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A Genetic Algorithm Based on Stochastic Crossover for DHCP

Marco Carpentieri

Abstract— We introduce a genetic model based on
stochastic crossover to solve the Hamiltonian cycle
problem (DHCP) for random digraphs containing
a random Hamiltonian cycle. The genetic model
represents a new decision computational method
inspired by the remark that DHCP can be formulated
as determining the compatibility of a quadratic
system over the finite field GF(2). A (simple)
genetic algorithm based on the stochastic crossover
is experimentally compared with a randomized
algorithm based on the Angulin and Valiant classic
technique designed to find Hamiltonian cycles in
random digraphs.

1. Introduction

Genetic algorithms (GAs) are probabilistic search
algorithms inspired by mechanisms of natural selection
and genetics, introduced by John Holland in the 1970s.
They have received considerable attention because of
their many applications to several research fields such
as optimization, adaptive control and others [23], [28],
[29], [34].

According to the classic genetic algorithm theory, the
fittest individuals chromosomes are formed by merging
short definition length and small specificity order allele
schemata, whose fitness remains above the average fit-
ness of the populations generated by the genetic cycles
(Holland [23], [28], [29]). This central result has intro-
duced the concept of separability of the fitness functions,
with respect to short chromosomic traits, that is recog-
nized [14], [42], [46] as a basic property required to justify
the application of a genetic algorithm. More recently, a
new class of marginal distribution genetic algorithms is
appeared in the literature [3], [4], [11], [12], [53]. Such
new algorithms, based on models related with the clas-
sic ones, consent to perform (state transition) efficient
implementation for the associated infinite population
genetic systems; the analysis of the marginal distribution
genetic systems has shown important analogies with a
class of local optimizers in which Hopfield Networks
[32] are included. Note it is well known that Hopfield
networks can be used to provide approximated solutions
for hard optimization problems [31], but there are also
algorithmic techniques that exhibit better theoretical
error bounds and better experimental performances (for
example [25]).

The classic genetic algorithms (and those based
on marginal distribution models) do not seem to be
competitive with the specialized efficient optimization
techniques [2], [6], [20], [25], [52] designed to solve
specific hard problems [13], [31]. What seems to make
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difficult the genetic algorithms approach is that the
properties of separability and statistic independence
required (the second one in marginal distribution G As)
by the classic genetic computation are not satisfied.
This problem is also connected with that of efficient
implementation in case of infinite populations since
exponential complexity seems to be required to represent
the states, and consequently the dynamics computation.
time of the genetic systems. Such remarks motivate
the need of designing new genetic models (probably
representing approximations of the true ones) aimed
to provide efficient computation methods to solve hard
optimization problems. Related work, connected with
the more recent development of marginal distribution
G As, can be found in the literature of the Estimation of
Distribution Algorithms; for an introduction the reader
is referred to [38], [40], [45], [58], [59].

A different approach adopted to apply genetic algo-
rithms to hard optimization problems has been intro-
duced in the 1980s considering chromosomes encoding
permutations of [—ary alleles (I € N) instead of arbitrary
binary strings. In this setting, many authors studied the
problem of designing effective genetic operators (depend-
ing on the considered specific problem) able to exchange
chromosomic traits preserving the permutation structure
[7]. [10], [15], [16], [17], [18], [19], [24], [26], [27]. [30]. [33],
[35], [36], [30], [41], [43], [18], [49], [50). 1], [55]. [56].
Reviewing the great amount of work in the literature, the
reader shall find that several researchers have recognized
that useful operators for problems such as the (Directed)
Hamiltonian Cycle Problem (DHCP) [31] or the Travel-
ing Salesman Problem T'SP [13] do not have to preserve
order or positions as in the classic GAs, but connections
between consecutive alleles in the chromosomes. In spite
of all these efforts, as the author is aware, it is not clear
neither whether the genetic algorithms could represent
(efficient) optimization techniques competitive with the
{(known) best classic methods whose performance can be
theoretically estimated (for example [2], [8], [20], [25],
[52]), nor whether the genetic algorithm paradigm could
be really used to improve the results obtained by such
{more specialized) techniques.

In this paper we introduce a genetic model based on
stochastic crossover to solve (the N P—complete problem
[31]) DHCP for p—random digraphs [2], [6], [13], [20],
[31], [47], [52] containing a (superposed) random Hamil-
tonian cycle. This class of graphs is considered both since
is a natural extension of the random graphs and {mainly)
since in case of small edge densities (p =0 ( ) , the
classic techniques, such as those presented in [2], [20],
are unsuccessful (other basic motivations can be found in
[8]). The genetic model we present is characterized by the
non-classic properties that selection and replacement are
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deterministic processes, while the genetic recombination
is performed by a stochastic binary operator whose
action can also depend on specific properties of the input
instances (digraphs). The definition of the (crossover)
operator is quite flexible and includes the possibility of
incorporating other unary operators such as those used
to find as long as possible simple paths. One of the
main differences exhibited by the model with respect to
the classic genetic ones is that the chromosomes encode
permutations (of vertices). In such a context, as we
have already discussed above, a (binary) recombination
operator exchanging chromosome traits has to complete
them preserving the permutation structure. A specific
implementation of the offspring chromosomes completion
is designed following two main principles:

1) the connections between consecutive vertices in
the parent whose first chromosomic segment is
superposed by the corresponding trait of the other
parent in the child copy have to be preserved,;

2) when an allele is set in the chromosome com-
plement of a child and the connections (between
consecutive vertices) in the parent cannot be pre-
served, the next allele is selected according to a
stochastic greedy choice that depends on a small
depth deterministic simulation of a nondetermin-
istic visit of a suitable subgraph.

The completion process (after the exchange of the
two initial segments of the parents chromosomes) is
inspired by some remarks about the algebraic nature
of DHCP. In fact, we show that the Hamiltonian cycle
problem can be stated as the problem of determining the
compatibility of some quadratic systems over the finite
field GF(2). Such formal model can be considered as
alternative to the other ones such as Nondeterministic
Turing Machines [31], Verification Algorithms [13] and
Integer Quadratic Optimization Programs [25] that more
frequently can be found in the literature. Although our
remark is quite straightforward, formulating DHCP in
such a way suggests a new computational scheme to
try to solve the problem based on searching for, by
subsequent approximations, a permutation transforming
the input instances into isomorphic graphs containing a
fixed unit Hamiltonian cycle. We shall introduce two
distinct genetic algorithms; the first one is based on
the previously described implementation of the binary
stochastic crossover, while the other on Angulin and
Valiant heuristic [2]. Note that the results provided by
Angulin and Valiant in [2] regard random digraphs and
are theoretical. We provide an experimental evaluation of
the performance of their algorithm (even if in the context
of a more general schema). An experimental comparison
between the two genetic algorithms is performed.

II. Preliminaries

A. Notation

In the rest of the paper we shall adopt the following
notation. Let G = (V, E) be a directed graph (digraph)
with vertex set V ={1,...,1}, edge set E C {(w, w’)
w # & and w,w € V} and adjacency matrix W =
[wi,s1,<i,5<i- A simple ([13]) path from vertex w to
vertex w’ is an ordered sequence (wi,...,w.) (e > 2)
such that (wi,wit1) € E, wi # w;j for 4 £ 4 (i,j =

1,...,e) and w = w1,w’ = we. The path is Hamiltonian
if e = [ and, in such a case, if there exists the edge
(wi,w1) € E we shall also say that w is (or represents)
a Hamiltonian cycle. Note that if w is Hamiltonian
(e = 1), then such sequence of [ vertices denote also
permutation w : V — V defined by w(i) = w; for
i=1,...,l. Throughout we shall mean by w, by sake of
conciseness and with abuse of notation, paths, cycles and
permutations. The meaning of the w—notation shall be
clear from the context in which the symbol appears. By
w(G) we shall mean the graph isomorphic (w(G) =~ G) to
G obtained by relabeling the vertices in G as specified by
w. The Hamiltonian cycle (or Hamilton circuit) problem
[31] consists in, given a digraph G, deciding whether
there exists a Hamiltonian path w that visits each vertex
in V exactly once and returns to its starting point.

B. Background

The Hamiltonian Cycle problem for random di-
rected graphs (digraphs) [31], denoted by DHCP, is
a NP—complete (decision) problem that has received
considerable attention in the literature due to its prac-
tical applications and to its computational structural
complexity properties. Recently, a great deal of work has
been dedicated to consider the problem of finding effi-
cient solution algorithms in case of random (di)graphs.
One of the first results about Hamiltonian cycles in (ran-
dom) digraphs is due to Perepelica [44] who introduced
randomized procedures of time complexity O(I*) for al-
most certainly [2] finding Hamiltonian cycles in digraphs

with at least cl2+/logl edges, where c is a sufficiently
large constant (throughout the paper by [ we shall denote
the number of vertices of the digraphs). Wright [57]
gave a non-algorithmic proof of the fact that almost all
(random) digraph with O(l )l 2 edges have a Hamiltonian
cycle, where by O(l) we mean any function such that
O(l) — oo as I — oco. Angulin and Valiant [2] proposed
a polynomial algorithm, of time complexity O(I(log1)?),
for almost certainly finding a Hamiltonian cycle in a
(random) digraph with (at least) cl log ! edges (in this no-
tation c is also an unspecified sufficiently large constant).
Other work about Hamiltonian cycles in digraphs is due
to McDiarmid [37] who presented a non-constructive
proof that lim;_. Pr (DG, is Hamiltonian ) = 1 for
digraphs with L =llogl + l¢; edges and ¢; — loglogl —
oo. Frieze [20] showed that for digraph in DG with
L =llogl + lc; edges there exists a O(I'®) polynomial
randomized algorithm to find Hamiltonian cycles with
probability e™2*"° if ¢, — ¢ and with probability 1 if
g — oo (as | — o0).

C. Angulin and Valiant Heuristic

Angulin and Valiant procedure, denoted DHC, tries
to construct as long as possible simple paths w starting
from an initial random vertex ws. Let w’ be the endpoint
of w; the path is constructed by iteratively adding
random vertices adjacent to the endpoint w’. Each time
a new random vertex w, adjacent to w’, is selected,
the corresponding edge (w’,w) is deleted by the input
digraph G. In the case in which w is already in w and
it is sufficiently far from the endpoint «’, a rotational
transformation is applied to transform w into a new
subpath w’' and a cycle w”, otherwise w is simply

260



Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

discarded. The rotational transformation computes the
new path w’ as the subpath in w starting from w. and
reaching the predecessor of w in w, while the cycle w”
is individuated by the subpath (in w) starting from w
and ending in w’. The endpoint «’ is updated becoming
the last vertex of the path w’. After the application of
the transformation, new random vertices w (adjacent to
the endpoint w’), being neither in w’ nor in w”, are
appended to w’ (along with a consequent updating of
w’). When a random vertex is found to be in &', it is
simply discarded, while if is in w” a new unique path is
composed from w’ and w” applying a second rotational
transformation. This new transformation is implemented
joining the endpoint of w’ to the predecessor of w in w”
so constructing a new unique path w (formed by the
vertices in w’ and in w”). The path «' and the cycle
w'" are discarded. Thus, the procedure continues to add
random vertices w to the path w (deleting the edges
(w',w) from the input graph) alternating the application
of the two rotational transformations, when required,
until either a Hamiltonian cycle is found or an endpoint
w’ is reached that does not have adjacent vertices (in
such a case DHC fails).

An example illustrating how the Angulin and Valiant
procedure operates is displayed in Figure 1. First, we
see a simple path w from w, to w'. A random vertex
w adjacent to w’ is selected; this vertex w belongs to w
and is far more than % — 2 vertices from «’ (suppose
I = 7). Thus, the path w is split into a subpath w’ and
a cycle . After that a new random vertex w adjacent
to the (updated) endpoint w’ of w’ is selected; since w
is neither in w’ nor w”, is appended to w’ (updating the
new endpoint). A new random vertex w (adjacent to w’)
is selected, is in w” and a unique path from w, to the
predecessor of w in w” is composed.

By using the intertranslation conditions provided by
Angulin and Valiant, their main result ([2], pag. 156)
may be stated as follows.

Theorem 1: [2] If p > ci&l then DHC is a
O(Il(log 1)?) polynomial randomized procedure finding a
Hamiltonian cycle with probability 1 — O(I™) (a > 0
constant) in a graph taken from DG,, for (sufficiently
large) I € N and where ¢ € RV is a sufficiently large
constant.

ITI. Genetic Model
Denote by

oa i —0,1]

a probability distribution over the set ; = {w;,... ,w;}
of chromosomes that are permutations of the [ vertices
in V. We shall adopt notation w; = (wj1,...,wi;) to
represent the chromosome w, € ; for i =1,... ,l!. The
fitness function is

f . Q] — N'7
defined by

-1

§ Wy jywijp1 T Way gwin 1<i<i.
j=1

A population P is represented by a multi-set
{w,,,... »w;, } of n chromosomes in . In the following,
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Fig. 1. DHC: Example.
we shall suppose that the multi-sets P = {w, ,... ,w; }

(= is used with abuse of notation) are such that

1) K Wig,dyeee sWig ke Zyeee s < Wi lyees s Wiy b > in-
clude all distinct subpaths of length k£ in G for some
keN (k<.

Property 1) is intended to let the genetic system take
advantage from the information got by an efficient
deterministic visit of the paths in the graph G simulating
a k—time nondeterministic procedure to find a Hamil-
tonian cycle (by efficient we mean that it is required
n = O(I°) for some suitable constant ¢ € R*'). The
crossover of two chromosomes w,, W 1<iyji<l)isa
(stochastic) binary operator

'Kir,' P

-J

P — [0, 1]

whose definition depends on the probability distribution
¢c(). If the population at time t is P, then the next
population is generated applying the following sequence
of actions:

1) select a pair (w; ,w; ) of chromosomes (1 < 7,5 <
n);

2) perform the crossover producing a pair of children
() ,w) ) with probablhty Ko w, (W, w)));

Wi Wy

3) rep]ace w; with w} only if it ho]ds that f(w; ) >
flw;, )

4) replace w;_
fla,)-

The selection-crossover-replacement cycle described by
the steps 1) — 4) for r,s = 1,...,n is repeated until
some halting condition is satisfied. Note that the model
differs from the classic genetic schemes since selection
and replacement are deterministic processes, while the
crossover is a stochastic operator.

with w only if it holds that f(w} ) >
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IV. DHCP

Let w = (w1,...,w) be a Hamiltonian cycle in G.
Given any permutation w’ of the [ vertices in the vertex
set V of G, the isomorphic graph «'(G), has the cycle
wow’ (where by o we denote the usual composition of per-
mutations). Note that there always exists a permutation
w’ producing a new graph «’'(G) ~ G in which wow' is
the unit Hamiltonian cycle 1 = (1,... ,1). Consequently,
the Hamiltonian cycle problem can be reformulated as:

« decide whether there exists a permutation w’ of the

vertices in V such that the graph w’'(G) isomorphic
to G has the Hamiltonian cycle 1.

Any permutation w’ transforming a Hamiltonian cycle
w into the cycle w o w’ = 1 generates a new isomorphic
graph «'(G) &~ G. Consequently, for each permutation
w’ of vertices such that wow’ = 1 we have it holds that:

T
XWXy = Wé/ (@)

where by X,/ we denote the permutation matrix defined
by Tt g = 1 for 1 < j <1, zero otherwise and W,/ (¢;)
is the adjacency matrix of the graph w'(G). Since the
adjacency matrix W = [w;,;]1<i,j,<i of G is known, each
permutation w’ univocally individuates the adjacency
matrix W), () associated to the isomorphic graph w'(G);
thus, the Hamiltonian cycle problem can be stated as

« determine the compatibility of the quadratic system
xwx” = w, (1)

with (unknown) solutions (X,W’) being X =
[®i,j]1<i,5,<1 @ [—order permutation matrix and W’
a partially specified adjacency matrix having entries
Wi, =whz=...=w_;,; =w; =1 and all other
entries unknown in {0, 1}.

The following lemma states that for each Hamiltonian
cycle in a digraph G there are exactly [ distinct permu-
tations transforming it into the Hamiltonian cycle 1;
moreover, if w”,w” are two permutations transforming
the cycles w,w’ into the cycle wow” = W ow” =1
respectively, where w and w’ are distinct, then w” and
W' are also distinct.

Lemma 1: For every cycle w there are exactly [
distinct permutations w; (1 < 7 < 1) such that w o
Wi, se. ., wWOW,; represent the Hamiltonian cycle 1 in the
corresponding isomorphic graphs w, (G),...,w;, (G);
moreover, if w and &’ are distinct cycles, then there not
exists a permutation w” such that wow” and &’ o w”
represent the same cycle 1.

By the previous lemma we get that, for every Hamilto-
nian cycle w in G, there exist exactly [ distinct solutions
(permutations) of System (1) that map w in the unit
cycle 1. In this regard note that there exist exactly I!
permutations X and it is well known that the number
of possible Hamiltonian cycles in graphs with [ vertices
is (1—1).

V. Procedure SSC

Reformulating DHCP as an algebraic problem pro-
vides the basic insights to design and interpret a suitable
instance of the genetic model described in Section III.
In particular, the polynomial time reduction of DHCP
to the problem of deciding the compatibility of some

system (1) suggests to solve it by searching for iso-
morphisms mapping the input digraph G into another
graph containing the unit cycle (or however some other
fixed Hamiltonian cycle). Since we are interested in the
performance of the genetic algorithm (simulating the
model) for several k—values and the simulation time
increases at least as the number of k—length paths
in G, we require as quick as possible convergence to
the fittest individual. The basic procedure implements
a specific (simplified, slightly adapted) instance of the
genetic model with stochastic crossover. In such instance,
a maximum fitness chromosome w; is initially selected
and the crossover of its copy w is performed with the
copy of each other chromosome w; (1 < s < n)
until a better child w; such that f( D)o f( ) is
found. In such a case, w,; Iis replaced with w "and
the procedure is (recursively) applied to the maximum
fitness chromosome (now w, ) until either a Hamiltonian
cycle is found or the fitness of the fittest chromosome
cannot further on be improved. The stochastic crossover
is implemented as follows. The child w/ is obtained
from the parents w; and w; first copylng the first &
alleles of w, into (the same Toci of) w’ . After that, if,
in forming the rest of the Wi chromosomlc complement,
we set an allele wj, = Wu ( § > k) that is connected to its
SUCCESSOT Wymodi+1 N the sequence specified by w,  (and
it ho]ds that wWumodi+1 & {Wi, 1s.++ Wi, ;1) the next
allele w;, 41 is set to Wumodiy1; if, mstead the allele w} oui
is not connected to its successor in the sequence spec1ﬁed
by w, (or the successor is in {wj, 1,... ,wj, ;}), the
next allele wj, ;. is selected according to a (stochastic)
greedy choice statmg that wj ;11 is a random vertex
w adjacent to w} i, With minimum nonzero out-degree
in the restriction Gy _ (@l ] ) of the graph G to
the vertex set V — {wi_ 1,... ,w,d J} if such a vertex
does not exist, w,s j+1 1s set to a random vertex in
V—{wi 1,... Wi, J} Note that such a kind of choice is
based on the ldea of searching for information about a
new vertex to select by performing a two-level determin-
istic simulation of a nondeterministic procedure designed
to track all simple paths that can be formed starting
from wj_ ; visiting only vertices in V —{w}_,... ,wj, ;}.
Such kind of criterion is similar to that used in [9]
but that is dynamically predetermined by the already
assigned vertices wj, 1,...,w;, ;. Moreover, the reader
could recognize in the completion process adopted in
implementing the stochastic crossover a variant of the
Edge Recombination Operator introduced by Whitley et
al. in [55], [56] (see also [16], [35], [48], [50]). The genetic
procedure is named SSC and is reported in Figure 2.

Note that the procedure SSC, starting from a per-
mutation w; , searches for a new offspring w; such
that the graph «’;'(G) has more edges in the set
{(l])(ww+])forw—] ,1—1} than in w;'(G);
the procedure tries to compute (or better complete)
c_u;s in such a way that w ;1 shifts simple subpaths
along the sequence of vertices in the unit cycle 1 from

w;i'(G) to w'; '(G) (the shifts are interleaved adding
new edges determ.med by means of an operator based
on a small depth simulation of a nondeterministic visit
of suitable restrictions of the input digraph). In other
words, SSC searches for a permutation transforming G
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Procedure SSC(G,1)
Set w to the fittest chromosome in P;
1. For each k—length path (w},...,w}) in G
For z=k+1tol—1
If w,_ = wy, And (W, Wymodiy1) € F
And wumodit1 # w]" for j < z then
w;: Wymodl413
Else
If there isn’t a vertex in Gy _y./ . 1)
adjacent to w._; with minimum non-
zero out-degree then
w!= w where w is random in V —
{oi, Wik
Else
w!= w where w is a random minimum
nonzero out-degree vertex in Gy —
{w).... !} adjacent to wh_q;
If f(w') > f(w) then
w=u'; Go to 1.;

Fig. 2. Procedure SSC.
into another isomorphic graph containing the unit cycle
1 by subsequent approximations.

In Figure 4 an example of the way in which the
stochastic crossover operates is displayed starting from
the graph (in Figure) 3 and two initial chromosomes
w; =(1,2,4,3) and w; = (1,4,3,2).

(—Q)
OO

Fig. 3. A Hamiltonian Graph.

VI. Simulation

The heuristic in Section II-C can be quite straight-
forwardly incorporated in the genetic model and con-
sequently a procedure, we shall name SAV, similar to
SSC, can be designed by using the double rotation
method suggested by Angulin and Valiant to complete
the chromosomic structure of the offspring after the
exchange of the alleles in the first k loci has been
performed. However, in the case of the genetic model
based on Angulin and Valiant method, the crossover
completion does not depend on the parents chromosomic
complement. This is due to the fact that the replacement
operator substitutes parents having the same initial
k—alleles of the offspring and since the Angulin and
Valiant technique is basically a unary operator. As a
consequence, the procedure SAV simply produces a
random process in which all initial k—length paths of
the input graph G are completed as explained in Section
II-C (in other words the initial vertex w, is the endpoint

(@ '@)e)

(@, @(@)

[

5060
K
o

Crossover

Gy

Bl

Completion

(@'(G)e)

é (CSN(©)

Stochastic Crossover: Example (k = 2).

Fig. 4.

of a short simple path). In the tables 1.1 — 2.4 an
experimental comparison between the genetic algorithms
SAVGA based on SAV and SSCGA (on SSC) is
performed for undirected graphs (with k = 1), where the
(randomized) algorithms simply consist of independent
repetitions of a (balanced) number (not less than {) of the
corresponding procedure. Note that, taking into account
of the fact that the population sizes depend also on
the number of k—length paths in the input digraphs,
the first success expected times, reported in bold in
the tables, indicate how much large a population has
to be, in average, in order to solve DHCP (mostly
with high confidence) for all p—values greater than some
threshold pmin (p—values in the heading). Notation ——
in the tables means that, for the considered p and [
values, we are not able to provide suitable estimates
with high confidence since the population sizes, and
consequently the simulation time, become too large.
Similar results can be observed in the more general
case of directed graphs, but that the performances
are slightly worse. Moreover, in the experiments with
directed graphs we have noticed that, conversely to what
happens in the case of undirected graphs, the simpler
random selection of a next (adjacent) vertex can be used
instead of the (stochastic) greedy choice in completing
the offspring chromosomes without meaningful changes
in the performances. A more general comparison between
the two algorithms is displayed in Figure 5 in which the
minimum p—values are reported (interpolated by least
squares method against the input size {) such that the
two algorithms (dotted plots for SAVGA) are estimated
to solve DHC P with high confidence (for £k = 1,2, 3 and

263



Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

in case of populations of sizes at most cl, where ¢ > 1
is a suitable constant). We observe that the stochastic
crossover consents to obtain much better performances.
Note that preliminary (similar) experiments state that
the performances obtained by the genetic algorithm
based on the SSC procedure cannot further on be
improved by using other techniques such those described
(for digraphs) in [20], [52] (note a comparison with
more sophisticated techniques, requiring computational
complexity greater than Angulin and Valiant or Frieze
procedures, tends to be prohibitive as the input digraphs
size [ increases).

Table 1.1. - First Success Expected Time of SAVGA (k= 1).

/P 1/6 1/8  1/10 1/12 1/14
60 1.60 300 —— @—— @ ——
os0 120 215  ——  ——  ——
120 1.00 100 1.25 880 15.60
o120 0.00 000 036 524 675
180 1.00 1.00 1.00 1.00 1.20
o180 0.00 000 000 000 040
240 1.00 1.00 1.00 1.00 1.00
o240 0.00  0.00 0.00 000  0.00

Table 1.2. - First Success Expected Time of SAVGA (k= 1).

/P 1/16 1/18 1720 1/22 1/24
60 —— —— —— —— ——
760 —— -— = == ==
120 —— —— —— —— ——
o120 —— -— = == ==
180 10.00 —— —— —— ——
T180 8.18 —— —— —— ——
240 1.00 2.00 —— —— ——
0240 0.00 1.55 —_ —_ ——

Table 2.1. - First Success Expected Time of SSCGA (k= 1).

P 1/6 1/8  1/10  1/12 1/14
60 1.00 1.40 1.40 460 9.40
60 00 049 0.80 445 859
120 1.00 1.00 1.20 200 2.80
o120 000 000 040 0.89  1.26
180 1.00 1.00 1.00 1.00 1.20
o180 0.00 000 000 0.00  0.40
240  1.00 1.00 1.00 1.00 1.40
op40 000 000 000 0.00 049

VII. Conclusion

‘We have introduced a genetic model based on stochas-
tic crossover to solve the Hamiltonian cycle problem
(DHCP) for random digraphs to which a random Hamil-
tonian cycle is superposed. The computation technique
is inspired and interpreted by reformulating DHCP

Table 2.2. - First Success Expected Time of SSCGA (k = 1).

/P 1/16 1/18  1/20 1722 1/24
60 - @——  ——  —— =
60 —— - —— —— ——
120 3.00 560 620 820 14.25
o120 147 194 528 7.61  11.25
180 1.40 200 240 260 520
oo 049  1.02 150 240 445
240 1.60 1.80 2.00 3.00 3.40
oo10 050 0.80 155 1.62  1.72

Table 2.3. - First Success Expected Time of SSCGA (k= 1).

P 1/260 1/28  1/30 1/32  1/34
60 - - - - ——
760 - - - - -
120 4460 —— — — —
o120 2937 —— - - -
180 840 10.60 10.80 19.00 35.00
oo 670  6.83 84T 1676  21.67
240 340 480 600 7.20 9.83
oo40  1.85  1.90 349 415 707

as an algebraic problem. To make a comparison, we
have chosen Angulin and Valiant heuristic, that is, a
very efficient method, designed for (a single-processor)
Random Access Computer (RAC) [2], to solve DHCP
in time O(llog? ) for random digraphs with sufficiently
large edge densities (p > %l, where ¢ > 1). Frieze’s
technique [20] improves Angulin and Valiant result re-
ducing the edge density (p > ]l—"_gfl against a worst case
time bound O(I"?). In our simulations, Angulin-Valiant
operator has not exhibited meaningful improvements
in the performance, with respect to what indicated by
the bound p > l,f’—‘j]—l, in case of random digraphs with
superposed random Hamiltonian cycles (for I < 2'0).
Conversely, the genetic algorithm based on stochastic
crossover, in which a random choice of a next vertex is
used in the completion process of the offspring (instead
of the greedy rule depicted in Section V), improves the
performances of SAVGA for k > 1. More specifically,
the genetic algorithm with stochastic crossover sensibly
scales down Frieze’s bound p > ',—(’_%’ for small k—values

(k> 2 and I < 2°). In case of undirected graphs the
greedy rule is useful to get (also significant) improve-
ments of the performances. Our results are experimental,
while it is due to remark that Angulin-Valiant and Frieze
results are theoretical and hold for large size graphs
(as | — o0). Starting from such remarks, considering
that the stochastic crossover can incorporate several
(also adapted) unary operators and since G.As represent
heavily distributed computing systems, we conclude that
a suitable implementation of the genetic model is useful,
in practice, to improve the performance of several princi-
pal specialized techniques [2], [20], [8] designed to solve
DHCP for random graphs (with superposed random
Hamiltonian cycles). This work aims at supporting the
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Table 2.4. - First Success Expected Time of SSCGA (k= 1).

/P 1736 1/38 0 1/40  1/42  1/44

60

060
120

J120
180

T180
240

G240

44.00
37.82

30.40
19.05

0.03

002

0o

0 200 400 8OO 800 1000

Fig. 5.
3).

Jomparison between SAVGA and SSCGA (1 < k <

belief that there is an evolutionary advantage in ap-
plying, suitably designed, (stochastic) binary operators,
with respect to the simpler unary ones, to fundamental
case study such as NP—complete problems. We leave
theoretical analysis as an important open problem for
further research; some fundamental guidelines can be
found in [8] and in the Goemans work [22], [25].
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