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Abstract— Modeling of human cognitive process is one of
important research field for computational intelligence. In this
study, we try to construct a computational model of car driver
that can explain real world driver behavior. Through the
research, we try to establish foundation for a bridge between
basic science and engineering requirement. In our previous
work, we proposed a model of driver’s eye movements that
consists of bottom-up and top-down eye motion sub models.

This paper proposes an extended version of the previous
eye motion model. In the current extended model, top-down
eye motion is determined based on the driver’s driving plan,
whereas the bottom-up eye motion is determined based on
predicted locations of moving objects.

Keywords: eye motion model, driving, prediction of in-
tention, driving plan, map, fixation point, peripheral vision

I. INTRODUCTION

Car safety systems are improving as intelligent transport
systems (ITS) evolve. One way of making driving safer is
supporting drivers by reminding them of objects that may be
hazards. However, if a safety system announces that there
are hazardous objects around, and the driver has already
noticed them, the system will only annoy the driver. To avoid
this problem, the safety system should alert the driver only
to the objects that the driver has not noticed. To achieve
this, the system has to recognize the cognitive status of
the driver precisely. However, it is hard to achieve such
precise recognition only by observing the driver’s behaviors.
To overcome this problem, the support system needs to
predict the cognitive status of the driver using a model of
human behavior. Several researchers have already proposed
models of human driving behavior [1] [2] [3]. These models,
however, describe only driver behaviors but not the driver’s
internal cognitive process. In this study, we focused on eye
motion during driving and constructed a cognitive model for
the motion of human eye. We also tried to re-create the
driver’s behavior from the model.

We have already constructed an eye motion model that
consists of two sub models of eye motion: the eye motion
process to active collection of information for steering oper-
ation, and passive eye motion in response to normal visual
stimuli. This model yields a probability distribution function
of eye motion at any given time. This model enabled us not
only to estimate what kind of driver information processing
is going on, but also to detect driver’s status at any given
time by calculating likelihood of actual eye motion data

at a given time [4][5]. However, identifying actual state of
the cognitive process was difficult. To overcome this issue,
we introduced an effect of intention (driving plan) into the
model of internal process for eye motion, and we calculated
a probability distribution of eye motion based on driving
plan. That is, as a glance movement model, the probability
distribution of glance movement from a more general driving
plan, as indicated by steering wheel operation for example, is
added to the previous model. In our experiment, we examined
a driver’s glance, and evaluated validity of the model by
comparing the driver behavior to that of the driving simulator
[6]. We found that the model describes a driver’s driving
behavior well but some behavior does not agree with the
model. Therefore, we added an additional sub model that
predicts the environment by identifying hazardous objects,
and included them into the bottom-up eye motion model.

II. DRIVER EYE MOTION MODEL

A. Overview

As mentioned above, in our previous work we have already
constructed a model of drivers’ eye motion to detect the
essential factor of eye motion [4][5]. The previous model
predicts the driver’s eye motion and steering operation with
reference to bottom-up and top-down eye motion related to
road and objects near the car. Therefore, we could estimate
internal factors of actual eye motion and check whether
the driver observes hazardous objects or not by comparing
the model’s behavior and an actual driver’s behavior. For
example, when formulating an eye motion model, we can
estimate a factor of current eye motion by calculating the
likelihood of the model’s probability distribution function
based on current eye motion data (Fig. 1).

The bottom-up eye motion model was constructed by
the saliency map [7], which was based on findings about
the human visual system. According the model, eye motion
depends on saliency, which can be calculated by local texture
and motion of objects. The probability distribution of bottom-
up eye motion : PEyeBU (x, t), where x is the position in
view area and t is time, is calculated using the saliency.

The top-down eye motion model was constructed by
a driving model based on reinforcement learning method
proposed by Koike et al. [1]. Koike’s driving model was
based on a finding that drivers paid attention both to a area
near and to a area far from the car [8][9]. Therefore, the
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Fig. 1. Model of eye motion and steering operation.

model determined its steering operation based on current
and future (two or three seconds later) car position. The
model consisted of several modules, each of which output
appropriate steering angles in each particular situation. The
value function was calculated by the output value of each
module, and the reward was given as a distance between
the car and a edge of the road. So, the model learned to
output appropriate steering angles so as to smooth operation
of the car along a curve of the road. A steering angle was
calculated by a weighted sum of module outputs. The weights
were determined by a soft-max function, in turn calculated
by a responsibility value of each module. The top-down eye
motion probability distribution: PEyeT D(x, t) was detected
based on the weights. The final eye motion probability dis-
tribution function was calculated by a sum of the bottom-up
and top-down eye motion probability distribution functions.

PEye(x, t) = rPEyeBU (x, t) + (1 − r)PEyeT D(x, t) (1)

Here, we used 0.5 for r value in our simulation. But it
is reported that eye motion while driving mainly depends
on objects outside and the value should be reconsidered to
satisfy evidence.

We simulated this model in a simulation environment
and evaluated its performance by calculating similarity to
eye motion data for an actual driver. The results showed
appropriate similarity to each situation[5]. This suggests that
the former model may be used to predict a driver’s status
based on the eye motion probability distribution function.

B. Eye motion model based on intention

The former model, however, worked well only in situations
where there were no pedestrians or other cars. Moreover, the
model was tested only on simple shaped roads. Generally

speaking, it was hard to know what a driver really recognizes
in the real environment. We constructed a model of the
recognition process that reflected intention of the driver. The
eye motion was also affected by the intention of the driver. A
rough sketch of the processes is divided into the three steps
below(Fig. 2).

(1) Recognition of general representation
Observing stimuli in front of the car and recognizing
discrete objects. The recognition results are stored in
the ”Object recognition results buffer”.

(2) Selection of a driving plan from several plan candidates
Based on the contents of the object recognition results
buffer, an appropriate plan is selected from several
candidates.

(3) Eye motion depending on the plan
To execute the plan, the driver looks around more
carefully.

In the model, the system repeats (1) until a driving plan is
selected in (2). When a driving plan is selected, (2) and (3)
are executed repeatedly, but if the selected plan in (2), has
been executed, the system repeats (1).
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Fig. 2. Object recognition model.

C. Saliency map

The eye motion process was simulated using the model
that incorporates the saliency map [7][10]. We denote
SM(t, x) as the saliency map at each time t, where x
denotes the position vector of view area x = (x, y). Then,
SM(t, x) is normalized to acquire the eye motion probability
by being normalized by the summarized value as in the
equation below.

SM(t, x) =
SM(t, x)∑

x∈all

SM(t, x)
(2)

Eye is supposed to move maximum point x∗ where x∗ =
argmaxxSM(t, x).
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D. Driving plan

During driving, plans compete their execution by cal-
culating their score values based on an object’s attributes
and distance between the car and objects. This information
is stored in the recognition results buffer, and, the most
appropriate driving plan with the highest score is selected.
Each plan consists of a conditions for selection, action,
and observation to monitor the evolving situation. Driving
actions are determined by the selected driving plan, which
is described by steering angle, accelerator operation, and
observation for a moment of plan selection.

E. Selection of driving plan

The driving plan can be divided into master plans and sub
plans. A master plan is a global plan such as ”go straight, turn
left, turn right” and so on. The sub plan denote condition for
executing the corresponding master plan. The master plan
is selected if all conditions are satisfied. If one of master
plans is selected, the corresponding sub plans are activated.
Then, the activated sub plans are evaluated by calculating
estimation value E, and a sub plan with the maximum value
is selected for execution.

F. Plan relevance map

To realize actions in the selected sub plan, a plan relevance
map (PRM) is introduced. The PRM denotes the position
ci = (cix, ciy) and width si = (six, siy) of target objects
using normal distributions (Fig. 3).

(a) (b)
Fig. 3. Example of plan relevance map (b) when parking vehicle (a)

We denote PRM(t, x) as PRM at each time t, where x
denotes the position vector of view area x = (x, y). A plan
that requires several objects includes multiple position and
width value for target objects. Therefore, there are several
partial PRM(t, x)′s in a view area and a total PRM(t, x)
as weight sum is calculated as below.

PRM(t, x) =
∑

i

wiRi (x, ci(t), si(t)) (3)

Ri(x, ci, si) =
1r

2πs2
ix

s2
iy

exp

8<
:−

(x − cix)2

s2
ix

−
(y − ciy)2

s2
iy

9=
; (4)

where wi denotes weighting variables to a object i based
on a recognition strength to the objects.

PRM(t, x) is also converted to a probability distribution
by being normalized by the total sum of PRM(t, x) of all
targets within the view. PRM(t, x) is calculated as below.

PRM(t, x) =
PRM(t, x)∑

x∈all

PRM(t, x)
(5)

(6)

G. Plan dependent eye motion probability distribution

According to PRM(t) and the saliency map, attention
map AM(t) is calculated as in the equation below.

AM(t, x) = SM(t, x) ⊗ PRM(t, x) (7)

where ⊗ is the operator for multiplying the values at the
same position. The eye moves to the position where AM(t)
is highest.

When the car goes down a straight road, it is well known
that drivers usually see the vanishing point of the road [8]. To
describe this phenomenon, our model creates an additional
PRM corresponding the vanishing point when no sub plan is
selected.

III. DRIVING SIMULATION

A. Outline of driving simulation

The model was tested in an experiment by fabricating
and using a driving simulator. This described 3D space with
VRML and used Virtual Reality Toolbox of MATLAB for
drawing and control. The vehicle model in the simulator used
a fixed velocity running model of two wheels as a four-
wheeled vehicle was used.

In the simulation environment, one car is stopped in one
lane on a 10-m-wide two-lane road. Two oncoming cars go
straight at a speed of 10[m/s] in the opposite lane. A virtual
urban area was created complete with a house, a shop, a
building, and trees by the side of the street. The task is to
safely pass the stopped vehicle.

Car

Stopped car

Oncoming

car2

Oncoming

car1

y1

y2

x1

Fig. 4. Simulation environment

In this experiment, we considered the following five sub
plans.

• Plan 0: Going straight.
Driver goes straight in the lane of the appropriate
direction.
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• Plan 1: Stopping car.
Driver observes a distance to oncoming car and stops
self until the car passes through to a safe distance.

• Plan 2: Turning into the oncoming lane.
Driver observes the distance with the oncoming car. And
driver goes into the opposite lane turning the steering
wheel to the right at a very safe distance.

• Plan 3: Going straight in the oncoming lane
Driver observes the distance to stopped car and recovers
the steering wheel, going straight in the oncoming lane
at a safe distance from the stopped car.

• Plan 4: Going into the appropriate lane.
Driver observes presence of person or object behind the
stopped car, and goes into the appropriate lane, turning
the steering wheel to left after passing the stopped car.

We defined the value calculation method, amount of steer-
ing wheel operation, and parameters of PRM c, s, and then
simulated the execution of the plan.

We defined distance to the stopped car x axially as x1 and
y axially as y1, and distance to the oncoming car x axially as
x2 and y axially as y2. Value is calculated with the following
equation.

• Plan 0 E0(t) = 0
• Plan 1 E1(t) = −y1 + c1

• Plan 2 E2(t) = y2 + c2

• Plan 3 E3(t) = x1 + c3

• Plam 4 E4(t) = y1 + c4

c1, . . . , c4 are safe distances between the car and the
object.

• Safe distance to the stopped car (y) c1 = 15
• Safe distance to the oncoming car (y c2 = 40
• Safe distance to the stopped car (x) c3 = 3
• Safe distance from the stopped car after passing it (y)

c4 = 2
In this experiment, no surprise occurrences, such as a

pedestrian suddenly appearing, were included in the simu-
lation.

B. Results

A change in value of each plan is shown in Fig.5. The
value of all plans starts at 0 because the stopped car has not
been observed yet, and Plan 0 is selected at the start of the
simulation. Plans 1 and 2 are evaluated when approaching
the stopped car. At this time, because oncoming car 2 is
approaching, the value of Plan 2 becomes 0. Plan 1 is
selected, and the driver stops the car. The value of Plan 1
falls when the oncoming car 2 passes, Plan 2 is selected,
and the driver goes into the opposite lane. Plans 3 and 4
are executed according to the timing of each and the driver
returns to the appropriate lane afterwards. At this time, the
value of all plans returns to 0 and Plan 0 is selected again.

IV. HUMAN EYE MOTION AS MEASURED BY DRIVING

SIMULATOR

A. Experimental task and participants

A driving simulator scene was projected on a .75m by
1.02m screen. An eye camera and a keyboard were put on

Time
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u
at

io
n

v
al

u
e

Driving straight ahead

Stopping

Lane change to right

Driving straight ahead on coming car lane

Lane change to left

Fig. 5. Calculation of value

a desk, which is .825m from the screen, and participants sit
in a chair, which was 1.3m from the screen.

Participants looked at the screen and simulates driving
using a keyboard. Glance distribution of the participant was
measured with non-contact eye camera EMR-AT VOXER
(Nac Image Technology) and recorded every 1/60[s] .

A task is to drive a car while avoiding collision with the
stopped and oncoming cars. In the simulated environment,
the stopped car is in front of the driver, and there are
four oncoming cars in the opposite lane. A simulated road
is straight and 3-m-wide, and there are other objects like
buildings and signs at side of the road.

The participant operates the car with two buttons.
• Button 1 Going forward and braking
• Button 2 Steering wheel operation
The participant turns a steering wheel to the right or left by

pushing button 2. The speed of the participant’s car is fixed
at 50[km/h]. We prepared several oncoming cars of various
speeds. Therefore, the two oncoming cars in near sides is a
fixed 60[km/h] and one oncoming car in far sides is a fixed
45[km/h]. The participant repeats this task ten times. In each
trial, the initial position of each car changes at random within
the range of -20[m] ∼ 20[m] from the standard position.
The task continues until the driver collides with another car,
runs off the road, or successfully passes the stopped car and
returns to the appropriate lane.

Four participants (all mail, age was 26.25 years in average)
joined to the task, and their driving experience were 6.3 years
in average. One of them drove several times a week, two of
them drove several times a month, and one rarely drove.

B. Results

The direction of participant’s glances as he pushes the
button is shown in Fig. 6. These correspond to Plans 2 and
4, presented in Section III-A. Strictry speaking, Fig. 6 shows
the all direction of the participant’s glance during executing
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the sub-plan immediately before pushing button. Participants
tended to glance to the right and glanced most frequently at
the vicinity to the right of the lane (Fig. 6 (a)). Glances
directed to the left, by contrast tended to be distributed in
the vicinity of the left side of the center lane (Fig. 6 (b)).

(a) Plan2
:Change to right lane

(b) Plan4
:Lane change to left

Fig. 6. Measured eye motion

Glance measurement results for the actions corresponding
to the plans described in Section III-A are shown in Fig.
7. The graph end position corresponds to a moment of the
button push and the lines display eye motion immediately
before the driving action was undertaken.
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(a) Eye movement
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to Plan 1.

H
o
ri

z
o
n
ta

l 
e

y
e
 p

o
s
it
io

n

Time index

(b) Eye movement
corresponding

to Plan2 .
Fig. 7. Eye motion of one participant (Each line denotes the eye motion
for one trial)

As Fig.7 (a) shows, when a participant glanced at vicinity
of road center, his glance was frequently directed to the right
of screen immediately before he took action. Fig.7 (b) shows
that the glances move a lot from their initial position to left
side immediately before the participant takes action.

In Fig.6, it can be seen that eye motion distribution varied
with the driving situation during the task of passing stopped
car. Moreover, from Fig.7, the glance that followed the
driving plan corresponds to Plans 1 and 2, was observed.
We also observed eye motion distribution that corresponds
to Plans 3 and 4, but the results are omitted due to space
limitations.

These results suggested that glance direction depends on
the planned driving action of a participant. However, the
individual variation among participants in the amount of eye
motion was large, and was different between trials even for
the same participant.

V. COMPARISON OF MODEL AND HUMAN

We compared the eye motion predicted by the model
with the eye motions of a driver during the task mentioned
above(III,IV). The directions of the model’s galances and the
directions of the participant’s glances are shown in Fig. 8.
These correspond to plan 1: Stopping car(III-A).

(a) The directions of model’s
galances

(b) The directions of
participant’s glances

Fig. 8. Glance distribution wahile plan 1

As a result, the distributions of eye motion were com-
paratively near immediately before beginning of passing the
stopped car. However, human bottom-up glance movements
to observe surroundings were less frequent than those pre-
dicted by the model. Moreover, the lack of eye motion
suggests that people often observe the environment using
peripheral vision.

VI. EYE MOTION MODEL BASED ON PREDICTION OF

CHANGES IN THE ENVIRONMENT

The fact that human bottom-up eye motion is less frequent
than that predicted by the model is thought to be due to
factors other than saliency. For instance, a driver directs his
glance to objects that appear suddenly or get in his way. That
is to say, at first, the driver recognizes what’s going on in
the environment, predicts where each relevant object will be
in the next few moments, identifies objects that are potential
hazards, and finally glances at them to observe them in more
detail.

This means that people note the location of objects and
track information on each object in the environment, which
amounts to a space map. They then use the map to predict
changes in objects’ locations. People pay more attention to
objects whose locations are not what they initially predicted
and glance directly at them. This means the space map takes
account of the current location of objects as well as their
predicted location in the near future. This process offers
drivers better choices of possible actions.

A. Overview

The structure of the new model is shown in Fig. 9.
The bottom-up eye motion part of the previous model

is included in the saliency glance movement calculated in
the image processing system (Fig. 9 (a)). The top-down eye
motion is included in the plan dependence glance movement
calculated in the driving plan system (Fig. 9 (d)). A new
model corresponds to the eye motion calculated in the object
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Fig. 9. Eye motion decision process

image processing system (Fig. 9 (b)) and the space map
maintenance system (Fig. 9 (c)).

That is, in the image processing system, moving objects
and stationary objects are classified with optical flow. In the
space map maintenance system, first, the stored recognition
results in the object image processing system as a space map,
next, the next situation of the moving object is predicted with
recognition results, and finally, the driver glances at objects
that do not conform to his expectations or at objects that
suddenly appear in view. Information in the space map is also
used in making driving decisions, and recognition processing
from observation of the environment and of driving decision-
making is executed simultaneously and concurrently. Deci-
sions about glance direction at any given time are made based
on competing demands between the bottom-up eye motion,
as calculated by saliency or the predicted environment, and
the top-down eye motion, as calculated by driving intention.

B. Eye motion model based on prediction of object movement

To predict movement of objects, it is necessary to calculate
the positional and rate vectors in three dimensions from the
image of the object on the retina. We denote M(t) and r(t)
as the 3D position vector and 2D retinal image vector at
time t, respectively. We assume that M(t) is approximately
derired from r(t) using the computational model of vision
[11].

People also perceive objects in the environment with
peripheral vision. To express this, the conviction level of
recognition to each object is defined. The conviction level
of object M rises when the object is nearer the center of
view and drops when it is farther from the center of view.
Moreover, recognized information attenuates with time. α, β
is constant.

�CM = −αCM + β exp
{
−‖ r(t) − t(t) ‖2

2σ2

}
(8)

)(tt ))(),(()( ttt yxr =

view posion object

(a)2D retina space

(t)M
)(tV

)(tl

)(t
ov

)(tV

Driver

Object

(b)3D actual space
(view from top)

Position vector of view t(t), Positional vector of object r(t) = (x(t), y(t)),
Velocity vector V (t), Relative positional vector M(t), Relative distance l(t) =‖ M(t) ‖ ,

Relative velocity vector V (t) = v(t) − Vo(t) = M(t+δt)−M(t)
�t

− Vo(t)

Fig. 10. Model parameter in retina and actual space.

The position of the object in the next moment is predicted
by M̃(t + �t) = M(t) + �tV (t). The accuracy of the
predicted position is shown by the next expression, where γ
is constant.

P rob (M(t + �t)) =
1

√
2πσ(CM )

exp

(
−

‖ M(t + �t) − M̃(t + �t) ‖
σ(CM )2

)
(9)

σ(CM ) =
γ

CM

(10)

Because this is proportional to the inverse of the conviction
level of decentralization, a driver can be confident of his
prediction for an object with a high level of conviction and
less confident of his prediction for a small object.

A driver’s glance will probably be directed to object M
at this time, as described by the equation below.

Prob (M(t + �t)) < θ (11)

θ =
δ

l(t)
(12)

δ is a constant. Once, the retinal position of the target
object r(t + �t) is equivalent to the center of the view
t(t+�t), CM becomes large, so that a driver will not likely
glance at this object (see Eq (8)). On the other hand, if the
target object is far from a driver’s car, l(t) becomes larger
so that the driver is likely to glance at it.

VII. SUMMARY

In this paper, we discussed the processing necessary to
construct a model of human eye movement during driving.
In the model, a driver predicts the movement of objects in
the environment and directs glances at objects that move
differently than expected. The model is expected to predict
observational eye movement that is similar to human behav-
ior. It will be necessary to test the model by comparing it
with eye movements during real driving situations. It will
also be necessary to add the element of risk to the model.
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