1-4244-0703-6/07/$20.00 ©2007 IEEE

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Why Some Representations Are More
Cooperative Than Others For Prisoner’s
Dilemma

Wendy Ashlock

University of Guelph
Guelph, ON Canada N1G 2R4
washlock@uoguelph.ca

ABSTRACT

In [4] it was shown that the representation used
has a large impact on the cooperativeness of evolved
prisoner’s dilemma strategies. Why is this? This
paper examines the look-up table representation, the
finite state machine representation, and the neural
net representation to gain insight into this somewhat
surprising result. A tool called a prisoner’s dilemma
fingerprint is used to compare the strategies produced
by the different representations, and a Voronoi tiling
(based on which of 12 reference strategies is the clos-
est neighbor) of the strategy space is done. The initial
random populations are shown to have significantly
different distributions, and the evolved populations
are shown to favor different parts of the strategy
space.

I. INTRODUCTION

This paper explores strategies for playing prisoner’s
dilemma. Prisoner’s dilemma is a two-player simultane-
ous game. The game is explored in detail with many
excellent examples in [7]. Two players simultaneously
decide either to defect or cooperate. If both defect, they
receive a score of D. If both cooperate, both receive a
score of C. If one defects and the other cooperates, then
the defector receives a score of T (temptation) and the
cooperator receives a score of S (sucker). Play is repeated
many times. (In this study, C=3;D=1;T=5;and S=0
and play is repeated 150 times.) This game is interesting
because there is no single “best” strategy; which strategy
is best depends strongly on the opponent’s strategy.

Many studies have been done using evolutionary
computation with prisoner’s dilemma. Some examples
are [14], [12], [15], [11], [8], [10]. These studies either
use simple strategies that are easy to analyze or they
analyze their results in terms of population level statis-
tics. This study uses a technique called fingerprinting to
characterize complex strategies at the individual level so
that they can be compared across representations. Then,

it compares strategies in evolved populations using three
different representations in an attempt to understand why
two of the representations produce more cooperative
populations than the other does.

In [4] ten representations for iterated prisoner’s
dilemma were studied. This paper looks in detail at
three of these representations, neutral neural nets (NNN),
look-up tables (LKT), and directly encoded finite state
machines (AUT). In [4] it was found that evolved neutral
neural nets were not at all cooperative and that evolved
look-up tables and finite state machines were highly
cooperative. Out of 400 populations, none of the neural
net populations were cooperative; 333 (85%) of the look-
up table populations were cooperative, and 351 (88%)
of the finite state machine populations were cooperative.
(Populations were deemed cooperative if their average
score was greater than 2.8.) This paper analyzes the
strategies found using the different representations in an
attempt to understand this difference.

II. FINGERPRINTS

In order to analyze prisoner’s dilemma strategies
one needs some way to define and name each individual
strategy. Table I lists twelve strategies with names. How-
ever, this naming method quickly becomes intractable
as the number of strategies increases. Also, it gives no
objective way to compare the strategies. A prisoner’s
dilemma fingerprint is a way of assigning a real-valued
function to each strategy, or as with the simplified
version used in this study, a point in 25-space which
consists of 25 values of that function.

A prisoner’s dilemma fingerprint is a function in
two variables, x and y ranging from O to 1, whose value
is the strategy’s expected score when playing against
a set of strategies called Joss-Ann strategies. These
strategies were chosen to be as representative as possible
of all possible strategies. If x + y < 1, the Joss-Ann
strategy plays C with a probability of and D with a
probability of y and TFT otherwise. If z +y > 1, the

314

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE 11
TABLE OF FINGERPRINT FUNCTIONS FOR SOME
WELL-KNOWN STRATEGIES

Strategy Fingerprint Function
2 2
y“+5zy+3x
T (a+y)?
ALLD 4x 41
ALLC 3(1—vy)
3x2y+5a:y2—3xy+39:+y2
TE2T 2lut2ey®taty?
3z 45z yt+daytay”+y
2TET wit20lytoyity
4(y—D(z—1)+5(y—1)
PSYCHO | se-ha-niG-n2r6-17

Joss-Ann strategy plays C with a probability of 1 — v,
D with a probability of 1 — 2 and PSYCHO otherwise.

Note that in either case when = + y = 1, the
strategy is just the random strategy which cooperates
with probability and defects with probability y. For
more complete details, see [16], [5], [3], [4]. See Table
I for examples of some fingerprint functions. This
study uses an approximation to the fingerprint function
consisting of 25 numbers which are the values of the
fingerprint function on a 5 by 5 evenly-spaced grid from
1/6 to 5/6.

ITII. DATA GENERATION

All the evolutionary algorithms used to generate
data for this paper use a population size of 36 with
an elite of 24. Fitness is determined by a round robin
tournament in which each pair of players plays for
150 rounds. Twelve pairs of parents are chosen by
fitness proportional selection. They are crossed over
and mutated. Their children replace the non-elite. 400
populations were run for each representation, each for
250 generations.

These parameters were chosen because they were
the ones used in [4]. The authors of [4] chose them to
be consistent with previous work. Tweaking these pa-
rameters could easily have an effect on cooperativeness.
This study focuses on the effect of representation on
cooperativeness by keeping the other parameters fixed.

The finite state machines used are 8-state Mealey
machines. Each state has an action (C or D) and state
transition (1-8) associated with each of the opponent’s
possible actions on the previous round. For each round,
the machine plays the action in its current state based
on the opponent’s last action and moves to the state
indicated. For each machine, an initial state and initial
action are designated. For more information about using
finite state machines in evolutionary computation, see
Chapter 6 of [2].

In [4] 16-state machines were used. 8-state ma-
chines were used in this study to make them more similar
to the neural net and look-up table representations used

in terms of strategy complexity. They are stored as linear
chromosomes with the initial state and action stored at
the beginning. Two-point crossover is used (preserving
whole states). The mutation operator changes either a
state transition, an action, the initial state, or the initial
action. This is a many-one representation.

The look-up tables consist of eight actions (coded
0 for cooperate, 1 for defect) indexed by the eight
possibilities for the opponent’s last three moves. Two-
point crossover is used and point mutation. Each look-
up table is unique. However, 14 have behavior similar
enough to have the same fingerprint. Out of the 256
possible look-up tables, there are three with the TFT fin-
gerprint, three with the PSYCHO fingerprint, four with
the UC fingerprint, and four with the UD fingerprint;
the other 242 look-up tables have unique fingerprints.
(These strategies are described in Table 1.) It is proved
in [4] that look-up tables can be specified as finite state
machines. When you convert the look-up tables to finite
state machines, they have at most four states in their
finite state machine minimal form.

The neural nets used are those presented in [13].
They have a hidden layer of three neurons and a single
output neuron. The neurons are 0-1 threshold neurons.
There are three inputs which represent the opponent’s
last three moves. Each input is connected to each neuron
in the hidden layer and the neurons in the hidden
layer are all connected to the output neuron. So, twelve
connection weights are needed: 9 for the connections
of the input neurons to the hidden layer and 3 for the
connections of the hidden layer to the output neuron.
These connection weights make up the player’s chro-
mosome. The connection weights are initialized in the
range —1 < ¢ < 1. Two-point crossover is used and
a point mutation which adds a random number in the
range —(0.1 < z < 0.1 to a connection weight. Note that
it is highly unlikely that any connection weight will ever
be exactly 0 or exactly 1, so the output always depends
in some nontrivial way on all of the inputs. Also, note
that very often a mutation will make no change in the
behavior of the neural net. Like look-up tables, neural
nets can be converted to finite state machines. In this
paper they are displayed that way in figures making them
easier to understand.

IV. VORONOI TILING

In order to analyze the strategies, twelve reference
strategies were selected. These strategies are all the
possible look-up tables based on the opponent’s last
two moves. These are all equivalent to one-state or
two-state finite state machines. A non-linear projection
of the reference strategy fingerprints is shown in Fig-
ure 1. Nonlinear projection is a technique which uses
an evolutionary algorithm to project multi-dimensional

315

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE I
STRATEGIES USED AS REFERENCE STRATEGIES FOR VORONOI TILING.

Abbreyv. Name Description
ALLD Always defect This strategy always defects.
2TFT Two-tits-for-tat This strategy defects twice in response to defection and otherwise cooperates.
TFT Tit-for-tat. This strategy does whatever its opponent did last time.
TF2T Tit-for-two-tats This strategy cooperates except after a sequence of two defections.
ucC Usually cooperate This strategy cooperates except after a C following a D.
ALLC Always cooperate This strategy always cooperates.
(2TFT) Inverse two-tits-for-tat | This strategy does the opposite of what 2TFT would do.
PSYCHO | Psycho This strategy does the opposite of what its opponent did last time.
TFT-PSY | Tit-fot-tat-psycho This strategy plays like TFT until its opponent defects;

then it plays like PSYCHO until its opponent cooperates.
PSY-TFT | Psycho-tit-for-tat This strategy plays like PSYCHO until its opponent defects;

then it plays like TFT until its opponent cooperates.
(TF2T) Inverse tit-for-two-tats | This strategy does the opposite of what TF2T would do.
UD Usually defect This strategy defects except after a D following a C.

points onto a 2-dimensional picture which preserves the
distance relationships between the points as closely as
possible. It is defined in [6] and applied in [1] to RNA
folding and in [2] to evolutionary robotics.

Notice that ALLD and ALLC are at either end of
the figure. They have the largest fingerprint distance
possible for any two strategies. (Proof available upon
request.) In general, strategies near ALLD score well
against strategies which are different from them, and
poorly against strategies similar to themselves. ALLD
gets the maximum possible score of 5 against ALLC
but only a score of 1 against itself. In general, strategies
near ALLC score best when playing strategies similar
to themselves and are easily exploited by strategies far
from them. ALLC gets a score of 3 when playing itself
and a score of 0 when playing ALLD. Strategies in the
middle of the diagram, like TFT, have greater potential
to score well or poorly both against strategies similar to
them and strategies far from them.

Strategies are analyzed in terms of which of these
strategies they are closest to. This is called a Voronoi
tiling or a Dirichlet tessellation. Explanations can be
found in many places; one good one is [9]. If a strategy
is closer to Strategy S than it is to any other reference
strategy, then it is said to be in the Strategy S bin.
The assumption is that strategies with fingerprints that
are close together behave similarly, so we can group
them together and analyze them in terms of the simple
strategies that we understand well and in terms of where
they fall in fingerprint space.

A. Understanding the Strategy Space

The strategies in the top left part of the space,
ALLD, 2TFT, (TF2T), and UD, are highly uncoopera-
tive. When they play the Joss-Ann strategies represented
by the 25 points used in the fingerprint, the average of
their scores and the scores of the Joss-Ann strategies are
1.75, 1.96, 2.09, and 1.97, respectively. The strategies in

(8.0,8.
ALLD
2TFT
UD
TF2T
() TFT
PSY-TFT
TF2T
TFT-PSY
PSYCHO
uc
(2TFT) ALL(
0,0)
Fig. 1. Non-linear projection of reference strategies.

the lower right part of the space, ALLC, (2TFT), UC, and
TF2T are highly cooperative. Their averages when play-
ing the 25 Joss-Ann strategies are 2.75, 2.50, 2.53, and
2.46. The strategies in the middle, PSYCHO, TFT, PSY-
TFT, and TFT-PSY are sometimes cooperative. Their
Joss-Ann averages are 2.28, 2.22, 2.19, and 2.31. Notice
that none of these numbers are high enough (> 2.8) to be
deemed cooperative according to the standard set in [4].
These numbers represent the degree of cooperativeness
the strategies have against a wide range of opponents.
Scores of play against a more uniform population could
show a much higher or lower degree of cooperation.

The other extreme is to measure cooperativeness
with a population consisting entirely of copies of the
same strategy. Since evolved populations are inbred,
this measure is closer to the measure used in [4]. We

316

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Random Populations

Look-up
Tables
Finite State
Machines
Neural Nets
T T T
[ALLD M 2TFT []TFT []TF2T
Il uc [CJALLC M (2TFT) [|PSYCHO
Il TFT-PSY [l PSY-TFT [] (TF2T) [JuD

Fig. 2. Distribution of random strategies using the three different
representations.

calculate this value as the average over all possible
combinations of initial actions, since changing the initial
action is a single mutation for all representations. Using
this measure, the strategies in the top left have self-
cooperativeness ALLD 1.01, 2TFT 1.51, (TF2T) 2.08,
and UD 1.88. The strategies in the lower right have
self-cooperativeness ALLC 3.00, (2TFT) 2.42, UC 2.63,
and TF2T 3.00. The strategies in the middle have self-
cooperativeness PSYCHO 2.25, TFT 2.25, PSY-TFT
2.33, and TFT-PSY 2.33.

Another interesting measure is the average score
against all the Joss-Ann strategies. (Before we averaged
this with the scores the Joss-Ann strategies got.) This
is a measure of how good the strategy is against a
variety of opponents. The values using this measure are:
ALLD 3.00, 2TFT 2.47, (TF2T) 2.72, UD 2.67, ALLC,
1.50, (2TFT) 1.87, UC 1.83, TF2T 1.95, PSYCHO 2.28,
TFT 2.22, PSY-TFT 2.34, and TFT-PSY 2.16. For these
simple strategies, it is true that the less cooperative the
strategy, the more effective it is.

V. RANDOM POPULATIONS

Figure 2 shows the distributions of strategies chosen
at random (as in an initial population) using Voronoi
tilings of each of the three representations. The neural
net representation is clearly very different from the other
two. Both look-up tables and finite state machines have
significant numbers of random strategies in all twelve
strategy bins. Neural nets have a significant number of
representatives in only eight bins. The ALLD, TF2T,
TFT-PSY, and (TF2T) bins are mostly empty. There
are also larger concentrations in the ALLC bin and the
(2TFT) bin than in those bins for random finite state

machines and look-up tables.

Finite state machines and look-up tables have dis-
tributions that are more like each other than they are
like the neural net distribution. However, a chi-square
test shows them to be significantly different (o <<
0.005). Finite state machines have larger proportions of
ALLD- and ALLC-like strategies, and look-up tables
have a larger proportion of TFT-PSY- and PSY-TFT-
like strategies (the strategies in the middle of fingerprint
space). Also, since finite state machines are a many-one
representation and look-up tables are mostly unique (UC,
UD, TFT, and PSYCHO are the only strategies repre-
sented by more than one look-up table) the distributions
of strategies within a tile are different.

Why does this matter? Since fitness in prisoner’s
dilemma depends on the population which the strategy
is in, the composition of the initial population is very
important. Since ALLC and (2TFT), both highly ex-
ploitable strategies, are so common in random neural
net populations, a non-cooperative strategy capable of
exploiting them is highly successful early in evolution.
On the other hand, since strategies with fingerprints
in the central region are more common with finite
state machine and look-up table representations, there
is a greater chance for strategies to evolve which are
cooperative but not exploitable.

VI. EVOLVED POPULATIONS

The composition of the evolved populations is
shown in Figures 3-5. The inner rings show the bins
random strategies fall into, and the outer rings show
the bins evolved strategies fall into. Notice that for
the look-up tables nearly half and for the finite state
machines nearly three-quarters of the strategies fall in
the TFT bin, and that for the neural nets hardly any do
(0.08%). For the evolved finite state machines, 9 bins
have a noticeable number (more than 1%) of strategies
in them (the PSYCHO, (2TFT), and (TF2T) bins are
nearly empty). Evolved neural nets have strategies in
6 bins (UD, ALLD, (2TFT), PSYCHO, (TF2T), and
UC), and evolved look-up tables have strategies in 5
bins (TFT, 2TFT, TF2T, TFT-PSY, and PSY-TFT). The
neural nets and look-up tables are finding strategies in
completely different parts of fingerprint space; the finite
state machines and neural nets have some overlap; and
the part of fingerprint space with strategies found by the
look-up tables is a subset of the part of fingerprint space
with strategies found by the finite state machines.

A. Population Diversity

Two measures of population diversity were used:
entropy and variation from the mean fingerprint. Entropy
is a measure used by biologists for diversity of species

317

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

in a region. It is:

N

N; Ni
Entropy = — Z — -logy —
~ N N

where N = the total number of individuals and N; =
the number of individuals of species i. It gives a better
measure of diversity than just counting the number of
species, because it distinguishes an ecology with 91
individuals of one species and 1 individual from each
of 9 other species from an ecology with 10 individuals
from each of 10 different species. (The second ecology
has more entropy.) For measuring entropy in this study,
two strategies are considered to be of the same species
if they have the same fingerprint.

The look-up tables have the most entropy of the
three representations, and the neural nets have the least.
When averaged over the 400 populations, the look-up
tables have an entropy of 1.87; the finite state machines
1.14, and the neural nets 0.63. This means that the look-
up tables have an average of roughly 260UOPY or 37
“species” in each population, the finite state machines
roughly 2.2, and the neural nets roughly 1.5. (Besides
these species, there may be some singletons who don’t
contribute much to the entropy.) The population with the
most entropy (4.25 or roughly 19 species) was found
among the finite state machines. The neural nets had
191 populations with zero entropy (meaning only one
fingerprint present); the finite state machines had 83, and
the look-up tables had only 10.

The other diversity measure is the variance from
the mean fingerprint. Using this measure, the neural
nets were the most diverse with an average variance
of 1.29. The look-up tables had an average variance
of 0.67, and the finite state machines had an average
variance of 0.69. To give you a scale for this, the average
distance from a bin center to the next closest center
is 1.70, and the farthest apart any two fingerprints can
be (the distance from ALLD to ALLC) is 9.54. So, on
average the fingerprints within a single population are
pretty close together with the neural net strategies more
spread out than those of the other two representations.
The population with the highest fingerprint variance was
one which used the neural net representation. It had a
variance of 4.17 which is comparable to the distance
between TFT-PSY and ALLC. The most the finite state
machines varied was 2.93 which is comparable to the
distance between TFT-PSY and (2TFT). The look-up
tables’ maximum variance was 1.60, about the distance
between TFT and TF2T.

It is interesting that the representation which pro-
duces populations with the lowest entropy has the high-
est fingerprint variance (neural nets). This means that,
when a neural net population has a variety of different
fingerprints, they are often very different. Likewise, the

Lookup Tables

[ALLD

W 2TFT
CJTFT

] TF2T

W uc

I ALLC

W (2TFT)
[]PSYCHO
M TFT-PSY
[PSY-TFT
[(TF2T)

[Jup

Fig. 3. Distribution of Strategies for Look-up Table Representation.
Inner ring shows distribution of random strategies; outer ring shows
distribution of strategies evolved for 250 generations.

representation with the highest entropy had the lowest
fingerprint variance (look-up tables). This is because
look-up table populations almost always have a variety
of fingerprints, but those fingerprints are usually close
together.

B. Look-up Tables

Figure 3 shows the strategy distribution for the
evolved look-up tables. 375 out of 400 populations
(94%) have some strategies from the TFT bin. 17 (4%)
of the populations are made up of strategies entirely
from the TFT bin. (The only other bin which contains
entire populations is 2TFT which has 16.) Only about
4% of the strategies in the TFT bin are exactly TFT.
The most common is the strategy shown in Figure 6.
This strategy is like TFT, but less prone to get stuck
in a mutual defection or mutual cooperation loop. It
does not appear in either the finite state evolution or
the neural net evolution. Likewise, in the 2TFT bin, the
exact strategy 2TFT is rare, occurring only 0.2% of the
time. Half the strategies in this bin are the one shown in
Figure 7 as a finite state machine. This is a variation on
2TFT in which the second tit is delayed by one move.
When converted to finite state machines reduced to their
minimal representation, the evolved look-up tables use
an average of 3.60 states. This means they are finding
the most complex (at least by this measure) strategies of
the three representations.

C. Finite State Machines

Figure 4 shows the strategy distribution for the
evolved finite state machines. About one-fourth of the
finite state populations have strategies contained entirely
within a single bin, and two-thirds of the populations
are almost entirely contained within one bin (20 or more

318

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Finite State Machines

[ALLD

W 2TFT
[]TFT

[] TF2T

Il uc

[ALLC

H (2TFT)
[] PSYCHO
W TFT-PSY
M PSY-TFT
[(TF2T)
[]uD

Fig. 4. Distribution of Strategies for Finite State Machine Represen-
tation. Inner ring shows distribution of random strategies; outer ring
shows distribution of strategies evolved for 250 generations.

individuals out of 24). Eight of the twelve bins contain at
least one of these populations. The TFT bin contains 98
entire populations and 136 nearly entire populations for a
total of 234 populations or 59%. The ALLD bin contains
3 entire populations and 8 nearly entire populations, a
total of 3% of the populations. Only 29 populations (7%)
contain no strategies from the TFT bin. The TFT bin, the
ALLD bin, and the ALLC bin are filled almost entirely
with their exact reference strategy (more than 90%). The
UD reference strategy makes a significant showing in
its bin (43%), the UC strategy in its bin (20%), and
the 2TFT strategy in its bin (17%). However, the exact
TF2T strategy barely shows up (6%) in its bin nor does
the PSY-TFT strategy (3%) in its bin, and the TFT-PSY
strategy doesn’t appear at all.

D. Neural Nets

Figure 5 shows the strategy distribution for the
evolved neural nets. Neural net populations are even
more prone than finite state machine populations to be
entirely contained within a single bin. More than half
(52%) are, and all six of the bins with a noticeable
number of strategies contain entire populations. There
are 127 such populations in the UD bin. The exact
strategy UD does not appear in this bin, but the strategy
in Figure 8 is the most commonly found strategy in this
bin, representing 86% of the strategies in it. Two other
strategy bins dominate the strategy distribution, ALLD
and (2TFT). ALLD has 17 populations entirely contained
within it, and all of the strategies in the ALLD bin
are exactly ALLD. (2TFT) has 43 populations entirely
contained within it, and 52% of the strategies contained
within it are exactly (2TFT). The other three bins, 2TFT,
(TF2T), and PSYCHO, all contain a variety of strategies.
The 2TFT bin contains 8 entire populations; the (TF2T)

Neural Nets

[ALLD

W 2TFT
CITFT
[1TF2T
Wuc

[ALLC

W (2TFT)
[]PSYCHO
B TFT-PSY
[PSY-TFT
[(TF2T)
[]ub

Fig. 5. Distribution of Strategies for Neural Net Representation.
Inner ring shows distribution of random strategies; outer ring shows
distribution of strategies evolved for 250 generations.

Opponent | Action | TFT’s Action
CcCcC C C
CCD D D
CDC C C
CDD C D*
DCC D C*
DCD D D
DDC C C
DDD D D

Fig. 6. Strategy in the TFT bin for evolved look-up tables occurring
2444 times compared with TFT (starred actions are different).

bin contains 2 entire populations, and the PSYCHO bin
contains 10 entire populations.

It is surprising that there are virtually no TFTs
in the evolved neural nets since this strategy is so
common among the evolved strategies for the other
two representations. They do exist in the initial random
population, but they do not survive the evolutionary
process. In the initial random population there are three
distinct strategies that show up in the TFT bin, none of
them exactly TFT. 90% of the random strategies in the
TFT bin are the strategy shown in its finite state machine
form in Figure 9.

The bin which is most full for the random strategies,
(2TFT) a very cooperative strategy, is dominated by two
distinct strategies, (2TFT) itself and a 3-state variation of
it. (2TFT) is about 30% more common. Both these strate-
gies also dominate the evolved (2TFT) bin in roughly
equal numbers. Even though this strategy is at the coop-
erative end of the fingerprint diagram and thus cooper-
ates with many strategies, it does not cooperate well with
itself. Against itself, it plays CDCDCDCD.. . yielding an
average score of 2.33. So, populations containing it are

319

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Fig. 7. Finite state representation of the strategy in the 2TFT bin for
evolved look-up tables which occurs 1688 times.

Fig. 8. Finite state representation of the strategy in the UD bin for
evolved neural nets which occurs 3420 times.

not cooperative.

E. The Importance of TFT

The strategy TFT seems to be key in terms of
evolving cooperative populations. An inability to easily
produce a TFT strategy makes evolving cooperative
populations difficult (perhaps impossible). Of the three
representations studied the two which produced cooper-
ative behavior, finite state machines and look-up tables,
can easily represent TFT, while the neural net repre-
sentation that can’t evolved uncooperative populations.
A single mutation can turn a finite state strategy into
TFT by making a state which cooperates in response to
cooperation and defects in response to defection loop
to itself. Because neutral mutations are common with
finite state machines (just mutate a state which is never
reached), this strategy is also quite robust to further
mutation. This is why so many of the evolved strategies
are exactly TFT. A look-up table requires more mutations

C/C D/D

C/C

C/D
D/C

D/D

Fig. 9. Finite state machine form of the neural net strategy which
fills 90% of the random neural net TFT bin.

but can also easily form TFT. However, since it is
not a many-one representation, any mutation varies the
strategy. As a result, the evolved populations contain
many strategies close to but not exactly TFT. The neural
net representation is extremely unlikely to produce an
exact TFT strategy through mutation. To do this it would
have to ignore its opponent’s next-to-last and third-from-
last moves which means having connection weights of 0
or 1 for those inputs. There are virtually no strategies
close to TFT in the evolved neural net populations.
The evolved strategies are mostly ALLD, the strategy
in Figure 8 which is not far from ALLD, or at the
ALLC end of the strategy spectrum, close to (2TFT).
This last is not a particularly good strategy (it hardly
shows up at all in the evolved populations for the other
two representations), but it is common in random neural
net populations and seems to be able survive evolution.

VII. CONCLUSION

Representation is one of the many parameters which
can be tweaked in an evolutionary algorithm to change
its behavior. It defines the search space and how the al-
gorithm moves through it. In a co-evolutionary algorithm
it is an even more important parameter because of the
effect it has on fitness evaluation. How fit an individual is
depends on the composition of the rest of the population.
Strategies whose success depends on exploiting other
strategies are only fit when in the company of exploitable
strategies. Other strategies can only be successful when
there is a threshold number of other strategies like them
present in the population.

320

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

It was shown in [4] that finite state machine and
look-up table representations evolved cooperative popu-
lations and that the neural net representation evolved un-
cooperative populations. This study shows that not only
are the strategies different using this crude measure, but
they are also different using the more precise fingerprint
measure. The differences result from differences in the
initial populations, differences in the way the variation
operators work, and differences in which strategies com-
pete with which other strategies.

The strategies were classified using a Voronoi tiling.
The representations were significantly different from
each other in terms of the distributions of strategies in
their initial populations and in their evolved populations.
The finite state machine and look-up table representa-
tions started with strategy distributions in their initial
populations that were more alike than either were to
the strategies in the neural net initial populations. After
evolution, the strategy distributions were even more
different. There were some strategies that were common
among the neural nets which were nonexistent in the
populations evolved using the other two representations.

The look-up table strategies were the most diverse
using an entropy measure; the neural net strategies
were the most diverse using a variance from the mean
measure; and the finite state machines found strategies
in a larger proportion of the total search space. Look-up
tables produce strategies that are similar but not identical
which coexist well. This is related to the fact that it
is not a many-one representation. Neural nets produce
strategies that are at either end of the strategy spectrum,
either close to ALLD or close to ALLC, but not in
the middle close to TFT. Their populations tend to be
uniform, but when there is a difference it is usually a
large difference in terms of fingerprint distance. This is
a result of which strategies are easiest to produce using
the representation and of the fact that TFT is hard to
represent. Finite state machines also tend to produce
uniform populations, but they search a larger proportion
of the space. Eight of the twelve possible strategy
bins contained finite state populations. However, TFT
dominated the strategies found, even more so than for
the populations using the look-up table representation.
This is due to the many-one nature of the finite state
representation together with its greater flexibility and the
ease by which the variation operators can create TFT.

The results of this study suggest a way to change
the neural net representation to make it more cooperative.
In [4] a modification was made to the threshold level of
the neurons making cooperation more likely. This did not
result in an increase in cooperativeness. This study shows
that what is needed instead is a modification making
strategies in the middle of the strategy distribution (like
TFT) easier to represent. One possible way to do this

would be a mutation that allowed the strategy to ignore
one or more of its inputs. Testing this modification is
a next step for this research as well as analyzing the
strategies produced by the other representations in [4].

REFERENCES

[1] D.A. Ashlock and J. Schonfeld. Depth annotation of rna folds
for secondary structure motif search. In Proceedings of the 2005
IEEE Symposium on Computational Intelligence in Bioinformat-
ics and Computational Biology, page 3845, 2005.

[2] Daniel Ashlock. Evolutionary Computation for Opimization and
Modeling. Springer, New York, 2006.

[3] Daniel Ashlock and Eun-Youn Kim. Techniques for analysis
of evolved prisoners dilemma strategies with fingerprints. In
Proceedings of the 2005 Congress on Evolutionary Computation,
volume 3, page 26132620, 2005.

[4] Daniel Ashlock, Eun-Youn Kim, and Nicole Leahy. Understand-
ing representational sensitivity in the iterated prisoners dilemma
with fingerprints. /EEE Transactions on Systems, Man, and
CyberneticsPart C: Applications and Reviews, 36(4):464475, July
2006.

[5] Daniel Ashlock, Eun-Youn Kim, and Warren vonRoeschlaub.
Fingerprints: Enabling visualization and automatic analysis of
strategies for two player games. In Proceedings of the 2004
Congress on Evolutionary Computation, volume 1, page 381387,
2004.

[6] Daniel Ashlock and Justin Schonfeld. Nonlinear projection for
the display of high dimensional distance data. In Proceedings
of the 2005 Congress on Evolutionary Computation, volume 3,
page 27762783, 2005.

[7] Robert Axelrod. The Evolution of Cooperation. Basic Books,
New York, 1984.

[8] Siang Y. Chong and Xin Yao. Behavioral diversity, choices and
noise in the iterated prisoners dilemma. IEEE Transactions on
Evolutionary Computation, 9(6):540551, 2005.

[9] M. de Berg, M. van Kreveld, M. Overmans, and O. Schwarzkopf.
Computational ~ Geometry: Algorithms and Applications.
Springer-Verlag, Berlin, 2000.

[10] D. B. Fogel and P. G. Harrald. Evolving continuous behaviors
in the iterated prisoners dilemma. Biosystems, 37:135145, 1996.

[11] Nelis Franken and Andries P. Engelbrecht. Particle swarm
optimization approaches to coevolve strategies for the iterated
prisoners dilemma. IEEE Transactions on Evolutionary Compu-
tation, 9(6):562579, 2005.

[12] Patrick Grim. Spatialization and greater generosity in the stochas-
tic prisoners dilemma. Biosystems, 37:317, 1996.

[13] Simon Haykin. Neural Nets, a Comprehensive Foundation.
Macmillan College Publishing, New York, 1994.

[14] Enda Howley and Colm ORiordan. The emergence of cooper-
ation among agents using simple fixed bias tagging. In 2005
IEEE Congress on Evolutionary Computation, volume 2, page
10111016, Piscataway, NJ, 2005. IEEE Press.

[15] Hisao Ishibuchi and Naoki Namikawa. Evolution of iterated pris-
oners dilemma game strategies in structured demes under random
pairing in game playing. [EEE Transactions on Evolutionary
Computation, 9(6):552561, 2005.

[16] Eun-Youn Kim. Fingerprinting: Automatic Analysis of Evolved
Game Playing Agents. PhD thesis, Iowa State University, 2005.

321

