
Classification of Objects by Means of Features
James F. Peters

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba R3T 5V6, Canada
Email: {jfpeters}@ee.umanitoba.ca

Abstract— The problem considered in this paper is how
to classify objects by means of features. The solution to this
problem stems from the seminal work by Zdzisław Pawlak
starting in the early 1980s, which led to the discovery of rough
sets and approximation spaces. The interpretation of features in
this paper takes its inspiration from the Pawlak’s approach to
knowledge representation systems. Explicit in the original work
of Pawlak is a distinction between attributes of objects and
knowledge about objects. In this paper, knowledge about an
object is represented by a measurement associated with a feature
of an object. In general, a feature is an invariant characteristic
of objects belonging to a class (e.g., select contour (outline) as a
feature, where all objects in a class have an identifiable contour).
Associated with each feature is a set of probe functions, where
each probe function maps objects to a value set. The distinction
between features and corresponding probe function values is
usually made in the study of pattern recognition. Examples of
approximations, approximation spaces and a granular approach
to recognition of patterns in pairs of images, are given. The
contribution of this paper is a straightforward refinement of
Pawlak’s original approach to classifying objects.

I. INTRODUCTION

The problem considered in this paper is how to classify
objects by means of features, which is directly related to [21].
The solution to this problem stems from measurements that
are associated with features of objects as well as sample
objects extracted from the environment. Sample objects and
vectors of corresponding probe function values are combined
in information tables. Such tables lead to the construction of
approximation spaces, which were introduced by Zdzisław
Pawlak [20] starting in the early 1980s and which provide
a basis for set approximations (see, e.g., [14], [15], [16]).
A basic architecture for feature-based perception (and pattern
recognition) is shown in Fig. 1. The contribution of this paper
is a straightforward refinement of Pawlak’s original approach
to classifying objects.

This paper is organized as follows. The distinction between
attributes and features in classifying objects is briefly consid-
ered in Sect. II. Features and corresponding probe functions
are presented in Sect. III. An overview of approximation
spaces as a basis for perception is given in Sect. IV. A sample
approach to transformation of an image as a prelude to pattern
recognition relative to pairs of images is covered in Sect. V.
Probe functions associated with an object feature in images
and a sample approximation space are presented in Sect. VI.

Fig. 1. Perceiving Sample Objects

II. ATTRIBUTES, FEATURES AND CLASSIFYING OBJECTS

An attribute is a quality regarded as characteristic or
inherent in an object [11]. In philosophy, an attribute is a
property of an object (e.g., spatial extension of a piece of
wax) cite. The term attribute is commonly used in database
theory [35], data mining [38], and philosophy [5]. In rough
set theory [14], an attribute is treated as a partial function,
which is a relation that associates each element of a set of
objects (domain) with at most one element of a value set
(codomain) [39]. The term feature was originally identified
with the cast of a face [7]. More recently, the term feature is
defined as the make, form, fashion or shape (of an object) [11].
This term comes from the Latin term factura, i.e., facture,
which means the action or process of making an object or the
result of an action or process (e.g., a work of art, image made
with a digital camera). In effect, the term feature characterizes
some aspect of the makeup of an object. From a philosophical
perspective that can be traced back to Kant [8], features
highlight an interest in the appearances of objects rather
than calling attention to the properties or qualities that are
somehow inherent in objects. The term feature is commonly
used in pattern recognition theory [13], statistical learning
theory [36], reinforcement learning [23], neural computing [1],
science (e.g., ethology [9], [22]), image processing [6], [2],
biotechnology, industrial inspection, the internet, radar, sonar,
and speech recognition [4]. More recently, the term feature
has been used in rough set theory [22], [2], [23].

There is a puzzle to solve here, namely, identifying appro-

296

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

priate contexts where one chooses attributes or features in
rough set-based classification studies. From what has been
observed so far, it is apparent historically, semantically and
philosophically that there are perceived differences between
attributes and features, even though there is an interest in
the characteristics of objects in both cases. In data-intensive
studies of objects where each attribute is the name of a single
partial function, attributes are appropriate in classifying data.
Features are favored over attributes in a growing number
disciplines, where there is an interest in the composition
(e.g., construction, form, shape) of objects such as biological
species, organism behaviour, sensor networks, sensor signals,
sounds or images. This can be explained historically as well
as mathematically, since it is possible to define more than
one function for a single feature such as colour or shape. In
pattern recognition, for example, it is common to associate
more than one measurement (probe function value) with a
single feature(see, e.g,, [6], [13]). In that case, it is appropriate
to choose features rather than attributes in classifying objects.
It is the one-to-many relation between single features and
corresponding probe functions that underlies what follows in
this article.

III. FEATURES AND MEASUREMENTS

It was Zdzisław Pawlak who proposed classifying objects
by means of their attributes considered in the context of
an approximation space [17]. Explicit in the original work
of Pawlak is a distinction between attributes of objects and
knowledge about objects. In this paper, knowledge about an
object is represented by measurements associated with each
feature of an object. In general, a feature is an invariant
property of objects belonging to a class [37]. The distinction
between features and corresponding measurements associated
with features is usually made in the study of pattern recogni-
tion (see, e.g., [10], [13]). In this article, the practice begun by
Pawlak [17] is represented in the following way. Let A denote
a set of features for objects in a set X . For each a ∈ A, we
associate a function fa that maps X to some set Vfa (range
of fa). The value of fa(x) is a measurement associated with
feature a of an object x ∈ X . The function fa is called a
probe [13]. By InfB(x), where B ⊆ A and x ∈ U we denote
the signature of x, i.e., the set {(a, fa(x)) : a ∈ B}. If the
set B = {a1, . . . , am}, then InfB is identified with a vector
(fa1(x), . . . , fam(x)) of probe function values for features in
B.

IV. APPROXIMATION SPACES

This section briefly presents some fundamental concepts
in rough set theory and approximation spaces introduced
by Zdzisław Pawlak during the early 1980s [17], elabo-
rated in [12], [19], generalized in [30], [33] and extended
in [21]. For computational reasons, a syntactic representation
of knowledge in rough set theory is provided in the form of
data tables.

A. Rough sets

Let U be a non-empty finite set (called a universe) and
let P(U) denote the power set of U , i.e., the family of all
subsets of U . Elements of U may be, for example, objects,
behaviours, or perhaps states. A feature F of elements in U
is measured by an associated probe function f = fF whose
range is denoted by Vf , called the value set of f ; that is,
f : U → Vf . There may be more than one probe function
for each feature. For example, a feature of an object may
be its weight, and different probe functions for weight are
found by different weighing methods; or a feature might be
colour, with probe functions measuring, e.g., red, green, blue,
hue, intensity, and saturation. The similarity or equivalence
of objects can be investigated quantitatively by comparing a
sufficient number of object features by means of probes [13].
For present purposes, to each feature there is only one probe
function associated and its value set is taken to be a finite set
(usually of real numbers). Thus one can identify the set of
features with the set of associated probe functions, and hence
we use f rather than fF and call Vf = VF a set of feature
values. If F is a finite set of probe functions for features
of elements in U , the pair (U, F) is called a data table, or
information system (IS).

For each subset B ⊆ F of probe functions, define the binary
relation ∼B= {(x, x′) ∈ U × U : ∀f ∈ B, f(x) = f(x′)}.
Since each ∼B is an equivalence relation, for B ⊂ F and x ∈
U let [x]B denote the equivalence class, or block, containing
x, that is,

[x]B = {x′ ∈ U : ∀f ∈ B, f(x′) = f(x)} ⊆ U.

If (x, x′) ∈ ∼B (also written x ∼B x′) then x and x′ are said
to be indiscernible with respect to all feature probe functions
in B, or simply, B-indiscernible.

Information about a sample X ⊆ U can be approximated
from information contained in B by constructing a B-lower
approximation

B∗X =
⋃

x:[x]B⊆X

[x]B ,

and a B-upper approximation

B∗X =
⋃

x:[x]B∩X �=∅
[x]B .

The B-lower approximation B∗X is a collection of blocks of
sample elements that can be classified with full certainty as
members of X using the knowledge represented by features
in B. By contrast, the B-upper approximation B ∗X is a
collection of blocks of sample elements representing both
certain and possibly uncertain knowledge about X . Whenever
B∗X � B∗X , the sample X has been classified imperfectly,
and is considered a rough set. In this paper, only B-lower
approximations are used.

B. Generalized approximation spaces

The basic model for an approximation space was introduced
by Pawlak in 1981 [17], elaborated in [12], [19], generalized

297

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

in [30], [33], and applied in a number of ways (see, e.g., [21],
[22], [23], [31]). An approximation space serves as a formal
counterpart of perception or observation [12], and provides a
framework for approximate reasoning about vague concepts.

To be precise about what “approximation space” means,
some definitions are required. A neigbourhood function on a
set U is a function N : U → P(U) that assigns to each
x ∈ U some subset of U containing x. A particular kind of
neigbourhood function on U is determined by any partition
ξ : U = U1 ∪ · · · ∪ Ud, where for each x ∈ U , the ξ-
neigbourhood of x, denoted Nξ(x), is the Ui that contains
x. In terms of equivalence relations in Section IV-A, for some
fixed B ⊂ F and any x ∈ U , [x]B = NB(x) naturally defines
a neigbourhood function NB. In effect, the neigbourhood
function NB defines an indiscernibility relation, which defines
for every object x a set of like-wise defined objects, that is
objects whose value sets agree precisely (see, e.g., [24]). An
overlap function ν on U is any function ν : P(U)×P(U) →
[0, 1] that reflects the degree of overlap between two subsets
of U .

A generalized approximation space (GAS) is a triple
(U, N, ν), where U is a non-empty set of objects, N is a
neigbourhood function on U , and ν is an overlap function on
U . In this work, only indiscernibility relations determine N .

A set X ⊆ U is definable in a GAS if, and only if X
is the union of some values of the neigbourhood function.
Specifically, any information system (U, F) and any B ⊆ F
naturally defines parameterized approximation spaces ASB =
(U, NB, ν), where NB = [x]B , a B-indiscernibility class in a
partition of U .

A standard example (see, e.g., [30]) of an overlap function
is standard rough inclusion, defined by νSRI(X, Y) = |X∩Y |

|X|
for non-empty X . Then νSRI(X, Y) measures the portion of
X that is included in Y . An analogous notion is used in this
work. If U = Ubeh is a set of behaviours, let Y ⊆ U represent
a kind of “standard” for evaluating sets of similar behaviours.
For any X ⊂ U , we are interested in how well X “covers” Y ,
and so we consider another form of overlap function, namely,
standard rough coverage νSRC, defined by (1).

νSRC(X, Y) =

{
|X∩Y |
|Y | if Y �= ∅,
1 if Y = ∅. . (1)

In other words, νSRC(X, Y) returns the fraction of Y that is
covered by X . In the case where X = Y , then νSRC(X, Y) =
1. The minimum coverage value νSRC(X, Y) = 0 is obtained
when X ∩ Y = ∅. One might note that for non-empty sets,
νSRC(X, Y) = νSRI(Y, X)

An overview of the relation between approximation space-
based perception and learning is shown at a very high level in
Fig. 2. The basic idea is to learn desirable (fulfilling, reward-
ing) actions based on knowledge gleaned from the overlap
between neighborhoods of similar objects and some standard
(e.g., lower approximation of a set such as a decision class (i.e.,
concept) D. The patterns discovered from a perceptual view
of decision tables constructed from sample objects from the

Fig. 2. Basic Structures in Perception-Based Learning

environment, provide a basis for learning. A brief view of how
pattern recognition can be carried out on pairs of images is
briefly presented in what follows. A consideration of learning
resulting from pattern recognition is outside the scope of this
paper.

V. PRELIMINARY IMAGE PROCESSING

An approach to quantizing and averaging the colors in
a digital image based on [2] is briefly presented in this
section. This is done to illustrate how a digital image can be
transformed to facilitation pattern recognition in comparing
pairs of images. Quantization has been defined as a process of
converting analog signal to digital signal [3]. In what follows,
the Lloyd quantization algorithm [3] has been used, see Alg.
1.

Algorithm 1: The Lloyd Algorithm [3] (alg. Qn)
Input: image I , required number of colors n
Output: optimal codebook with n entries Copt

Initialize codebook C1 with n entries randomly;
set m = 1;
repeat

Based on codebook Cm and using the nearest
neighbour condition, partition image I into
quantization cells Rm;
Using centroid condition, find optimal codebook
Cm+1 for cells Rm;
Set m = m + 1;

until distortion caused by Cm is small enough
Set Copt = Cm;

The details concerning Alg. 1 are given in [2]. Briefly, the
Lloyd algorithm consists of main two steps, which are repeated
until the distortion caused by the codebook is small enough.
The first step is the partitioning of the input image based on the
current codebook. The partitioning is performed using nearest
neighbour condition, e.g. each pixel is assigned to the cell
closest to the color of given pixel. In the second step, a new
codebook is created based on the partitioning from the first

298

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

step. Each codebook entry is replaced by a centroid of all
colors of pixels from the corresponding cell.

Assume, that an original image denoted by Io is given. First,
quantization reducing number of colors to n 1 is performed.
This step is denoted by formula 2 to obtain a quantized image
denoted by Iqn1

(symbol Q represents the algorithm 1, where
Io is the input image I and n1 is the required number of colors
n).

Io

Qn1−→ Iqn1
(2)

As a result of quantization, the quantized image Iqn1
contains

only n1 colors. In the next step, the information from Iqn1

image is used to average the colors among all pixels, which
are connected.

In quantized image, regions of pixels of the same color
can be identified. These regions create segments. To each
such segment is assigned a color, which is an average of all
original colors from pixels belonging to this region. This step
is denoted by the formula in (3), see also Alg. 2.

Iqn1

AvIo−→ IAvn1
(3)

The image IAvn1
resulting from (3) has more than n1 colors,

where pixels are grouped into segments. This procedure,
namely steps defined in (2) and (3), is repeated. The number
of colors gradually decreases in consecutive iterations so that
the creation of segments can be observed.

Algorithm 2: The Spatial Color Averaging (alg. AvIsn
)

Input: image I
Output: averaged image IA

Mark all pixels from I as not processed;
foreach pixel p not processed in I do

Find segment S(p) in I containing pixel p;
Assign to each corresponding pixel in IA from S(p)
an average color of all pixels from S(p);
Set all pixels from S(p) as processed;

end

The unwanted effect of the algorithm defined this way is
that if a segment is created at some step, there are no chances
to change it in consecutive steps. In other words, the first
quantization plays a crucial role in the entire process. In
addition, the resulting image still contains a lot of details (even
though the number of colors has been reduced). An example
of such an image processed using seven iterations described
by the succession of mappings in (4), where numbers n i for
i = 1, 2, ..., 61 are 256, 64, 32, 16, 12, 8 and 4 is shown in
Fig. 3.

Isni−1

Qni−→ Iqni

AvIsni−1−→ IAvni
(4)

1For i = 0 it is assumed that Isn0
= Io, and after each iteration Isni−1

=
IAvni−1

.

Fig. 3. Image after 7 iterations of (4)

Fig. 4. Image after 7 iterations of (5)

To make the entire segmentation process more robust and force
the creation of bigger segments, one extra step for each stage
defined by (4) is added. That is, after the colors are recreated
from the original image, a 3 by 3 median filter is used. This
causes almost uniform areas to blur even more and allows
edges of neighboring segments to overlap. As a result, all small
details from the image are lost, and big uniform segments are
formed instead. The final formula describing one step of this
iterated algorithm is shown in (5).

Isni−1

Qni−→ Iqni

AvIsni−1−→ IAvni

M3x3−→ Isni
(5)

The M3x3 symbol denotes the median filter which is applied
to each pixel from an input image. The median filter is applied
to 3 by 3 neighborhood of given pixel p(x, y).

M3x3(p) = median{p(x−1, y−1), . . . , p(x+1, y+1)} (6)

In order to find the median, all pixels are sorted by their
color value and the one in the middle (e.g. at the 5-th place)
is chosen.

The image that results from 7 iterations of (5) is shown in
Fig. 4. There are still many small segments, but compared with
the image in Fig. 3, where the median filter was not used, the
number of small segments has been greatly reduced.

VI. APPROACH TO PATTERN RECOGNITION

Fig. 5. Prototype Image

The problem considered here is to determine whether there
is a correspondence between an object in a prototype image I

299

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Fig. 6. Sample Image

(e.g., cup in Fig. 5) and an object in a sample image I1 (e.g.,
fire hydrant in Fig. 6). By way of illustration, consider contour
as a helpful feature in considering the form of various objects.
Let I1, I, f denote sample image, prototype image, probe
function associated with contour, respectively. Then, following
the approach suggested in [13], recognition of objects that
are approximately the same is defined by comparing probe
function values in

I ≈ (I1)T ⇔ ∀f.|f(I) − f(I1)| < ε, ε ∈ [0, 1]

where I is approximately the same as I1 after some trans-
formation T , iff |f(I) − f(I1)| < ε for all f associated
with contour. For example, using Alg. 1 and Alg. 2, the
transformation results in an image where the number of colors
in an image is reduced and all small details are lost (big
uniform segments are formed).

A. Contour Probe Functions

An obvious choice basis for setting up contour probe func-
tions is the taxicab distance. The city block distance or taxicab
distance [29] is so named because it is the shortest distance
a car would drive in a city laid out in square blocks) [29]. A
taxicab distance is computed using

d(x, y) = |x − 0| + |y − 0| = |x| + |y|,
which was first discovered by Hermann Minkowski (1864-
1909). MaxDistance is also measured using the taxicab metric.
One might also try d(x, y) = max{|x|, |y|} as a measure
of distance (in both cases, the MaxDistance is the distance
from the centre to an outside edge). The taxicab metric is
preferred over the standard Euclidean distance because it saves
on computation time. For example, we can define the following
contour probe functions using MaxDistance. Let

dm(x, y) = max{|x|, |y|},
where dm(x, y) is measured from the center of mass of an
object (e.g., cup in Fig. 5), and x, y are the coordinates of a
point in the intersection of a ray projecting from the center
of mass to the edge of an object. Let dm(x1, y2), dm(x

′
1, y

′
2)

denote MaxDistances relative to the prototype image I1 and
sample image I2, respectively, each with a superimposed
fine mesh of squares with uniform size. In what follows, let
f1, f2 in Figs. 5 and 6 be represented by diffNE1, diffNE2 ,

TABLE I

SAMPLE IMAGE CONTOUR TABLE

xi N E NE1 NE2 d

x0 0.1 0.1 0.1 0.1 1
x1 0.5 0.8 0.1 0.1 0
x2 0.6 0.1 0.1 0.1 0
x3 0.7 0.3 0.1 0.1 1
x4 0.1 0.1 0.1 0.1 1
x5 0.5 0.8 0.1 0.1 0
x6 0.010 0.1 0.1 0.1 1
x7 0.025 0.1 0.1 0.1 0
x8 0.01 0.1 0.1 0.1 1
x9 0.5 0.8 0.1 0.1 0
x10 0.01 0.1 0.1 0.1 0

respectively. Then we can begin defining a collection of
contour probe function as follows.

diffE = |d(x, 0) − d(x
′
, 0)|, diffN = |d(0, y) − d(0, y′)|,

diffNE1 = |dm(x1, y1) − dm(x
′
2, y

′
2)||,

diffNE2 = |dm(x3, y3) − dm(x
′
4, y

′
4)|.

E (East contour):

E (I1, I2) =
{

diffE, if diffE < ε,
0, otherwise.

N (North contour):

N (I1, I2) =
{

diffN , if diffN < ε,
0, otherwise.

NE1 (15o projection from center of mass):

NE1 (I1, I2) =
{

diffNE1, if diffNE1 < ε,
0, otherwise.

NE2 (30o projection from center of mass):

NE2 (I1, I2) =
{

diffNE2, if diffNE2 < ε,
0, otherwise.

Assume that the distance values of the contour probe functions
are normalized relative to the maximum distance from the
center of mass to a point intersected by at least one of the
projecting rays (e.g., d(x, y) in Fig. 6).

Remark 1: Euclidean distance
An alternative to the taxicab distance is the Euclidean distance
d between the center of mass (0, 0) and (x, y) on the edge of
an object in an image, where d =

√
(x − 0)2 + (y − 0)2 =√

x2 + y2. Let dm(x, y) = max{d1, d2}, where d1, d2 denote
Euclidean distances in images I1, I2 that are being compared.
This alternative is simpler to use because it is not necessary
to superimpose a mesh on I1, I2.

300

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

B. Sample approximation space

Table I is set up relative to B = {N, E} and a set of sample
images U = {x0, x1, . . . , x10}. Let d=1(accept), d=0 (rej3ect),
D = {x ∈ U : d(x) = 1} = {x0, x3, x4, x6, x8} be the
decision class, and consider the following equivalence classes:
[x0]B = {x0, x4}, [x1]B = {x1, x5, x9}, [x2]B = {x2},
[x3]B = {x3}, [x6]B = {x6}, [x7]B = {x7},
[x8]B = {x8, x10}.
Then letting B∗D = {x0, x3, x4, x6, x8} play the role of Y in
equation (1) and each equivalence class [x]B play the role of
X in Eq. 1, one obtains:
ν([x0]B , B∗D) = 2

5 , ν([x1]B, B∗D) = 0,
ν([x2]B , B∗D) = 0 ν([x3]B, B∗D) = 1

5 ,
ν([x4]B , B∗D) = 0 ν([x5]B, B∗D) = 0
ν([x6]B , B∗D) = 1

5 , ν([x7]B, B∗D) = 0
ν([x8]B , B∗D) = 1

5 .
In effect, there are 4 neighborhoods containing images that
are B-similar to the images in B∗D. More features (e.g.,
orientation) and corresponding probe functions need to be
considered before we can reach a definitive conclusion about
the two images.

VII. CONCLUSION

Although the suggested adjustment in the approach to
classifying objects proposed by Zdzisław Pawlak is minor, it
is quite important, since it suggests a new research stream
in approximation space-based research concerning perception
and pattern recognition. From what has been presented con-
cerning the historic, semantic, philosophic and mathematical
interpretation of attributes and features, it would seem that
the view of attribute-based perception is quite different from
feature-based perception provided by approximation spaces,
especially if one considers the fact that features are favored in
quite a number of disciplines.

ACKNOWLEDGEMENTS

The author gratefully acknowledges comments and sugges-
tions concerning various parts of this paper by the anonymous
referees, Maciej Borkowski, David Gunderson, Christopher
Henry, Dan Lockery, Sheela Ramanna, and Andrzej Skowron.
This research has been supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC) grant
185986 and Manitoba Hydro grant T277.

REFERENCES

[1] C.M. Bishop, Neural Networks and Pattern Recognition. UK, Oxford
University Press, 1995.

[2] M. Borkowski, J.F. Peters, “Matching 2D image segments with genetic
algorithms and approximation spaces,” Transactions on Rough Sets, vol.
V, LNCS 4100, 2006, 63-101.

[3] Gersho,A., Gray,R.M.: Vector Quantization And Signal Compression.
Dordrecht, The Netherlands, Kluwer Academic Publishers, 1992.

[4] I. Guyon, S. Gunn, M. Nikravesh, M. Zadeh (Eds.), Feature Extraction.
Foundations and Applications. Springer, Heidelberg, Studies in Fuzzi-
ness and Soft Computing 207, 2006.

[5] T. Honderich (Ed.), The Oxford Companion to Philosophy, 2nd Ed. UK,
Oxford University Press, 2005.

[6] B. Jähne, Digital Image Processing, 6th Ed. Berlin, Springer, 2005.
[7] S. Johnson, A Dictionary of the English Language, 11th Ed. London,

Clarke and Sons, 1816.

[8] I. Kant, Critque of Pure Reason, trans. by N.K. Smith. Toronto,
Macmillan, 1929.

[9] P.N. Lehner, Handbook of Ethological Methods, 2nd Ed. UK, Cambridge
University Press, 1996.

[10] J.M. Mendel, K.S., Fu (Eds.), Adaptive, Learning and Pattern Recogni-
tion Systems. Theory and Applications. London, Academic Press, 1970.

[11] The Oxford English Dictionary. London, Oxford University Press, 1933.
[12] E. Orłowska, “Semantics of Vague Concepts,” Applications of Rough

Sets, Institute for Computer Science, Polish Academy of Sciences,
Report 469, March 1982.

[13] Pavel, M.: Fundamentals of Pattern Recognition, 2nd Edition. NY,
Marcel Dekker, Inc., 1993.

[14] Z. Pawlak, A. Skowron, “Rudiments of rough sets,” Information Sci-
ences, vol. 177, pp. 3-27, 2006.

[15] Z. Pawlak, A. Skowron, “Rough sets: Some extensions,” Information
Sciences, vol. 177, pp. 28-40, 2006.

[16] Z. Pawlak, A. Skowron, “Rough sets and Boolean reasoning,” Informa-
tion Sciences, vol. 177, pp. 41-73, 2006.

[17] Z. Pawlak, Classification of Objects by Means of Attributes, Institute
for Computer Science, Polish Academy of Sciences, Report 429, March
1981.

[18] Z. Pawlak, Rough Sets, Institute for Computer Science, Polish Academy
of Sciences, Report 431, March 1981.

[19] Z. Pawlak, Rough sets, International J. Comp. Inform. Science, vol. 11,
1982), 341-356.

[20] J.F. Peters, A. Skowron, “Zdzisław Pawlak: Life and work,” Transactions
on Rough Sets, vol. V, pp. 1-24, 2006.

[21] J.F. Peters, “Near sets. Special theory about nearness of objects,”
Fundamenta Informaticae, vol. 76, pp. 1-28, 2007.

[22] J.F. Peters, “Rough ethology: Towards a Biologically-Inspired Study of
Collective behaviour in Intelligent Systems with Approximation Spaces,”
Transactions on Rough Sets, vol. III, LNCS 3400, pp. 153-174, 2005.

[23] J.F. Peters, C. Henry, “Reinforcement learning with approximation
spaces,” Fundamenta Informaticae, vol. 71, nos. 2-3, pp. 323-349, 2006.

[24] J.F. Peters, A. Skowron, P. Synak, S. Ramanna, “Rough sets and
information granulation.” In: Bilgic, T., Baets, D., Kaynak, O. (Eds.),
Tenth Int. Fuzzy Systems Assoc. World Congress IFSA, Instanbul,
Turkey, Lecture Notes in Artificial Intelligence, 2715, Physica-Verlag,
Heidelberg, pp. 370–377, 2003.

[25] J.F. Peters, S. Ramanna, “Measuring acceptance of intelligent system
models.” In: M. Gh. Negoita et al. (Eds.), Knowledge-Based Intelligent
Information and Engineering Systems, Lecture Notes in Artificial Intel-
ligence, 3213, Part I, pp.764-771, 2004.

[26] L. Polkowski, A. Skowron (Eds.), Rough Sets in Knowledge Discovery
2, Studies in Fuzziness and Soft Computing, vol. 19. Heidelberg,
Springer-Verlag, 1998.

[27] L. Polkowski, Rough Sets. Mathematical Foundations. Heidelberg,
Springer-Verlag, 2002.

[28] D. Precup, Temporal Abstraction in Reinforcement Learning, Ph. D.
dissertation, University of Massachusetts Amherst, May 2000.

[29] D.J. Schattschneider, The Taxicab Group, American Mathematical
Monthly, vol. 91, no. 7, pp. 423-428, 1984.

[30] A. Skowron, J. Stepaniuk, “Generalized approximation spaces.” In: Lin,
T.Y.,Wildberger, A.M. (Eds.), Soft Computing, Simulation Councils, San
Diego, pp. 18-21, 1995.

[31] A. Skowron, R. Swiniarski, P. Synak, “Approximation spaces and
information granulation,” Transactions on Rough Sets, vol. III, pp. 175-
189, 2005.

[32] J. Słupecki, “Towards a generalized mereology of Leśniewski,” Studia
Logia, vol. VIII, pp. 131-155, 1958.

[33] J. Stepaniuk, “Approximation spaces, reducts and representatives.” In
[26], pp. 109-126, 1998.

[34] N. Tinbergen, “On aims and methods of ethology,” Zeitschrift für
Tierpsychologie, vol. 20, pp. 410-433, 1963.

[35] J.D. Ullman, Principles of Database and Knowledge-Base Systems, vol.
1. MD, Computer Science Press, 1988.

[36] V.N. Vapnik, Statistical Learning Theory. Chichester, UK, Wiley-
Interscience, 1998.

[37] S. Watanabe, Pattern Recognition: Human and Mechanical. Chichester,
UK, John Wiley & Sons, 1985.

[38] I.H. Witten, E. Frank, Data Mining, 2nd Ed. Amsterdam, Elsevier, 2005.
[39] Partial function:

http://en.wikipedia.org/wiki/Partial function

301

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

