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Abstract— Ring-based network design problems have many
important applications, especially in the fields of logistics and
telecommunications. This paper focuses on the recently pro-
posed two-connected network with bounded rings problem. We
investigate the search difficulty of both the Euclidean edge and
unit edge length ring size bounds flavors of this problem by
performing an information-theoretic fitness landscape analysis
for several instances of the problem. Our results further confirm
the hypothesis that the unit edge length version of the problem is
indeed more difficult. The investigation also further reveals that
smaller sized ring bounds lead to harder problems for Euclidean
edge lengths. However, for unit edge lengths we did not establish
such a relationship.

Index Terms— Landscape analysis, two-connected network,
ring-based topology, search difficulty.

I. INTRODUCTION

THE design of survivable cost-effective networks is a
difficult task since the number of potential topologies

for even small networks is extremely large [1]. In this paper,
we study the Two-Connected Network with Bounded Rings
(2CNBR) problem [2], [3], [4]. This problem is NP-hard [5],
and abstracts many applications, especially in the fields of
logistics and telecommunications.

The 2CNBR problem was first studied by Fortz et al. [2], [3]
and involves designing a minimum cost network T satisfying
the conditions; (1) T contains at least two node-disjoint paths
between every pair of nodes, which is a connectivity constraint
[6], and (2) each edge of T belongs to at least one cycle whose
length is bounded by a given constant K, which is a ring
constraint [3]. Furthermore, two flavors of 2CNBR have been
identified [2]. The first defines the ring constraint in terms of
Euclidean edge lengths, and the second requires that each edge
belongs to a cycle using at most K edges.

Designing a survivable two-connected (so called low-
connectivity) network at minimum-cost is one of the combina-
torial optimization problems that has been widely studied [7],
[8], [9], [10], and efficient methods for solving it are already
available [11] (for a comprehensive survey of network design
problems and their applications, see [12]). The extension of
two-connected networks to include bounded rings was recently
introduced by Fortz et al. [2], [13] who proposed adding ring
constraints to the two-connected network such that the shortest
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cycle to which each edge belongs does not exceed a given
maximum length K. This is a relevant extension since the ring
constraints limit the region of influence of the traffic, which
necessarily needs to be re-routed should there be a node or
edge failure.

Furthermore, the emerging technology known as self–
healing rings is applicable for re-routing, but only if the
network satisfies the idea of bounded rings [3]. A self-healing
ring is a cycle in the network equipped in such a way that any
link failure is automatically detected and the traffic is re-routed
using an alternative path in the cycle. When the self-healing
ring technique is used, rings need to cover the network and
their size must be limited, which is equivalent to setting a
bound on the length of the shortest cycle including each edge,
a property provided in the problem model studied in this paper.

Various researches have shown that incorporating domain
knowledge into meta-heuristics search as evolutionary al-
gorithms (EAs) can make them more effective. Thus, the
more knowledge we have regarding a problem prior to a
search algorithm design, the better we can exploit some of
its characteristics to increase the efficiency of the algorithm
[14]. For instance, in the development of an EA, knowledge
about a given problem can be important in aiding the choice
and design of crossover and mutation operators as well as the
selection mechanism. Analyzing the search space may also
help in predicting the expected performance. In this paper, we
investigate the fitness landscape of the 2CNBR problem by
utilizing information theoretic-based measures. Based on the
results of these metrics we can provide insight into the search
difficulty associated with the 2CNBR problem.

This paper is organized as follows. In Section II, we provide
the formal definition of the 2CNBR problem. In Section III
we discuss the fitness landscape analysis measures adopted in
this work. We present the search operator used in Section IV
and discuss our search space analysis for several instances of
the 2CNBR problem in Section V. Section VI concludes the
paper and outlines future works.

II. PROBLEM DESCRIPTION

In this section we provide a mathematical formulation of
the 2CNBR problem based on that derived and used by Fortz
et al. [2], [3] and adopted in [15].

Let G = (V,E) be an undirected graph, where V represents
a set of vertices, and E is the set of edges that represent
possible pairs of vertices between which a direct link can be
made. Each edge e = (i, j) ∈ E (where i and j are any two
vertices), has a non-negative cost Ce = Cij , and a length dij .
The constant K defines the size of the shortest cycle (ring)
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to which each edge belongs. Then, we can let the cost of a
network T = (V, ET ) (where ET ⊆ E is a subset of possible
edges) be denoted by

c(ET ) =
∑

e∈ET

Ce. (1)

Each subset ET is associated with an incidence vector y =
(xe)e∈EE{0, 1}|E| by setting xe = 1 if e ∈ ET , or xe =
0 otherwise. On the other hand, each vector y ∈ {0, 1}|E|
induces a subset ET = {e ∈ E|xe = 1} of the edge set E.
Then, for any subset of edges ET ⊆ E

x(ET ) =
∑

e∈ET

xe. (2)

For each edge e ∈ E, we can define ξe as the set of cycles
in G that include edge e and whose length is less than or
equal to the constant K. That is, to differentiate which cycles
are used in imposing the ring constraint, a new variable is
introduced for each feasible network containing a given edge,
for all edges in the network. Hence, this represents a new
binary variable Y c

e , where c ∈ ξe, such that

Y c
e =

{
1, if cycle c ∈ ET and covers edge e
0, otherwise

. (3)

Then, given the graph G = (V, E) and V ′ ⊆ V , the edge
set δG(V ′) = {{i, j} ∈ E|i ∈ V ′, j ∈ V \ V ′} is called the
cut induced by V’. If we let V − w = V \ {w} and E − e =
E\{e} be the subsets resulting from the removal one vertex or
one edge from the set of vertices or edges, respectively. Thus,
G−w represents the graph (V −w, E \δ({w})), which is the
result of removing a vertex w and its incident edges from G
[6].

Now, the 2CNBR problem can be mathematically formu-
lated as follows [3]:

min
∑

e∈E

Cexe (4)

such that,

x(δ(V ′)) ≥ 2, V ′ ⊂ V (5)
x(δG − w(V ′)) ≥ 1, w ∈ V, V ′ ⊂ V \ {w} (6)∑

c∈ξe

Y c
e ≥ xe, e ∈ E (7)

∑

c∈ξe,f∈c

Y c
e ≤ xf , e ∈ E, f ∈ E \ {e} (8)

xe, Y
c
e ∈ {0, 1}, c ∈ ξe, e ∈ E (9)

where V ′ 6= V 6= ∅.

III. LANDSCAPE ANALYSIS

In this section we will describe the concept of a fitness land-
scape, and its relation to search difficulty. We will also describe
the information-theoretic measures that were employed in our
analysis.

A. The Fitness Landscape

Any search problem can be thought of in terms of a search
space representing all the candidate solutions to the problem at
hand. Probably the most popular analogy of the search space is
the fitness landscape, conceptualized by Sewall Wright [16] in
1932. He described the search space as a multi-dimensional
landscape where each solution representation is mapped to
a fitness value. Thus, the fitness landscape is a function of
both the solution representation and the search operators. The
implication being that in order to facilitate efficient searching,
the search operators should be designed in conjunction with
the implicated structure of the fitness landscape. Therefore,
if it is possible to construct landscapes that are easier to
search, it is likely that the search procedure will produce a
higher quality solution than it otherwise would. Furthermore,
it should also be possible to determine the problem difficulty
given the current representation, operators and evaluation
function, making the study of fitness landscapes a vital part
of searching.

The structure of a fitness landscape is completely deter-
mined by the characteristics of smoothness, ruggedness and
neutrality [17], all of which relate to differences in fitness
between neighboring solutions. All three characteristics arise
from the properties of the landscape’s local optima.

Assuming a maximization problem with search space S,
a solution s ∈ S is defined to be a local maximum if its
fitness is greater than or equal to all of its neighbors, i.e.,
f(s) ≥ f(w) ∀ w ∈ N(s), where the neighborhood N(s)
is defined as the set of solutions reachable from s by a
single application of the search operator being considered. A
landscape is considered rugged if there is a high number of
local optima present in the landscape. In the event that few
optima exist, the landscape may either be smooth or rugged.
If optima are characterized by large basins of attraction the
landscape is considered to be smooth.

A basin of attraction of a solution sn is defined as the set of
vertices B(sn) = {s0 ∈ V |∃s1, ..., sn ∈ V with si+1 ∈ N(sn)
and f(si+1) > f(vi) ∀i, 0 ≤ i ≤ n} [18]. The size of a
basin is generally considered to be defined as the number of
solutions within it. Therefore, those local optima with small
attractive basins can be considered isolated [18]. Hence, larger
basins of attraction imply a smoother landscape.

Landscapes characterized by few local optima generally
contain large amounts of neutrality [19]. That is, their fitness
does not change even though their solution representations are
being altered. Under this model a search process is dominated
by long periods of neutral epochs interspersed with periods
of punctuated equilibrium where fitness will rapidly improve.
During the neutral epochs, the set of current solutions will
randomly drift through the search space. Neutral areas of
a landscape are a result of the presence of plateaus and
ridges [19], where a plateau is a subset P of two or more
solutions such that for every pair of solutions s0, sn ∈ P a
subset {s1, ..., sn} exists where f(si) = f(si+1) and si+1 ∈
N(si), 0 ≤ i ≤ n.

Based on the above characteristics, we can deduce whether
the search will likely be difficult for an algorithm to discover
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a high quality solution not. For example, if it is found that
the landscape contains few isolated optima then it is probably
going to be difficult for the search to discover one of these
optima. Instead, most of the search time will be spent drifting
over low quality neutral areas of the search space, and rarely
will it discover good solutions.

Various statistical metrics have been proposed to quantify
different aspects of the landscape, for example Weinberger
[20] proposed the autocorrelation metric used to examine
smoothness (a good review of these statistical measures is
presented in [21]). However, in this paper we will base our
analysis on the information-theoretic measures proposed by
Vassilev, Fogarty and Miller [17]. Most landscape analysis
techniques approximate characteristics of the landscape via a
random walk-based analysis, which we do here as well.

B. Information-Theoretic Metrics

We will now outline the information-theoretic measures we
employed in this study (initially proposed in [17] and [22]).
These metrics are all based on a random walk of the landscape.
That is, we begin at an initially random solution s0 and
continually apply the search operator, therefore generating a
sequence of solutions < s0, ..., sn >, where n is the length of
the walk. Associated with this sequence are the corresponding
sequence of fitness values < f(s0), ..., f(sn) > which will be
used by the following measures.

The Information Content measures the ruggedness with
respect to the flat or neutral areas of the landscape. The
degree of flatness sensitivity is based on an empirically decided
parameter ε which is restricted to the range [0, ..., L], where
L is the maximum fitness difference along the random walk.
Consequently, the analysis will be most sensitive when ε = 0.
This measure is calculated according to

H(ε) = −
∑

p 6=q

Pr[pq] log6 Pr[pq] (10)

where probabilities Pr[pq] represent the frequencies of the pos-
sible fitness transitions from solution p to q while performing
a random walk. Each of the [pq]’s are elements of the string
S(ε) = s1s2s3sn, of symbols si ∈ {1̄, 0, 1}, where each si

is recursively obtained for a particular value of ε based on
Equation (11), so si = Ψf (i, ε). Thus, ε essentially represents
an accuracy or sensitivity parameter of the analysis.

Ψ(i, ε) =





1̄, if fi − fi−1 < −ε
0, if |fi − fi−1| ≤ ε
1, if fi − fi−1 > ε

(11)

The Partial Information Content (PIC) which indicates the
modality or number of local optima present on the landscape.
The idea behind this measure is to filter out non-essential parts
of S(ε) in order to acquire an indication of the modality of
the random walk and therefore of the landscape. Equation (12)
gives the formula to calculate the PIC, where n is the length
of the original walk and µ is the length of the summarized
string S′(ε).

M(ε) =
µ

n
(12)

The value for µ = Φs(1, 0, 0) is determined via the recursive
function

Φs(i, j, k) =





k, if i > n
Φ(i + 1, i, k + 1), if j = 0 and si 6= 0
Φ(i + 1, i, k + 1), if j > 0, si 6= 0, si 6= sj

Φ(i + 1, j, k), otherwise

.

(13)
When the value of M(ε) = 0 it indicates that no slopes

were present on the path of the random walk, meaning that
the landscape is rather flat or smooth. Similarly, if M(ε) = 1
then the path is maximally multi-modal and likely very rugged.
Furthermore, it is possible to calculate the expected number
of optima of a random walk of length n via

E[M(ε)] =
⌊

nM(ε)
2

⌋
(14)

The Density-Basin Information (DBI) measure is given in
Equation (15), and indicates the flat and smooth areas of the
landscape as well as the density and isolation of peaks. Thus, it
provides an idea of the landscape structure around the optima.

h(ε) = −
∑

p∈{1̄,0,1}
Pr[pp] log3 Pr[pp] (15)

Here, Pr[pp] represents the probability of sub-blocks 1̄1̄, 00
and 11 of occurring (hence, the logarithm is taken to base 3
which scales the result between 0 and 1). A high number of
peaks within a small area would result in a high DBI value.
Conversely, if the peak is isolated the measure will yield a low
value. Thus, this information gives an idea as to the size and
nature of the basins of the landscape. Landscapes with a high
DBI content should be easier for an evolutionary algorithm to
attract to the area of fitter solutions. In contrast, it is likely that
for landscapes with a low DBI value an evolutionary algorithm
is less likely to discover regions of high fitness.

IV. EXPERIMENTAL SETUP

In this section we will describe how we encode a solution to
the 2CNBR problem. Additionally, we will outline the search
operator used by the random walk process to gather the data
which we utilize to perform the landscape analysis.

A. Solution Representation

We utilized the same solution representation as our previous
work [15] whereby each network is encoded as an edge
list. So, an initial feasible network is generated by randomly
selecting an edge ei ∈ E from the set of valid edges and
adding it to the current solution S. This process is repeated
until adding an edge results in a valid 2-connected network.
Therefore, S ⊆ E and the graph G resulting from S is valid
with respect to the constraints described in Section II.
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B. Search Operator

The search operator used here was based on that introduced
in our previous work [15]. Briefly, the idea is to select an edge
from the current network and add one edge from each vertex
to the current solution (if possible), and attempt to form a
polygon. In the minimal case both edges share a common
point resulting in a triangle. After the new edges are added
to the network, up to two redundant edges are removed. It is
important to note that the network is feasible at every stage
of this process. Pseudocode for this process is presented in
Algorithm 1, where U(0, 1) generates a uniform random value
between 0 and 1 and S represents the edge list of the current
solution, as described above.

Algorithm 1 Polygon-based Search Operator
Require: Some solution S ⊆ E

1: if U(0, 1) < 0.6 then
2: randomly select edge e1 = (i1, j1) ∈ S
3: If possible, randomly select e2 = (i1, j2) ∈ E \ S
4: If possible, randomly select e3 = (j1, j3) ∈ E \ S
5: if S ∪ {e2} is feasible then
6: Let S = S ∪ {e2}
7: end if
8: if S ∪ {e3} is feasible then
9: Let S = S ∪ {e3}

10: end if
11: if edge (j2, j1) ∈ E \ S and S ∪ {(j2, j1)} is feasible

then
12: Let S = S ∪ {(j2, j1)}
13: end if
14: if edge (j3, j1) ∈ E \ S and S ∪ {(j3, j1)} is feasible

then
15: Let S = S ∪ {(j3, j1)}
16: end if
17: end if
18:
19: If possible, probabilistically remove ≤ 3 edges from S

In lines 3 and 4 we attempt to randomly select 2 unused
edges, and if adding e1 and/or e2 to S is feasible, then do so in
lines 6 and 9, respectively. Additional edges from e1 and e2 are
attempted to be found and added to S in lines 11-16, therefore
forming some polygon. In line 19 we attempt to remove up
to 3 edges from S, where larger edges are more likely to be
removed. The value of 0.6 in line 1 was empirically decided,
but not optimal over all problem instances.

It should also be noted that this operator preserves the
validity of S. That is, after it has completed S remains valid
with respect to the constraints in Section II.

V. RESULTS

In this section we will present the results of our analysis
which will provide insight into the difficulty/hardness asso-
ciated with the search of 2CNBR solutions. Our analysis is
concerned with test problems proposed by Fortz [2] and [13],
for both Euclidean and unit edge length ring size constraints.
The problem instances are named according to the number of

vertices present in the graph. For example N10-1 represents
the first instance of a problem with 10 vertices, N10-2 the
second, and so on. The ring constraints for both Euclidean
and unit edge problems were based on those outlined in [2],
[3], [4], [13].

In order to perform our landscape analysis we conduct
1,000 random walks, each composed of 100 applications
of the search operator. We experimentally determined that
this gathered a sufficient amount of data to perform a valid
analysis. Each random walk begins from a randomly generated
network, as described in the previous section. Each of the
landscape metrics are calculated after every random walk, and
averaged over the 1,000 walks. That is, the results show the
average value over the total number of walks as opposed to
calculating once after all walks (which most notably impacts
the E[M(ε)] value).

A. Euclidean Edge Length

We first discuss the results obtained for experiments where
the edge length is described by a Euclidean distance metric.
We present the main findings of the results here, and Appendix
A shows all the obtained data.

Table I presents a summary of the results for each problem
grouped by the maximum ring size. The first column µ
corresponds to the average fitness (sum of edge lengths) found
along a random walk. The information content (IC), density-
basin information (DBI), partial information content (PIC) and
expected optima (E[M(ε)]) are also shown. As the ring size
(K) increases the average fitness tends to decrease. Therefore
it seems that a larger maximum ring size implies an easier
problem.

With the exception of the N10 and N20 instances the PIC
value shows little fluctuation, which means that the N30, N40
and N50 instances are not very sensitive to changing ring
size bounds. However, the smaller instances do show a large
decrease in expected optima along a given random walk. For
both N10 and N20 the E[M(ε)] ≈ 36 and show a similar
decrease to E[M(ε)] ≈ 28 which shows that optimal values to
these problems should be easier to discover since there are less
local optima as the maximum ring size is relaxed. However,
in general, the PIC and expected optima are similar for each
instance, and thus do not aid much in differentiating which
problems are harder to solve.

According to the results in Table I, the IC and DBI values
have greater variability, and can then be more beneficial to our
examination.

We plot the information content with respect to the max-
imum ring size for each vertex set size in Figure 1. In-
stance N20 shows some increase in IC as the maximum ring
constraint is relaxed. Thus, the landscape for N20 seems to
become easier for search since it exhibits a lower variety of
shapes (with respect to combinations of the set {1̄, 0, 1}).
Although to a lesser degree, instances of problem N10 also
show a slight decrease in IC, but not likely enough to have
a noticeable impact on search difficulty. Problem instances
with 50 vertices (N50) shows logarithmic-style increase in IC,
implying larger bounds on the ring constraint will have a lower
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TABLE I: Summary Results for Euclidean Edge Lengths.
Prob. K µ IC DBI PIC E[M(ε)]

N10
300 2538.90 0.6941 0.7067 0.4993 36.9405
400 2213.40 0.7654 0.6634 0.4693 34.6944
500 1563.88 0.7406 0.5398 0.3774 28.1075

N20

200 8228.83 0.4949 0.6519 0.4949 36.6155
300 5644.80 0.4967 0.6797 0.4967 36.7488
400 3514.90 0.4929 0.6903 0.4929 36.4644
500 2470.80 0.3994 0.6051 0.3994 28.2547

N30

200 15860.90 0.4803 0.6202 0.4900 36.2463
300 11741.56 0.5115 0.6324 0.4939 36.5458
400 6746.42 0.6164 0.6685 0.4981 36.8550
500 4093.32 0.7128 0.6667 0.4762 35.1434

N40

200 24684.95 0.4479 0.6058 0.4877 36.0718
300 17402.60 0.4867 0.6202 0.4913 36.3398
400 10986.28 0.5670 0.6539 0.4973 36.7940
500 4712.54 0.7006 0.6850 0.4959 36.6150

N50

200 21410.40 0.4617 0.6085 0.4897 36.2168
300 8056.66 0.6235 0.6673 0.5005 36.8579
400 5409.08 0.6689 0.6915 0.5053 37.3639
500 3271.86 0.6924 0.6860 0.5142 37.7393

impact on search difficulty. The remaining two instances, N30
and N40, show a steep increase in IC as the ring size bound
increases. Therefore, these two problems become increasingly
difficult, and should be the hardest of the 5 problem types to
solve.
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Fig. 1: Information content of each problem type with respect
to increasing problem size.

Figure 2 shows a plot of the summary results of the DBI.
The most noticeable change is the steep decline in DBI for
problem type N10. Since the IC also showed some decrease
it can be inferred that the landscape is mainly smooth/flat
and should be easy to search [17]. Similarly, instances of
the N20 family of problems also are relatively smooth, but
only when the ring size reaches it’s maximum of 500. As
this size increases from 200 to 400 the problem shows an
increase in difficulty. As with the IC, the DBI value for
N50 problems seems to behave according to a logarithmic-
like curve, reinforcing the previous hypothesis stating that
instances of this problem become relatively easier to solve as
the maximum ring size relaxes. Additionally, these DBI results
for N30 and N40 also support the previous claim that the

TABLE II: Summary Results for Unit Edge Lengths.
Prob. K µ IC DBI PIC E[M(ε)]

N10
3 3560.32 0.6122 0.7070 0.4954 36.6522
5 3741.28 0.6386 0.7156 0.4988 36.9334
10 3626.88 0.6266 0.7190 0.4961 36.7010

N20

3 10732.04 0.5274 0.6455 0.4959 36.6976
5 10399.32 0.4863 0.6319 0.4919 36.3861
10 10541.66 0.5051 0.6414 0.4926 36.4480
16 10382.68 0.4910 0.6305 0.4909 36.3417

N30

3 21916.92 0.4442 0.6049 0.4866 35.9906
5 22043.50 0.4487 0.6058 0.4857 35.9996
10 22007.60 0.4489 0.6067 0.4857 35.9841
16 22083.02 0.4521 0.6078 0.4879 36.0979

N40

3 40024.38 0.4400 0.6006 0.4884 36.1270
5 39887.56 0.4272 0.5983 0.4863 35.9636
10 39910.76 0.4327 0.5978 0.4855 35.9375
16 39912.78 0.4290 0.5967 0.4866 36.0607

N50

3 56299.32 0.4179 0.5974 0.4851 35.8824
5 56280.54 0.4157 0.5976 0.4850 35.8660
10 56502.46 0.4189 0.5976 0.4842 35.7960
16 56366.84 0.4184 0.5966 0.4860 35.9009

problems rapidly increase in difficulty as the ring size reaches
500.
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Fig. 2: The change in density-basin information as the ring
size bound is relaxed.

B. Unit Edge Length

We will now present the findings for experiments where the
maximum ring size is determined by a unit edge length. The
full table of results can be found in Appendix B.

From the summary results presented in Table II we observe
very little change in each of the measured variables (at least
within groups). This is even the case for the average network
cost (µ) which implies that these problems may be noticeably
more difficult than the Euclidean edge instances. The expected
number of local optima along a random walk E[M(ε)] ≈ 36
for all instances, and the partial information content is also
relatively stable at about 0.49. Although a very slight decline
from about 0.50 for N10 instances to 0.485 for N50 problems
is observed, this can be considered negligible in practice.

Figure 3 shows a plot of the information content change for
each problem, as the ring constraint increases from 3 to 16.
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Despite the stagnant intragroup behavior, there is a relatively
large difference between groups. Specifically, the IC decreases
as the number of vertices increases. Additionally, the relative
change between successive increases in problem size (vertices)
with respect to the IC also decreases, that is ICN10−ICN20 ≥
ICN20 − ICN30... ≥ ICN40 − ICN50. So, as the number of
vertices increases the relative difficulty decreases and seems
to approach some (unknown) limit.
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Fig. 3: How the information content changes with respect to
increasing ring constraint for each problem.

We show a plot of the DBI with respect to an increasing
ring constraint for each problem type in Figure 4. As with
the IC, there is negligible intragroup change in these values.
Although, a similar intergroup behavior is observed whereby
the relative changes in DBI as the number of vertices increases
becomes increasingly smaller. In conjunction with the other
data presented in Table II we can conclude that each of these
problems exhibits a relatively equal difficulty. However, since
networks with a smaller number of vertices inherently have a
smaller search space, the probability of discovering a high
quality solution is greater than for problems with a larger
number of vertices.

C. Summary

From the above results we were able to determine the
expected search difficulty of both Euclidean and unit edge
length versions of the 2CNBR problem. We found that the
Euclidean edge length problems were easier to differentiate,
which is a direct result of the nature of the distance metric.
That is, edges are easier to differentiate if the Euclidean edge
weight is utilized. If we employ the unit edge concept, a search
algorithm must infer the actual Euclidean cost, which becomes
increasingly difficult as the number of edges increases. This
supports the hypothesis described by Fortz [2] and [13].

We also discovered that the unit edge problem difficulty is
basically invariant under these measures. That is, the intra-
group comparison between instances of a problem type yield
little or no information regarding its difficulty. We were only
able to distinguish intergroup differences according to different
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Fig. 4: The change in DBI for each problem as the ring
constraint increases.

levels of IC and DBI, although they did behave in a similar
manner.

It should also be noted that most of the above hypotheses
regarding the search hardness can been validated for Euclidean
edge length results by comparing with those results found in
[15]. However, due to space limitations we are not able to
present this comparison between the landscape analysis and
experimental findings.

VI. CONCLUSION AND FUTURE WORK

We have provided an information-theoretic landscape anal-
ysis of the instances provided by Fortz [2] and described the
expected difficulty associated with each. As a consequence,
we were able to provide further support to the claim that unit
edge length problems are indeed harder to solve. Our results
also enabled us to describe the expected search difficulty for
Euclidean edge length problems. The examination considered
both an increase in number of vertices (and consequently
edges) as well as an increasing maximum ring size.

Possible directions for future work include a comparison of
the expected search difficulty with actual results from a search
algorithm, including those we obtained in previous work [15].
Additionally, the examination of different search operators and
their influence on the expected search difficulty forms another
interesting direction. Also extending the analysis to include
other metrics, such as those based on statistics, or even the
development of new more robust metrics is an interesting
possibility.

APPENDIX

For both Euclidean and unit edge lengths the columns are
labeled according to: Prob. (problem instance), µ (average
fitness along a random walk), IC (Information Content), DBI
(Density-basin Information), PCI (Partial Information Content)
and E[M(ε)] (Expected optima along a random walk at
sensitivity ε).
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A. All Euclidean Edge Results

Prob. K µ IC DBI PIC E[M(ε)]
N10-1 400 2238.9 0.7354 0.695 0.4763 35.205
N10-1 500 1482.4 0.7619 0.6132 0.4872 35.7541
N10-2 400 2604.5 0.7417 0.698 0.4733 35.006
N10-2 500 1725.7 0.7685 0.6384 0.4411 34.0188
N10-3 300 2386.8 0.6891 0.7108 0.4976 36.816
N10-3 400 1810.1 0.7891 0.6411 0.491 36.329
N10-3 500 1575.4 0.7687 0.4854 0.3374 24.8467
N10-4 300 2691 0.699 0.7025 0.501 37.065
N10-4 400 1958.6 0.7732 0.6312 0.4486 33.134
N10-4 500 1421.4 0.6457 0.3954 0.2458 18.6589
N10-5 400 2454.9 0.7876 0.6518 0.4571 33.798
N10-5 500 1614.5 0.7584 0.5664 0.3753 27.2588
N20-1 200 8516.7 0.4946 0.6591 0.4946 36.59
N20-1 300 4887.1 0.4997 0.6909 0.4997 36.969
N20-1 400 2703.9 0.4845 0.6831 0.4845 35.828
N20-1 500 1873 0.3677 0.5245 0.3677 24.213
N20-2 200 8406.5 0.4935 0.6406 0.4935 36.51
N20-2 300 5798.8 0.4937 0.6712 0.4937 36.523
N20-2 400 3214.7 0.4983 0.7018 0.4983 36.875
N20-2 500 1875.5 0.4058 0.6987 0.4058 27.5893
N20-3 200 8133.8 0.4958 0.6548 0.4958 36.687
N20-3 300 6822.4 0.4957 0.6723 0.4957 36.674
N20-3 400 2846.8 0.4961 0.6923 0.4961 36.71
N20-3 500 2598.2 0.4146 0.6185 0.4146 29.5871
N20-4 200 7858.3 0.4956 0.6531 0.4956 36.675
N20-4 300 5070.9 0.4976 0.6844 0.4976 36.829
N20-4 400 2966.9 0.4854 0.7021 0.4854 35.906
N20-4 500 2248.9 0.3039 0.4857 0.3039 21.8987
N20-5 400 5842.2 0.5 0.672 0.5 37.003
N20-5 500 3758.4 0.505 0.698 0.505 37.9856
N30-1 200 15449.3 0.4862 0.6228 0.4914 36.344
N30-1 300 9252.2 0.547 0.6472 0.4982 36.868
N30-1 400 4667 0.6774 0.6966 0.4999 36.982
N30-1 500 3087.4 0.7284 0.6897 0.4785 35.5124
N30-2 300 16455.3 0.4706 0.6121 0.4896 36.217
N30-2 400 11210 0.5287 0.6286 0.4901 36.261
N30-2 500 6987.5 0.6254 0.6389 0.5001 36.8745
N30-3 300 13570.1 0.4824 0.6189 0.492 36.386
N30-3 400 7421.3 0.5559 0.6519 0.4986 36.901
N30-3 500 4257.8 0.6459 0.6882 0.5124 37.89
N30-4 200 17475.1 0.451 0.6108 0.4879 36.093
N30-4 300 10785.3 0.4953 0.6304 0.4929 36.474
N30-4 400 5622.8 0.6081 0.6836 0.4969 36.763
N30-4 500 2875.5 0.7485 0.7015 0.4687 34.8751
N30-5 200 14658.3 0.5037 0.627 0.4907 36.302
N30-5 300 8644.9 0.5623 0.6536 0.497 36.784
N30-5 400 4811 0.712 0.6817 0.5049 37.368
N30-5 500 3258.4 0.8158 0.6154 0.4215 30.5648
N40-1 200 24426.5 0.4521 0.6057 0.4885 36.118
N40-1 300 13240.8 0.5113 0.63 0.4944 36.574
N40-1 400 6609.5 0.6343 0.6836 0.503 37.227
N40-1 500 4685.5 0.7485 0.6806 0.4886 35.8745
N40-2 300 26685.8 0.4388 0.6038 0.4857 35.898
N40-2 400 19803.7 0.4617 0.6099 0.4902 36.277
N40-2 500 7065.8 0.6845 0.6555 0.5014 37.5946
N40-3 200 22739.6 0.464 0.6101 0.4912 36.338
N40-3 300 11848.2 0.5383 0.6361 0.496 36.703
N40-3 400 6193.7 0.6581 0.6864 0.5055 37.405
N40-3 500 3698.4 0.7156 0.6849 0.4879 35.8467
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N40-4 200 24360.1 0.446 0.606 0.4871 36.041
N40-4 300 14016.6 0.499 0.6242 0.4946 36.598
N40-4 400 7184.7 0.6075 0.6727 0.4983 36.863
N40-4 500 4026.7 0.7158 0.7258 0.5148 37.9948
N40-5 200 27213.6 0.4295 0.6014 0.4838 35.79
N40-5 300 21221.6 0.4459 0.6071 0.4856 35.926
N40-5 400 15139.8 0.4732 0.6169 0.4893 36.198
N40-5 500 4086.3 0.6384 0.6784 0.4867 35.7642
N50-1 200 17434.1 0.4863 0.6177 0.4932 36.486
N50-1 300 5906 0.6595 0.6928 0.5014 37.114
N50-1 400 4587.6 0.6874 0.6877 0.5078 37.5487
N50-1 500 3047.9 0.6687 0.6178 0.5168 37.9841
N50-2 300 8786.8 0.608 0.6621 0.4996 36.975
N50-2 400 6077.6 0.6719 0.6902 0.5088 37.8894
N50-2 500 3188.9 0.6974 0.7154 0.5374 38.6749
N50-3 200 22652.4 0.4592 0.6064 0.4888 36.147
N50-3 300 6684.8 0.6756 0.6793 0.4994 36.967
N50-3 400 4862.9 0.6874 0.6879 0.4875 36.5879
N50-3 500 3249.1 0.7189 0.6846 0.4803 36.4598
N50-4 200 20290.5 0.4561 0.6092 0.4887 36.142
N50-4 300 8246.7 0.5798 0.6457 0.5086 37.0649
N50-4 400 5167.6 0.6538 0.7025 0.5174 37.4682
N50-4 500 3011.8 0.6819 0.7125 0.5275 37.7314
N50-5 200 25264.6 0.4453 0.6008 0.4879 36.092
N50-5 300 10659 0.5948 0.6568 0.4934 36.1684
N50-5 400 6349.7 0.6439 0.6894 0.5049 37.3251
N50-5 500 3861.6 0.6952 0.6998 0.5088 37.8465

B. All Unit Edge Results

Prob. K µ IC DBI PIC E[M(ε)]
N10-1 3 3329.9 0.6032 0.7061 0.4943 36.582
N10-1 5 3626 0.6497 0.7198 0.4976 36.812
N10-1 10 3457.5 0.6258 0.7232 0.4924 36.422
N10-2 3 3450.3 0.6058 0.7143 0.4943 36.571
N10-2 5 3815.6 0.6511 0.7219 0.4976 36.815
N10-2 10 3610.7 0.6335 0.7235 0.4945 36.593
N10-3 3 3242.4 0.606 0.7079 0.4938 36.535
N10-3 5 3544.6 0.6497 0.7202 0.4984 36.87
N10-3 10 3384.7 0.6315 0.7217 0.4962 36.72
N10-4 3 3591.4 0.5975 0.6971 0.4933 36.485
N10-4 5 3651.8 0.6119 0.7082 0.4936 36.516
N10-4 10 3724.7 0.6245 0.7112 0.4946 36.6
N10-5 3 4187.6 0.6487 0.7096 0.5011 37.088
N10-5 5 4068.4 0.6308 0.7077 0.5068 37.6541
N10-5 10 3956.8 0.6176 0.7155 0.5027 37.1698
N20-1 3 11954.8 0.5302 0.638 0.4986 36.894
N20-1 5 11599 0.483 0.6215 0.4917 36.374
N20-1 10 11657.3 0.5066 0.634 0.4922 36.425
N20-1 16 11450.6 0.4859 0.6252 0.4903 36.269
N20-2 3 9427.8 0.5284 0.6465 0.4942 36.574
N20-2 5 9168.6 0.48 0.6271 0.4895 36.205
N20-2 10 9211.3 0.5038 0.6383 0.4919 36.392
N20-2 16 9182.7 0.483 0.6283 0.4879 36.087
N20-3 3 10623.2 0.5224 0.6467 0.4957 36.683
N20-3 5 10198.1 0.4777 0.6274 0.4882 36.116
N20-3 10 10458.9 0.5052 0.6403 0.4926 36.437
N20-3 16 10382.2 0.483 0.6292 0.4889 36.174
N20-4 3 11005.4 0.5268 0.6429 0.4954 36.656
N20-4 5 10762.3 0.4905 0.6306 0.4937 36.523
N20-4 10 10823.5 0.5033 0.6355 0.494 36.551
N20-4 16 10698.4 0.4987 0.6265 0.4913 36.4782
N20-5 3 10649 0.5293 0.6535 0.4956 36.681
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N20-5 5 10268.6 0.5001 0.6527 0.4965 36.7125
N20-5 10 10557.3 0.5067 0.6588 0.4925 36.4351
N20-5 16 10199.5 0.5046 0.6431 0.4961 36.7005
N30-1 3 22533.4 0.4433 0.607 0.4856 35.914
N30-1 5 22691.8 0.4415 0.606 0.4875 36.061
N30-1 10 22644.8 0.4499 0.6072 0.4877 36.075
N30-1 16 22997.2 0.4549 0.6083 0.4887 36.136
N30-2 3 21807.3 0.4354 0.6024 0.4864 35.988
N30-2 5 21938.5 0.4354 0.6013 0.4854 35.894
N30-2 10 21987.2 0.4408 0.6044 0.4845 35.827
N30-2 16 22185.8 0.4486 0.6064 0.4893 36.197
N30-3 3 20758.3 0.4337 0.6007 0.4848 35.847
N30-3 5 21312.6 0.4587 0.6082 0.4913 36.345
N30-3 10 20912.8 0.4393 0.6048 0.4866 35.99
N30-3 16 20883.5 0.4433 0.6054 0.4869 36.011
N30-4 3 20560.3 0.4371 0.6016 0.4868 36.016
N30-4 5 20798.2 0.4392 0.6028 0.486 35.937
N30-4 10 20909.1 0.4449 0.606 0.4879 36.077
N30-4 16 20857.9 0.4429 0.6105 0.4876 36.1698
N30-5 3 23925.3 0.4715 0.613 0.4893 36.188
N30-5 5 23476.4 0.4685 0.6106 0.4785 35.7612
N30-5 10 23584.1 0.4697 0.6111 0.4816 35.9513
N30-5 16 23490.7 0.4706 0.6083 0.4869 35.9756
N40-1 3 40916.9 0.441 0.6005 0.4903 36.267
N40-1 5 40603.3 0.42 0.598 0.4858 35.915
N40-1 10 40672.1 0.4289 0.6001 0.4853 35.892
N40-1 16 40422.3 0.4196 0.5983 0.4832 35.734
N40-2 3 42194.4 0.4356 0.6005 0.488 36.104
N40-2 5 42077.3 0.4168 0.5986 0.4859 35.938
N40-2 10 41827.3 0.4258 0.5983 0.4865 35.993
N40-2 16 42315.3 0.4174 0.5981 0.4846 35.836
N40-3 3 40712.7 0.441 0.6038 0.4867 35.99
N40-3 5 40485.7 0.4264 0.5995 0.4845 35.823
N40-3 10 40485.7 0.4306 0.6004 0.4847 35.854
N40-3 16 40573.4 0.4268 0.6015 0.4875 35.9576
N40-4 3 39699.8 0.4417 0.5987 0.488 36.101
N40-4 5 39786.4 0.4368 0.5964 0.4877 36.0474
N40-4 10 39884.6 0.4406 0.5973 0.4891 36.2987
N40-4 16 39906.1 0.4386 0.5941 0.4878 36.2012
N40-5 3 36598.1 0.4406 0.5996 0.4891 36.173
N40-5 5 36485.1 0.4358 0.5988 0.4875 36.0945
N40-5 10 36684.1 0.4377 0.5931 0.4821 35.6497
N40-5 16 36346.8 0.4425 0.5913 0.4897 36.5746
N50-1 3 57464.7 0.4151 0.5968 0.4851 35.875
N50-1 5 57497.5 0.4153 0.5982 0.4831 35.727
N50-1 10 58280.6 0.4167 0.5994 0.4846 35.827
N50-1 16 58354.2 0.4162 0.5977 0.4856 35.923
N50-2 3 58676 0.4126 0.5968 0.4856 35.922
N50-2 5 58440.5 0.4128 0.5969 0.4866 35.974
N50-2 10 58767.5 0.4153 0.5973 0.4862 35.961
N50-2 16 58753.4 0.4201 0.597 0.4868 36.007
N50-3 3 54678.7 0.4123 0.5963 0.4844 35.827
N50-3 5 55030.5 0.4141 0.5976 0.4861 35.956
N50-3 10 54721.5 0.4172 0.5964 0.487 35.996
N50-3 16 54824.7 0.4156 0.5978 0.4895 36.0945
N50-4 3 57158 0.4273 0.5982 0.4851 35.888
N50-4 5 56953.1 0.4186 0.5975 0.4852 35.9046
N50-4 10 57166.3 0.4225 0.6004 0.4811 35.5746
N50-4 16 56886.5 0.4287 0.5918 0.4876 36.0018
N50-5 3 53519.2 0.4221 0.5989 0.4855 35.9
N50-5 5 53481.1 0.4175 0.5977 0.4842 35.7684
N50-5 10 53576.4 0.4227 0.5944 0.4823 35.6214

continued on next page

continued from previous page
N50-5 16 53015.4 0.4113 0.5987 0.4806 35.4781
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