7)

(0)0 00

0 10 0 01

0 11

1 00

1 101 01

1 11

Genotype Space

Genotype-Phenotype
Mapping

0 00
0 1 2 3 4 5 6 7

1 001 101 111 010 010 110 10

Phenotype Space  
Fig. 2. Genotype and Phenotype space of GRA 

 

On the other hand, UNA, which possess a higher degree of 
redundancy, has a lower PPp value. Table I shows all the 
possible genotype and phenotype value for a binary string of 
length 3 using UNA. Redundancy exists in the sense that 
some phenotype value is represented by multiple genotypes. 
For example, 001, 010 and 100 all represent the phenotype 
value of 0.33. The number of ‘0’ and ‘1’ directly determine 
the phenotype value where a higher number of ‘0’ indicates a 
lower phenotype value and vice versa. The implication of 
redundancy results in the depreciation of the number of 
unique points that can be represented by a given string. 

 
TABLE I 

GENOTYPE AND THEIR DECODED PHENOTYPE FOR UNA 
Genotype 000 001 010 011 100 101 110 111 
Phenotype 0.00 0.33 0.33 0.67 033 0.67 0.67 1.00 

 

However, by assigning equal weights to each bit, UNA 
eliminates the orderings between the bits and hence, their 
inter-dependencies. The transition of phenotype 0.00 to 0.33 
can be made by inverting any of the genotype bits to ‘1’.This 
positional independency is synchronized to the variation 
operation which treats each bit as equal. 

Closer examination of (9) and (10) reveals that BIN and 
UNA can actually be generalized as 

 
1 1

,
0 0

l l

p i g i i
i i

x w x w
− −

= =

= ⋅∑ ∑  
(11)

 

where 0 1 1{ , ,...., }W w w w −= l is the assigned weight vector that 
defines the ordering between the bits. If the weight vector 
consists of equal numbers or defines an exponential ordering 
of base 2, it will correspond to UNA and BIN respectively 

These two coding represent the two extremum where there 
is a tradeoff between positional dependency and distribution. 
Instead of predefined weights, the weight vector could be a 

string of randomized number instead. Such an approach 
actually represents a compromise between these UNA and 
BIN and is defined as, 

 
1

,
0

l

p i g i
i

x r x
−

=

= ⋅∑  
(12)

 

where 0 1 1{ , ,...., }R r r r −= l is a normalized weight vector 
randomly generated at the beginning of every run and 
remained the same throughout that run. This translation 
function will be known as random code, RND. Obviously, 
RND depends heavily on the initial random weight vector 
generated. 

IV. THEORETICAL ANALYSIS 
This section cover the theoretical analysis of RND, 

examining mainly the two issues highlighted earlier, namely 
distribution and locality. 

A. Distribution  
The distribution of the phenotype points in the search space 

using UNA for a 20-bit long binary string is shown in Fig. 
3(a). An obvious disadvantage of UNA is the coarse 
resolution due to redundancy, where a binary string of length 
l  can only represent 1+l  different phenotype points using 
UNA, instead of 2 1−l  phenotype points for BIN. 
Furthermore, regions in the center of the phenotype search 
space are overrepresented. 
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0
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0.6

0.8

1
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1.6

1.8

2
x 105

 
(a) (b) 

Fig. 3. Distribution of phenotype points using (a) UNA and (b) RND  
 

The direct consequence of using RND is that better 
resolution is obtained as seen in Fig. 3(b), which shows its 
distribution of phenotype points. However, the problem of 
overrepresentation in the central region still persists, though it 
is not as severe as UNA. Of course, bias towards specific 
region in the phenotype search space will not be 
recommended for solving optimization problems in general. 
However, if knowledge of the optimal regions could be 
deduced, for example through some domain knowledge or 
background experience, overrepresentation in the vicinity of 
these regions will improve algorithmic performance [5]. But 
very often, the situation will be such that the optimal region 
cannot be specified or when it is distributed uniformly in the 
search space. Some recommendations to resolve this 
overrepresentation issue for RND will be discussed later in 
section VII. 

B. Locality  
While redundancy worsens the distribution of the 

translation codes, it alleviates the problem of positional 
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dependency. For this exercise, a binary string of length 3 is 
considered and the various genotype and their decoded 
phenotype values under the various codes are tabulated in 
table II. For RND, a weight vector of [0.2 0.3 0.5] is 
considered. 

 
TABLE II 

GENOTYPE AND THEIR DECODED PHENOTYPE 
 000 001 010 011 100 101 110 111 

Binary 0.00 0.14 0.29 0.43 0.57 0.71 0.86 1.00 
Gray 0.00 0.14 0.43 0.29 1.00 0.86 0.57 0.71 
Unary 0.00 0.33 0.33 0.67 0.33 0.67 0.67 1.00 

Random 0.00 0.50 0.30 0.80 0.20 0.70 0.50 1.00 
 

The PP values for the various codes were calculated and the 
results are summarized in table III. For PPg , GRA and UNA 
has the lowest possible value of 1 which means that for all 
neighboring phenotypes, their hamming distance differ by 
only 1 bit. As for PPp, BIN and GRA actually obtained the 
same value. Conversely UNA and RND attained a smaller 
value for these measures. In order to further appreciate the 
significance of this result, different l  are considered and the 
results are shown in table IV. As RND depends heavily on the 
random weight vector generated, 100,000 samples were 
considered and the median PP values were recorded. 

 
TABLE III 

PP OF THE VARIOUS CODES  
 BIN GRA UNA RND 

PPg 1.63 1.00 1.00 1.00 
PPp 2.33 2.33 1.00 1.67 

 
TABLE IV 

PP AND RP OF THE VARIOUS CODES AGAINST LENGTH  
 BIN GRA UNA RND 

LEN PPg PPp PPg PPp PPg PPp PPg PPp 
3 1.63 2.33 1.00 2.33 1.00 1.00 1.50 2.19 
4 1.38 3.75 1.00 3.75 1.38 1.00 1.88 2.89 
5 1.81 6.20 1.00 6.20 1.78 1.00 2.31 3.58 
6 2.17 10.50 1.00 10.50 2.42 1.00 2.69 4.34 
7 1.65 18.14 1.00 18.14 2.70 1.00 3.14 5.05 
8 1.67 31.88 1.00 31.88 3.20 1.00 3.63 5.76 
9 2.30 56.78 1.00 56.78 3.71 1.00 4.11 6.44 
10 1.60 102.30 1.00 102.30 4.16 1.00 4.59 7.17 

 

By ensuring that each neighboring phenotype differs by at 
most one bit, PPg for GRA is restricted to one for all l  
considered. UNA and RND, though started with low values of 
PPg, has a direct relationship with l . Lastly for BIN, PPg 
fluctuate around 1.7. As for PPp, UNA obtains a value of one 
for PPp which signifies that for each neighboring genotype, 
their phenotype points only differ by one division. RND 
generally balances well between PPg and PPp for the various 
l considered.  

In general, the proposed RND alleviate the problem of 
positional dependency by introducing redundancy into the 
translation mapping. By doing so, higher locality in the 
genotype space is achieved. This essentially means that the 
structure of the phenotype search space is well retained after 
the transformation. Hence, the effect on the complexity of the 
problem is minimal. 

 

V. EMPIRICAL STUDY  
To gain further insight into the properties of the proposed 

coding scheme, this section will analyze its relationship 
between the mutation operators via measures and empirical 
techniques proposed by Raidl and Gottleib [11]. Mutation 
innovation (MI), which measures the phenotypic distance 
between solution and the mutated solution, will be considered 
here. MI is a random variable which quantifies the degree of 
“innovation” being introduced by the mutation operator, and 
its distribution can reflect several locality properties.  

For this exercise, MI for the four representation schemes 
namely, BIN, GRA, UNA and RND, will be investigated 
empirically by randomly creating 100,000 binary strings of 
length 15 and applying bit-wise mutation with a mutation 
probability of 1/15. Fig. 4(a) shows the resulting distribution 
of MI. 

In 35.57% of all the runs, MI attained a value of zero, 
reflecting the case where mutation does not affect the 
phenotype at all. The higher peak attained at MI=0 by BIN 
and GRA suggests that there is a significant number of smaller 
movements due to mutation. Also, there are spikes at MI 
values of 0.5 and 0.75 respectively. This is due to the 
positional dependency characteristics of BIN and GRA, which 
causes huge movement, and hence larger values of MI, when 
the significant bits are altered. However, at high values of MI, 
PMI remain at zero for UNA and RND. But due to the limited 
resolution for UNA, the distribution is rather jerky, and for 
some low values of MI, the probability of occurrence is zero. 
Conversely, the distribution for RND is more gradual and 
smooth.  

It is also instructive to consider the distribution for MI > 0, 
when mutation actually modifies the phenotype. Fig. 4(b) 
plots the resulting distribution. Consequently, the spikes for 
BIN and GRA are more pronounced now. 
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Fig. 4. Empirical distributions of (a) MI and (b) (MI|MI>O) for the various 

coding schemes  
 

TABLE V 
PP OF THE VARIOUS CODES  

 BIN GRA UNA RND 
( )E MI  0.0977 0.1404 0.0704 0.0785 

( | 0)E MI MI >  0.0630 0.0977 0.0452 0.0506 
 

Table V list the empirically obtained values for the 
expected values of MI, ( )E MI  and the conditional expected 
value of MI when MI > 0, ( | 0)E MI MI > . In general, a small 

( | 0)E MI MI >  denotes high locality, where a single 
mutation only changes the phenotype slightly, and hence 
should be encouraged. On the other hand, large values suggest 
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weak locality, which means that highly different solutions are 
frequently generated, analogous to a random search. From the 
table, codes with redundancy, namely UNA and RND, 
achieved lower value of ( | 0)E MI MI > , signalizing high 
locality that is desirable for local search. While BIN and GRA 
have larger values, this might be advantageous in certain 
cases, for example, to escape from local optimum.  

From this simple experiment, it further verifies the 
enhanced locality brought about by redundancy. It will 
certainly be interesting to consider other measures like 
crossover innovation and crossover loss and conduct further 
empirical studies to gain a deeper understanding of the 
difference between the various translation codes. Also, 
experimental studies involving actual optimization problems 
are necessary to affirm the viability and practicality of the 
proposed translation code.  

VI. COMPARATIVE STUDY  
In this section, the algorithmic performance for the various 

translation codes will be compared in some benchmark 
problems. The different translation codes and their 
corresponding index and notation are shown in Table VI. A 
single objective problem (SOP) and a multi objective problem 
(MOP) will be considered to evaluate the generality of the 
proposed translation code. 

 
TABLE VI 

DIFFERENT ENCODING SCHEME  
Encode scheme Index Notation 

Binary code 1 BIN 
Gray code 2 GRA 
Unary code 3 UNA 

Random code 4 RND 
 

The evolutionary platform adopted for the SOP will be a 
generic elitist EA which maintains a fixed-size population and 
an archive to store the non-dominated solutions discovered. 
Elitism is implemented by selecting mating individuals 
through a binary tournament selection from the combined 
archive and evolved offspring. The parameter configuration of 
the EA is summarized in table VII. 

 
TABLE VII 

PARAMETER SETTINGS FOR SOP EXPERIMENTS  
Chromosome 30 bits per decision variables 

Population Population size of 100. Archive size of 100 
Selection Binary Tournament Selection 

pc 0.8 
pm 1 / l  

Generation 500 
Runs 30 

 

Over the years, many single objective problems have been 
designed for analyzing and comparing different optimization 
algorithms. In order to evaluate the proposed codes, ACK [12] 
have been chosen in this paper as it is considered to be more 
difficult and its degree of difficulty can be adjusted by 
changing the dimension of the search space, which will vary 
the number of local minima. Different dimensions were 
considered to evaluate the scalability of the codes.  

The mean, median, minimum and the standard deviations of 
the various codes are tabulated in table VIII. Ideally, a code 

should have the lowest value in all four areas which 
symbolizes proximity and consistency. To supplement the 
results, the analysis of variance (ANOVA) and a multiple 
comparison test is used to test the significance of the mean 
difference. The best codes in each problem were bold. In 
events where the differences are not as significant, there might 
be more than one best code. 

 
TABLE VIII 

RESULTS FOR ACKLEY FUNCTION  
 

  Mean Median Minimum Standard Deviation 
ACK -10 BIN 1.036 1.0212 0.5114 0.3586 

 GRA 0.772 0.7443 0.4504 0.2273 
 UNA 2.6392 2.9828 0.2587 1.1328 
 RND 4.2981 4.2078 3.5413 0.3687 

ACK -20 BIN 6.3173 6.3367 4.9007 0.7571 
 GRA 5.281 5.1848 4.3793 0.5635 
 UNA 5.3095 5.178 3.9748 0.6083 
 RND 6.7839 6.7952 5.726 0.5783 

ACK -30 BIN 11.788 11.8355 9.8539 0.9849 
 GRA 9.2116 9.3812 7.4557 0.7574 
 UNA 6.985 6.9355 6.0862 0.3956 
 RND 8.3644 8.4077 7.0752 0.4565 

 

BIN generally has the worst performance amongst the 
different codes. It is observed that GRA performs better with 
lower dimensions. But as the dimension increases, UNA and 
RND prove to be more effective and consistent.  

Extending the analysis to a MOP, the evolutionary platform 
used earlier is extended by incorporating Pareto-based ranking 
technique and diversity preservation mechanism. The 
selection criterion is based on Pareto ranking and in the event 
of a tie, the niche count will be employed. The mechanism of 
niche sharing is used in the tournament selection as well as 
diversity maintenance in the archive. The additional parameter 
configuration of the MOEA adopted is summarized in table 
IX. 

 
TABLE IX 

PARAMETER SETTINGS FOR MOP EXPERIMENTS  
Ranking scheme Pareto ranking 

Diversity 
Operator 

Niche count with radius 0.01 in the normalized 
objective space 

Generation 200 
 

The MOP considered, ZDT6 [13] has solutions that are 
non-uniformly distributed along PFtrue and the density of the 
solutions is uneven along PFtrue. The difficulty of this problem 
is to deal with non-uniformities in the non-convex PFtrue and 
find a good distribution of points.  

Unlike in single-objective optimization, there are several 
goals in multi-objective optimization [14]. Hence several 
metrics should be adopted for this matter. In this paper, 
Generational Distance, GD will be used to measure proximity 
i.e. convergence to the Pareto-optimal set. This metric denotes 
how "far" the Pareto front found (PFknown) is from the global 
Pareto front (PFtrue) and a small GD signifies that the PFknown 
is close to the PFtrue. Besides achieving proximity, diversity 
which refers to how well PFknown is defined, should also be 
achieved. Diversity will be measured by Maximum Spread, 
MS which indicates how well the PFtrue is covered by PFknown 
and Spacing, S which reflects how "evenly" solutions in 
PFknown are distributed. The last metric used will be a simple 
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metric which measures the number of non-dominated 
solutions found, N. For a more complete performance 
assessment between the various operators, binary quality 
measures which rate the dominance relationship between pairs 
of solutions sets must be included [15] to supplement the 
above mentioned unary metrics. For this purpose, the 
coverage function, C which gives for a pair (A,B) of solutions 
sets the fraction of solutions in B that are weakly dominated 
by one or more solutions in A, was chosen.  

These metrics represent quantitative measures that can 
describe the quality of the final result of the selected operators 
which could validate the effectiveness of the proposed code 
schemes and they are illustrated by box plots to provide the 
statistical comparison results (Fig. 5-6). Similarly, the 
ANOVA and multiple comparison tests were performed to 
evaluate the significance of the mean differences between the 
various metrics and table X tabulates this relationship. 

For ZDT6, RND is able to converge to the global optimum 
at all runs with an excellent spread. Coverage result shows 
that UNA and RND dominate the other two codes with the 
former dominating the latter. The Pareto fronts illustrated in 
Fig. 7 further affirmed this assertion.  
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Fig. 5. Simulations results for ZDT6 
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Fig. 6. Simulations results of C for ZDT6 

 
TABLE X 

RELATIONSHIP OF THE MEAN DIFFERENCES FOR THE METRICS 
ZTT6 GD MS S N 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
1 = << >> >> = >> >> << = < >> << = >> >> < 
2 >> = >> >> << = > << > = >> << << = >> <<
3 << << = >> << < = << << << = << << << = <<
4 << << << = >> >> >> = >> >> >> = > >> >> = 

Note: ‘<’ in row x column y means that the mean for index x is less then the 
mean for index y. ‘<<’ signify significantly lesser than. 
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Fig. 7. Pareto fronts of ZDT6 

 

VII. REDUCING THE EFFECTS OF OVERREPRESENTATION  
As discussed earlier, the central region of the phenotype 

space is overrepresented by RND, which is not ideal in 
situations where the optimal region cannot be specified or 
when it is distributed uniformly in the search space. This 
section will look at two approaches that could possibly resolve 
this issue. The first method will attempt to distribute the 
solutions uniformly during the generations of the initial 
population, while the second technique will modify the 
genotype-phenotype mapping with intermediary function so as 
to achieve a uniform distribution. 

A. Initialization  
The typical algorithm for the generation of the initial 

population is shown in Fig. 8. Using a value of 0.5 for M will 
ensure that equal number of ‘0’ and ‘1’ are generated which 
correspond to phenotype points being uniformly distributed 
throughout the search space using BIN as shown in Fig. 9(a), 
whereas for random code, all the generated phenotype points 
will be concentrated in the centre as illustrated in Fig. 10(a). A 
change in the value of M will affect the balance of ‘0’ and ‘1’ 
causing bias towards certain region in the genotype space for 
the various codes. In general, choosing a small (large) M will 
decrease (increase) the occurrence of ‘0’. However, the effects 
of changing M for RND are more intuitive and obvious as 
compared to BIN, since it essentially just involve a shift in the 
epicentre of the distribution. 

 

    Loop (k for 1:chromosome length) 
      IF (random number<M)  
        chromosome [k]=0 
      ELSE 
        chromosome [k]=1 
      End loop  

Fig. 8. Pseudo code for generation of initial chromosome  
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Fig. 9. Distribution of initial population for BIN using a) M=0.5, b) M= 0.1 c) 

M= 0.9 
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Fig. 10. Distribution of initial population for RND using a) M=0.5, b) M= 0.1 

c) M= 0.9 
 

Hence, a simple strategy to reduce the effects of 
overrepresentation for RND is to vary the value of M so that 
the epicentre of the distribution could be controlled and placed 
in any desired locations. An interesting example is shown in 
Fig. 11 where M is simply chosen to be a random number. 
This results in the initial population being distributed 
uniformly throughout the search space. 
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Fig. 11. RND initial population distribution for random M  

 

B. Intermediary Mapping  
Overrepresentation can be resolved by passing the 

phenotype values through a function that can flatten the 
central region by mapping phenotype values away from the 
central region. A modified sigmoid function, S is proposed for 
this purpose and is defined in (13) 
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 (13)

 

where [0,1]px ∈ , ( ) [0,1]pS x ∈  ,α and β are constant. α affects 
the slope of the function in the middle region while β is just 
any arbitrary constant chosen to map the range to [0,1]. Fig. 
12(a) and 13(a) illustrate the graphical plot of S and the 
resultant decision space mapping produced when α =0.5 and 
β=10. Comparing this to the original decision space mapping 
in Fig. 3(b), there is a stark drop of phenotype points 
representing the central region. All these points are shifted to 
the fringe. 
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Fig. 12. S for different α  
 

 
(a) α =0.5 (b) α=0.4 (c) α=1.0 

Fig. 13. Phenotype distribution for different α  
 

By varying the values of α, different S and decision space 
mapping can be obtained. Using lower values of α will 
linearise the sigmoid function, making overrepresentation in 
the central region more prevalent. Conversely, higher value of 
α will shift more phenotype points from the central to the 
fringe and in extreme cases when α=1.0, this will cause an 
overrepresentation in the fringe instead. 
 

VIII. CONCLUSION 
A novel translation code, which improves locality at the 

expense of distribution for binary representation, was 
proposed. This was achieved by introducing redundancy into 
the translation mapping. The theoretical analysis reveals that 
RND is able to alleviate the problem of positional dependency 
in BIN and GRA and the empirical studies further affirmed 
the enhanced locality brought about by redundancy for RND.  
The simple empirical study conducted demonstrated the 
practicalities of RND. Possible avenues to improve the poor 
distribution for RND are also suggested. Future works include 
subjecting these various translation codes to other empirical 
studies to further understand the differences between the 
various translation codes. A comprehensive experimental 
study involving benchmark and real-life optimization 
problems is necessary to affirm the viability and practicality of 
RND. The results and progress will be reported in due course. 
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