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Abstract— The dual notions of discernibility and indiscerni-
bility play an important role in intelligent data analysis. While
discernibility focuses on the differences, the indiscernibility re-
veals the similarities. By considering them together in a same
framework, one is able to obtain new insight of data.

The main objective of the paper is to apply discernibility
and indiscernibility to conflict analysis, a theory dealing with
opinions of a set of agents on a set of issues. In particular, we
are interested in the problem of issue reduction, so that a reduced
set of issues can be obtained without loss of crucial information
of the original set of issues. Extending the results from rough
set theory, three types of issue reducts are introduced. They
correspond to discernibility, indiscernibility, and discernibility-
and-indiscernibility reducts, respectively. The results of this paper
may offer a new research direction in rough set analysis in
general, and conflict analysis in particular.

I. INTRODUCTION

The dual notions of similarities and differences play a
crucial role in many fields such as concept formation, machine
learning, data mining, data analysis, cluster analysis, and many
more [1], [13], [17], [18], [19]. The similarities of objects lead
naturally to their grouping and integration, and the differences
lead to group division and decomposition. It is important to
extract similarity of objects by ignoring certain differences
in order to form a useful cluster or a high level concept.
It is also important to identify differences among a set of
similar objects in order to form sub-concepts. The study of
similarity and difference can find many real-life applications.
For example, in social science or politics, one can emphasize
the differences between entities and thus virtually enlarge
and aggravate the conflicts and discordance. On the other
hand, we can emphasize the commonness between entities,
and therefore create a concordant atmosphere for negotiation
and communication [2], [6], [8], [10], [11], [14], [15].

The theory of rough sets, as a theory of data analysis, mod-
els similarities and differences of objects based on the notions
of indiscernibility and discernibility. There are two fundamen-
tal issues: representations of indiscernibility and discernibility,
and attribute reduction (information table simplification) based
on indiscernibility and discernibility. We suggest that based on
indiscernibility and discernibility, rough-set based data analy-
sis can be unified into one model. Furthermore, three different
kinds of reducts based on indiscernibility and discernibility
can be explored. They are the family of indiscernibility
reducts, the family of discernibility reducts and the family of

indiscernibility-and-discernibility reducts. Each is a minimum
attribute set that preserves the indiscernibility relations, the
discernibility relations, and both the indiscernibility and the
discernibility relations, respectively. The paper applies these
results to conflict analysis.

II. CONFLICTS AND INFORMATION TABLES

A conflict is involved by at least two parties, called agents,
who are dispute over some issues [10]. In general, the agent
may be interpreted as individuals, groups, companies, states,
and political parties. The relationship of each agent to all the
issues can be clearly depicted in the form of an information
table. Information tables, also known as information systems,
data tables, attribute-value systems, are investigated by many
researchers of the rough set theory [4], [7], [9]. It is assumed
that data are represented in a table form, where a set of objects
(rows) are described by a finite set of attributes (columns).

Definition 1: An information table S is the tuple

S = (U,At, {Va | a ∈ At}, {Ia | a ∈ At}),
where U is a finite nonempty set of objects called universe,
At is a finite nonempty set of attributes, and Va is a nonempty
set of values for an attribute a ∈ At. Ia : U −→ Va is
an information function, such that for an object x ∈ U , an
attribute a ∈ At, and a value v ∈ Va, Ia(x) = v means that
the object x has the value v on the attribute a.

The above definition is general. For conflict analysis we will
need its simplified version, where the domain of each attribute
is restricted to three values only. That is, for all a ∈ At,
Va = {1, 0,−1}. For an agent (object) x ∈ U , Ia(x) = 1
means that the agent x is in favour to the issue (attribute) a,
Ia(x) = −1 means x is against to a, and Ia(x) = 0 means x
is neutral toward a. In the rest of the paper, we suppose that
these three assessments are conclusive, and we use object and
agent, attribute and issue, interchangeably.

Example 1: The information Table I, cited from
Pawlak [10], contains six nations (rows) of the Middle
East region to five issues (columns).

The following auxiliary function expresses relations be-
tween any two agents x, y ∈ U [10]:

Ra(x, y) =

⎧⎨
⎩

1, if Ia(x)Ia(y) = 1,
0, if Ia(x)Ia(y) = 0,
−1, if Ia(x)Ia(y) = −1.
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TABLE I

AN INFORMATION TABLE FOR THE MIDDLE EAST CONFLICT

At
U a b c d e
o1 0 1 1 1 1
o2 1 0 -1 -1 -1
o3 1 -1 -1 -1 0
o4 0 -1 -1 0 -1
o5 1 -1 -1 -1 -1
o6 0 1 -1 0 1

The three different values of the function Ra(x, y) reveal the
alliance, neutrality and conflict relations between two agents
x and y regarding the issue a, respectively. The auxiliary
function can be extended to an attribute set. It is important to
note that the neutrality relation stands for neither an alliance
nor a conflict relation. If one agent is, or two agents are both,
neutral towards one issue, then two agents are neither allied
nor conflicting.

An approach for conflict analysis is based on indiscernibility
and discernibility. If two agents agree on one issue then
they are indiscernible regarding this issue, otherwise, they are
discernible. In this case, two agents are indiscernible if and
only if they both agree, disagree or neutral towards a set of
issues.

The proposed approach can be extended for two different
interpretations. One interpretation is alliance-oriented. If two
agents are allied on a set of issues, then they are considered
indiscernible regarding this issue set; otherwise, they are
discernible. In other words, two agents are indiscernible if
and only if two agents both agree or both disagree on the set
of issues. For the other situations, such as one agrees and one
disagrees, one agrees and one is neutral, one disagrees and one
is neutral, and both are neutral, they are discernible and non-
allied. The other interpretation is conflict-oriented. That is, if
two agents are conflicting on a set of issues, then they are
considered discernible; otherwise, they are indiscernible. By
this view, two agents conflict only if and only if they explicitly
state confliction on issues, otherwise, they are indiscernible
and non-conflicting. By putting the neutrality relation on
either the discernible side (the alliance-oriented interpretation)
or the indiscernible side (the conflict-oriented interpretation),
we reduce conflict analysis to a binary case. The following
three sections explore the proposed approach and two oriented
interpretations in detail.

III. AN APPROACH BASED ON INDISCERNIBILITY AND

DISCERNIBILITY

A. Indiscernibility and discernibility relations

Given a subset of attributes A ⊆ At, four binary relations
between objects can be differentiated in an information table.

Definition 2: Given a subset of attributes A ⊆ At, four
relations on U are defined by:

IND(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y)},
WIND(A) = {(x, y) ∈ U × U | ∃a ∈ A, Ia(x) = Ia(y)},

DIS(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) �= Ia(y)},
WDIS(A) = {(x, y) ∈ U × U | ∃a ∈ A, Ia(x) �= Ia(y)}.

A strong indiscernibility relation with respect to A is
denoted as IND(A). Two objects in U satisfy IND(A) if and
only if they have the same values on all attributes in A. An
indiscernibility relation is reflexive, symmetric and transitive,
namely, it is an equivalence relation. On the other extreme,
a weak indiscernibility relation WIND(A) with respect to A
only requires that two objects have the same value on at least
one attribute in A. A weak indiscernibility relation is reflexive,
symmetric, but not necessarily transitive. Such a relation is
known as a compatibility or a tolerance relation [3], [12], [18],
[19]. The two types of relations are studied in the rough set
theory for different types of approximation spaces.

As the complement of a strong indiscernibility relation, a
weak discernibility relation WDIS(A) states that two objects
are discernible if and only if they have different values on
at least one attribute in A. A weak discernibility relation is
irreflexive and symmetric, but not transitive. The complement
of a weak indiscernibility relation is a strong discernibility
relation DIS(A). DIS(A) states that two objects are strongly
discernible with respect to A if they have different values
on all attributes in A. A strong discernibility relation is
irreflexive and symmetric, but not transitive. The strong and
weak discernibility relations are also called as the strong and
weak diversity relations [5].

The weak and strong versions are related by
a subset relationship. This is, if two objects are
strongly indiscernible/discernible, then they are weakly
indiscernible/discernible. An indiscernibility relation is a
subset of the weak indiscernibility relation defined by the
same attribute set. Similarly, a discernibility relation is a
subset of the weak discernibility relation defined by the same
attribute set.

(SW1). IND(A) ⊆ WIND(A);
(SW2). DIS(A) ⊆ WDIS(A).

The indiscernibility and discernibility relations are related
by a complementary relationship. That is, we have two pairs
of complementary relations, the pair (IND(A), WDIS(A)) of
the strong indiscernibility relation and the weak discernibility
relation, and the pair (DIS(A),WIND(A)) of the strong
discernibility relation and the weak indiscernibility relation.

(C1). WDIS(A) = INDc(A);
(C2). WIND(A) = DISc(A).

Example 2: Examples of the strong and weak indiscernibil-
ity/discernibility relations defined by the three attribute sets are
given in Figure 1, where • means that the two corresponding
objects are related according to the relation.

Given an information table, we can obtain both indiscerni-
bility relations and discernibility relations with respect to a
subset of attributes. On the other hand, given all the indiscerni-
bility relations and discernibility relations, we cannot recover
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IND({a})= 

WIND({a}) 

o1 o2 o3 o4 o5 o6 DIS({a})= 

WDIS({a}) 

o1 o2 o3 o4 o5 o6

o1 � � � o1 � � �

o2 � � � o2 � � �

o3 � � � o3 � � �

o4 � � � o4 � � �

o5 � � � o5 � � �

o6 � � � o6 � � �

IND ({b})= 

WIND({b}) 

o1 o2 o3 o4 o5 o6 DIS({b})= 

WDIS({b}) 

o1 o2 o3 o4 o5 o6

o1 �     � o1 � � � �

o2 �     o2 � � � � �

o3   � � � o3 � �    �

o4   � � � o4 � �    �

o5   � � � o5 � �    �

o6 �     � o6 � � � �

IND({a,b}) o1 o2 o3 o4 o5 o6 DIS({a,b}) o1 o2 o3 o4 o5 o6

o1 �     � o1 � � �

o2 �     o2 � � �

o3   � � o3 �     �

o4    � o4 �     

o5   � � o5 �     �

o6 �     � o6 � � �

WIND({a,b}) o1 o2 o3 o4 o5 o6 WDIS({a,b}) o1 o2 o3 o4 o5 o6

o1 � � � o1 � � � �

o2 � � � o2 � � � � �

o3 � � � � o3 � � � �

o4 � � � � � o4 � � � � �

o5 � � � � o5 � � � �

o6 � � � o6 � � � �

Fig. 1. Examples of the indiscernibility and discernibility relations

the original information table. A relation only tells whether
two objects are discernible or indiscernible with respect to the
attribute set, but does not keep the attribute values.

B. Indiscernibility and discernibility matrices

The relationships between objects, i.e., the family of rela-
tions, can be alternatively expressed as matrices. Each cell of
an indiscernibility matrix stores those attributes that are shared
by any two objects of the universe.

Definition 3: Given an information table S, its indiscerni-
bility matrix im is a |U | × |U | matrix with each element
im(x, y) defined as:

im(x, y) = {a ∈ At | Ia(x) = Ia(y), x, y ∈ U}.
The indiscernibility matrix im(x, y) is symmetric, i.e.,
im(x, y) = im(y, x), and im(x, x) = At.

In contrast to an indiscernibility matrix, each element of
a discernibility matrix stores those attributes on which the
corresponding two objects have distinct values [16].

Definition 4: Given an information table S, its discerni-
bility matrix dm is a |U | × |U | matrix with each element
dm(x, y) defined as:

dm(x, y) = {a ∈ At | Ia(x) �= Ia(y), x, y ∈ U}.

TABLE II

THE INDISCERNIBILITY MATRIX OF THE INFORMATION TABLE I.

o1 o2 o3 o4 o5 o6

o1 At ∅ ∅ a ∅ abe
o2 At acd ce acde c
o3 At bc abcd c
o4 At bce acd
o5 At c
o6 At

TABLE III

THE DISCERNIBILITY MATRIX OF THE INFORMATION TABLE I.

o1 o2 o3 o4 o5 o6

o1 ∅ At At bcde At cd
o2 ∅ be abd b abde
o3 ∅ ade e abde
o4 ∅ ad be
o5 ∅ abde
o6 ∅

The discernibility matrix dm is symmetric, i.e., dm(x, y) =
dm(y, x), and dm(x, x) = ∅. By definition, the two matrices
are complementary, i.e., for any x, y ∈ U , im(x, y) =
(dm(x, y))c = At − dm(x, y).

Similar to the indiscernibility and discernibility relations,
given an information table, we can obtain its indiscernibility
matrix and discernibility matrix. Conversely, given an indis-
cernibility matrix or a discernibility matrix, we cannot recover
its information table. Each element of the matrix keeps only
the names of attributes whose values are the same, or different
regarding the involved two objects, but not the values of those
attributes.

There is a close connection between a matrix and its
corresponding strong and weak relations. From an indiscerni-
bility or a discernibility matrix, we can easily obtain the
indiscernibility and discernibility relations defined by any
subset of attributes. On the other hand, from the family of all
the strong indiscernibility or the strong discernibility relations
defined by singleton subsets, we obtain the indiscernibility or
the discernibility matrix.

Example 3: The indiscernibility and discernibility matrix of
the information Table I are given in Tables II and III, where
each matrix element is a set of attributes that are shared by and
differentiate a pair of objects, respectively. In the tables, for
simplicity, we write a set of attributes, for example, {a, b, c}
as abc. Since both matrices are symmetric, we only list the
elements in the upper right half.

C. Attribute reduction based on indiscernibility and discerni-
bility

Definition 5: For an information table S =
(U,At, {Va}, {Ia}), an attribute set P ⊆ At is a reduct
if it meets following two conditions:

(1.) R(P ) = R(At);
(2.) For any proper subset P ′ ⊂ P , R(P ′) �= R(At),

The first condition ensures that a certain property is preserved
by a set of attributes. Therefore, the attribute set as a whole
is sufficient for preserving the property. The second condition
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ensures the constructed attribute set is the minimum, i.e., each
attribute of it is necessary for reserving the property.

When R represents IND and DIS, the corresponding
reducts are called indiscernibility reducts and discernibil-
ity reducts, respectively. For an information table S =
(U,At, {Va}, {Ia}), an attribute set P ⊆ At is an
indiscernibility-and-discernibility reduct if it meets following
three conditions:

(1.) IND(P ) = IND(At);
(2.) DIS(P ) = DIS(At);
(3.) For any proper subset P ′ ⊂ P , either IND(P ′) �=
IND(At) or DIS(P ′) �= DIS(At).

An indiscernibility-and-discernibility reduct is a minimum
attribute set that keeps both the indiscernibility and the dis-
cernibility relations of the original table. The family of all
indiscernibility reducts of the information table S is denoted
as REDIND(S), and the family of all discernibility reducts as
REDDIS(S). The intersection of all indiscernibility reducts is
called the IND core, and the intersection of all discernibility
reducts is called the DIS core.

Obviously, the three reducts are defined by the strong
relations. Alternatively, reducts can be defined by the weak re-
lation counterparts and corresponding matrices. The following
functions define for two matrices reveal and correlate the weak
relations of discernibility and indiscernibility, respectively.

Skowron and Rauszer [16] define a discernibility function
for a discernibility matrix dm:

fDIS(dm) =
∧

{
∨

dm(x, y) : x, y ∈ U, dm(x, y) �= ∅},
where

∨
dm(x, y) represents the logical disjunction of those

attributes in an element dm(x, y), which means that x and
y are discernible regarding any attribute in dm(x, y). A
discernibility function is the conjunction of all logical dis-
junction of matrix elements. That means, it keeps all the weak
discernibility relations in the given universe.

Similar to the discernibility function, we can define an
indiscernibility function for an indiscernibility matrix im:

fIND(im) =
∧

{
∨

im(x, y) : x, y ∈ U, im(x, y) �= At},
where

∨
im(x, y) is the logical disjunction of those attributes

in an element im(x, y), which means that x and y are
indiscernible regarding any attribute in im(x, y). An indis-
cernibility function is the conjunction of all logical disjunction
of matrix elements. Thus, it keeps all the weak indiscernibility
relations in the given universe.

According to the definition of indiscernibility-and-
discernibility reducts, we can define an indiscernibility-and-
discernibility function as follows:

fIND−DIS(im − dm) = fIND(im)
∧

fDIS(dm).

The significance of the matrix functions are that an in-
discernibility reduct is a disjunct of the matrix function
fDIS(dm) in a reduced disjunctive form. And a discernibility
reduct is a disjunct of the matrix function fIND(im) in a

reduced disjunctive form. Namely, we have the following
equivalences:

P ∈ REDIND(S)
iff

∧
P is a prime implicant of fDIS(dm);

P ∈ REDDIS(S)
iff

∧
P is a prime implicant of fIND(im).

Example 4: Based on the indiscernibility matrix in Table II,
we can construct the following indiscernibility function:
fIND (im) = a ∧ c ∧ (b ∨ c) ∧ (c ∨ e) ∧ (a ∨ b ∨ e)

∧(a ∨ c ∨ d) ∧ (b ∨ c ∨ e) ∧ (a ∨ b ∨ c ∨ d)
∧(a ∨ c ∨ d ∨ e)

= (a ∧ c).
Based on the discernibility matrix in Table III, we can con-
struct the following discernibility function:
fDIS (dm) = b ∧ e ∧ (a ∨ d) ∧ (b ∨ e) ∧ (c ∨ d) ∧ (a ∨ b ∨ d)

∧(a ∨ d ∨ e) ∧ (a ∨ b ∨ d ∨ e) ∧ (b ∨ c ∨ d ∨ e)
∧(a ∨ b ∨ c ∨ d ∨ e)

= b ∧ e ∧ (a ∨ d) ∧ (c ∨ d)
= (b ∧ d ∧ e) ∨ (a ∧ b ∧ c ∧ e).
It means that we obtain one indiscernibility reduct ({a, c}) and
two discernibility reducts ({b, d, e} and {a, b, c, e}). Based on
these results,

fIND−DIS(im − dm) = fIND(im)
∧

fDIS(dm)
= (a ∧ c)

∧
((b ∧ d ∧ e) ∨ (a ∧ b ∧ c ∧ e))

= (a ∧ b ∧ c ∧ e).

The result shows that we can obtain one indiscernibility-and-
discernibility reduct, i.e., {a, b, c, e}.

IV. ALLIANCE-ORIENTED INTERPRETATION

A. Alliance and non-alliance relations and matrices

Given a subset of attributes A ⊆ At, four alliance-oriented
relations between objects can be defined in an information
table.

Definition 6: Given a subset of attributes A ⊆ At, four
alliance-oriented relations on U are defined by:

RA(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ra(x, y) = 1},
WRA(A) = {(x, y) ∈ U × U | ∃a ∈ A, Ra(x, y) = 1},

NA(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ra(x, y) �= 1},
WNA(A) = {(x, y) ∈ U × U | ∃a ∈ A, Ra(x, y) �= 1}.

The weak and strong versions are related by a subset
relationship, and the alliance and non-alliance relations are
related by a complementary relationship.

Definition 7: Given an information table S, its alliance
matrix ma is a |U | × |U | matrix with each element ma(x, y)
defined as:

ma(x, y) = {a ∈ At | Ra(x, y) = 1, x, y ∈ U}.
And its non-alliance matrix mna is a |U | × |U | matrix with
each element mna(x, y) defined as:

mna(x, y) = {a ∈ At | Ra(x, y) �= 1, x, y ∈ U}.
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TABLE IV

THE ALLIANCE MATRIX OF THE INFORMATION TABLE I.

o1 o2 o3 o4 o5 o6

o1 At ∅ ∅ ∅ ∅ be
o2 At acd ce acde c
o3 At bc abcd c
o4 At bce c
o5 At c
o6 At

TABLE V

THE NON-ALLIANCE MATRIX OF THE INFORMATION TABLE I.

o1 o2 o3 o4 o5 o6

o1 ∅ At At At At acd
o2 ∅ be abd b abde
o3 ∅ ade e abde
o4 ∅ ad abde
o5 ∅ abde
o6 ∅

Both the alliance and the non-alliance matrices are symmetric.
Example 5: The alliance and the non-alliance matrices of

the information Table I are given in Tables IV and V.

B. Alliance-oriented attribute reduction

According to the general Definition 5 of reduct, when R
represents RA and NA, the corresponding reducts are called
alliance reducts and non-alliance reducts, respectively. We
can define the alliance-and-non-alliance reducts which are the
minimum attribute sets that keep both the alliance relation
and non-alliance relation at the same time. The family of
all alliance reducts of the information table S is denoted as
REDRA(S), and the family of all non-alliance reducts as
REDNA(S). The intersection of all alliance reducts is called
the RA core, and the intersection of all non-alliance reducts
is called the NA core.

An alliance function, a non-alliance function and an
alliance-and-non-alliance function can be defined as follows:

fRA(ma) =
∧{∨ma(x, y) : x, y ∈ U, ma(x, y) �= At},

fNA(mna) =
∧{∨mna(x, y) : x, y ∈ U, mna(x, y) �= ∅},

fRA−NA(ma − mna) = fRA(ma)
∧

fNA(mna).

We have P ∈ REDRA(S) if and only if
∧

P is a prime
implicant of fNA(mna), and P ∈ REDNA(S) if and only if∧

P is a prime implicant of fRA(ma).
Example 6: Based on the alliance matrix in Table IV, we

can construct the following alliance function:
fRA (ma) = c ∧ (b ∨ c) ∧ (b ∨ e) ∧ (c ∨ e) ∧ (a ∨ c ∨ d)

∧(b ∨ c ∨ e) ∧ (a ∨ b ∨ c ∨ d) ∧ (a ∨ c ∨ d ∨ e)
= c ∧ (b ∨ e)
= (b ∧ c) ∨ (c ∧ e).
Based on the non-alliance matrix in Table V, we can construct
the following non-alliance function:
fNA (mna) = b ∧ e ∧ (a ∨ d) ∧ (b ∨ e) ∧ (a ∨ b ∨ d)

∧(a ∨ c ∨ d) ∧ (a ∨ d ∨ e) ∧ (a ∨ b ∨ d ∨ e)
∧(a ∨ b ∨ c ∨ d ∨ e)

= b ∧ e ∧ (a ∨ d)
= (a ∧ b ∧ e) ∨ (b ∧ d ∧ e).

That means that we obtain two alliance reducts ({b, c} and
{c, e}) and two non-alliance reducts ({a, b, e} and {b, d, e}).
Based on these results,

fRA−NA(ma − mna) = fRA(ma)
∧

fNA(mna)
= ((b ∧ c) ∨ (c ∧ e))

∧
((a ∧ b ∧ e) ∨ (b ∧ d ∧ e))

= (a ∧ b ∧ c ∧ e) ∨ (b ∧ c ∧ d ∧ e).

The result shows that we can obtain two alliance-and-non-
alliance reducts, i.e., {a, b, c, e} and {b, c, d, e}.

V. CONFLICT-ORIENTED INTERPRETATION

A. Conflict and non-conflict relations and matrices

Given a subset of attributes A ⊆ At, four conflict-oriented
relations between objects can be defined in an information
table.

Definition 8: Given a subset of attributes A ⊆ At, four
conflict-oriented relations on U are defined by:

RC(A) = {(x, y) ∈ U × U | ∀a ∈ A,Ra(x, y) = −1},
WRC(A) = {(x, y) ∈ U × U | ∃a ∈ A,Ra(x, y) = −1},

NC(A) = {(x, y) ∈ U × U | ∀a ∈ A,Ra(x, y) �= −1},
WNC(A) = {(x, y) ∈ U × U | ∃a ∈ A,Ra(x, y) �= −1}.

The weak and strong versions are related by a subset
relationship, and the conflict and non-conflict relations are
related by a complementary relationship.

Definition 9: Given an information table S, its conflict
matrix mc is a |U | × |U | matrix with each element mc(x, y)
defined as:

mc(x, y) = {a ∈ At | Ra(x, y) = −1, x, y ∈ U}.
And its non-conflict matrix mnc is a |U | × |U | matrix with
each element mnc(x, y) defined as:

mnc(x, y) = {a ∈ At | Ra(x, y) �= −1, x, y ∈ U}.
Both the conflict and the non-conflict matrices are symmetric.

Example 7: The conflict and the non-conflict matrices of
the information Table I are given in Tables VI and VII.

B. Conflict-oriented attribute reduction

According to the general Definition 5 of reduct, when R
represents RC and NC, the corresponding reducts are called
conflict reducts and non-conflict reducts, respectively. We
can define the conflict-and-non-conflict reducts which are the
minimum attribute sets that keep both the conflict relation
and non-conflict relation at the same time. The family of
all conflict reducts of the information table S is denoted as
REDRC(S), and the family of all non-conflict reducts as
REDNC(S).

A conflict function, a non-conflict function and a conflict-
and-non-conflict function are defined as follows:

fNC(mnc) =
∧{∨mnc(x, y) : x, y ∈ U, mnc(x, y) �= ∅};

fRC(mc) =
∧{∨mc(x, y) : x, y ∈ U, mc(x, y) �= At};

fRC−NC(mc − mnc) = fRC(mc)
∧

fNC(mnc).
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TABLE VI

THE CONFLICT MATRIX OF THE INFORMATION TABLE I.

o1 o2 o3 o4 o5 o6

o1 ∅ cde bcd bce bcde c
o2 ∅ ∅ ∅ ∅ e
o3 ∅ ∅ ∅ b
o4 ∅ ∅ be
o5 ∅ be
o6 ∅

TABLE VII

THE NON-CONFLICT MATRIX OF THE INFORMATION TABLE I.

o1 o2 o3 o4 o5 o6

o1 At ab ae ad a abd
o2 At At At At abcd
o3 At At At acde
o4 At At acd
o5 At acd
o6 At

We have P ∈ REDRC(S) if and only if
∧

P is a prime
implicant of fNC(mnc), and P ∈ REDNC(S) if and only if∧

P is a prime implicant of fRC(mc).
Example 8: Based on the matrices in Table VI and Ta-

ble VII, we obtain:
fRC (mc) = b ∧ c ∧ e ∧ (b ∨ e) ∧ (b ∨ c ∨ d) ∧ (b ∨ c ∨ e)

∧(c ∨ d ∨ e) ∧ (b ∨ c ∨ d ∨ e)
= (b ∧ c ∧ e);
fNC (mnc) = a ∧ a ∨ b ∧ (a ∨ d) ∧ (a ∨ e) ∧ (a ∨ b ∨ d)

∧(a ∨ c ∨ d) ∧ (a ∨ b ∨ c ∨ d) ∧ (a ∨ c ∨ d ∨ e)
= a;
fRC−NC(mc − mnc) = fRC(mc)

∧
fNC(mnc)

= ((b ∧ c ∧ e))
∧

((a))
= (a ∧ b ∧ c ∧ e).

VI. CONCLUSION

Based on the similarities or the differences between agents,
we can have an approach that distinguishes the indiscernibility
and discernibility relations among agents. It can be used to
analyze the dual alliance and non-alliance relations, and the
dual conflict and non-conflict relations, respectively. For each
pair of dual relations, four relations can be observed in the
given universe for capturing strong version and weak version
of the dual views. Two complementary matrices can be applied
for conflict analysis. Based on any pair of views, three different
types of reducts can be constructed. The study provides a
systematic methodology for conflict analysis using rough set
theory.

We use the strong versions of indiscernibility, discernibility,
alliance, non-alliance, conflict, and non-conflict relations for
conflict analysis, respectively. According to those relations, the
constructed reducts are not necessarily the same. By using the
same argument, the complement weak relations also can be
used.
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