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Abstract
Experiments for resource-defined fitness sharing
(RFS) show a remarkable ability to find tilings in
shape nesting problems (Horn, 2002, 2005). These
tilings are essentially exact covers for a set of re-
sources, and represent a maximally sized set of co-
operating (non-competing) species. This paper initi-
ates a formal analysis of this empirical phenomenon
by examining a minimal case: two species a and b
“cooperate” to exactly cover the resources, while a
third species c “competes” with a and b by overlap-
ping both in terms of covered resources. The analy-
sis reveals that in cases in which a and b maximally
compete with c for resources, species c will become ex-
tinct, while the optimal set of species, a and b, will
survive. This result is clearly proven using algebra on
the niching equilibrium equations for RFS, a purely
static analysis.

1 Introduction

In the 2002 introduction (Horn, 2002) of Resource-defined
fitness sharing (RFS)1, the niching method shows a re-
markable ability to converge to an optimal solution on
shape nesting problems if that optimal solution consists
of a tiling. The 2002 paper provides evidence of this phe-
nomenon for both one and two-dimension shape nesting
problems. But since RFS operates with quantities defined
by sets (e.g., set intersections), and does not make any di-
rect use of the geometric properties of shape nesting, it
is possible that this apparent ability to tile one arbitrary
shape with another generalizes to an ability to exactly
cover a set of resources with a set of subsets of those re-
sources. That is, if an exact cover of the resources (sub-
strate) can be found in the current population, then pos-
sibly RFS will always drive the population distribution to
represent the exact cover.

1RFS, applied to shape nesting problems, has patent pending status
in the United States.

It therefore seems important to investigate the ability
of RFS to evolve (select) exact covers by applying a
theoretical analysis to minimal size cases of tiling (exact
cover) problems. In this paper, we begin with the two
against one case: two species cover all of the resources,
while a third competes for coverage. Two empirical
papers on RFS (Horn, 2002; 2005) precede this paper,
which is the first analytical treatment of RFS.

2 Background

We provide here very brief summaries of the RFS algo-
rithm and the problem domain of shape nesting, which
is a subset of resource covering problems in general. RFS
was developed as a compromise between fitness sharing
(FS) and resource sharing (RS), but we do not have space
here to compare and contrast these three different ap-
proaches.

2.1 Shape Nesting

The general problem at hand involves “nesting” (that is,
placing) shaped pieces on a finite substrate so as to maxi-
mize the number of such pieces on the substrate. The ob-
jective is often stated, equivalently, as the minimization
of “trim” (i.e., unused substrate) (Dighe & Jakiela, 1996;
Kendall, 2000). No overlaps among the placed pieces are
allowed, and all such pieces must be placed so as to be
completely within the boundaries of the substrate. Fig-
ure 1 illustrates a typical shape nesting problem. The lay-
out of pieces is actually the result of a run of the RFS al-
gorithm.

In this paper the focus is on a very common sub-
domain of shape nesting problems. We assume a finite,
two-dimensional problem, which means a flat substrate
of fixed size, and flat pieces to be nested (placed). We
assume identical shapes, which means there is only one
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Figure 1: RFS can nest arbitrary shapes.

shape we are nesting. We limit ourselves to polygons, to
simplify area calculations, but we allow arbitrary poly-
gons, which means that the pieces as well as the substrate
can be non-convex. In addition, the pieces do not have to
be axis-aligned; they can be rotated into any orientation.
There are no constraints on the separation or any other re-
lationship between shaped pieces or between the shaped
pieces and the substrate boundaries, other than the nor-
mal exclusion of overlap.

Horn (2002) applied RFS to one and two-dimensional
shape nesting problems but limited his tests to axis-
aligned squares for the shaped pieces. For example, in the
two-dimensional example, illustrated in Figure 2, the task
was to nest as many of the smaller square pieces as pos-
sible within the larger piece. The width of the substrate
square was exactly four times that of the piece square, so
that a single optimal solution existed, consisting of six-
teen pieces exactly covering the substrate, as shown in
Figure 2, right.

The RFS algorithm was given no information about
the solution, instead starting with a random population
of 16,000 square pieces (with random positions; the orien-
tation of all pieces are fixed so that all were parallel to the
x,y axes). There were 1600 possible piece positions (on a
discrete 40 by 40 grid). With a population size of 16,000,
the random initial generation contained about 10 copies
of each of the 1600 possible species.. The GA with RFS
was able to select and promote the sixteen species corre-
sponding to the solution in Figure 2, right, where each
of the 16 species is represented by approximately 1000

Figure 2: RFS can find tilings (i.e., exact covers).

copies (individuals) in the final population.

2.2 RFS: Resource-defined Fitness Sharing

Under RFS, every individual of the current population is
evaluated and assigned a fitness. In Horn (2002), each in-
dividual is a chromosome that specifies a placement of a
piece. Any individual that specifies a placement that ex-
tends beyond the boundaries of the substrate is assigned a
fitness of 0. All “feasible” individuals (i.e., chromosomes
specifying piece placements entirely on the substrate), re-
ceive a shared fitnesses greater than 0, for use in a stan-
dard selection method (e.g., tournament selection, pro-
portionate selection).

Under RFS, the shared fitness for each individual is a
function of the resources (e.g., area) covered by the indi-
vidual, and of the extent to which the individual’s cover-
age overlaps with that of other individuals in the popula-
tion. The form of the RFS shared fitness formula, fsh,i, is
that of a fraction:

fsh,i =
fi

niche count(i)
=

fi∑
j∈P fij

, (1)

where i is an individual in the population P , fi is the
objective (unshared) fitness of i, and fij is the pairwise
overlap in “coverage” between individuals i and j in P ,
and niche count(i) measures the amount of competition
for resources covered by i. Under RFS, niche count is de-
fined as the cumulative pairwise overlap between i and
other individuals in P . Figure 3 illustrates fi and fij for
two individuals i and j.

For the purposes of this paper, we normalize the ob-
jective fitness fi to 1 ∀i ∈ P . Thus 0 ≤ fij ≤ 1,∀i, j ∈ P .

Next we define what we mean by species and how the
term relates to individuals. We consider a species to be a
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Figure 3: The basic terms used in defining RFS.

set of identical individuals (i.e., with identical coverage
of resources). Thus unique chromosomes map one-to-one
with unique species. There is complete overlap between
any two members of the same species, while there is less
than complete overlap between any two members of dif-
ferent species.

Now that we have defined “species”, we can re-write
Equation 1 in terms of species:

fsh,x =
fx

niche count(x)
=

fx∑
y∈S(P ) nyfxy

. (2)

Equations 2 and 1 are equivalent. Both have an objec-
tive fitness in the numerator, and a niche count, calcu-
lated over the entire current population, in the denomi-
nator. In Equation 1, the summation in the niche count is
taken over the population of individuals (using the vari-
able j). In Equation 2, the population is partitioned into a
set S(P ) of species y, thus y ∈ S(P ). Each species consists
of the set of all individuals with the same chromosomes
(from the current population). Thus the shared fitness for
any member of a species x is equal to the objective fitness
of that species divided by the niche count for that species,
which is computed as the sum over all species of the in-
teraction term (fxy) multiplied (weighted) by the number
of members of that species (i.e., the species count: ny) in
the current population P .

3 Analysis: Three-Niche Scenarios

We assume exactly three species, a, b, and c. Their ob-
jective (unshared) fitnesses are fa, fb, and fc, represent-
ing the amount of resource(s) they cover. There are no
other species in the population P . The entire finite popu-
lation P is divided up among these three species: S(P ) =
{a, b, c}. That is, every individual in P is a member of a,
b, or c, and all individuals of a species are considered to
be identical (at least for the sake of selection). If pa, pb,

and pc are the proportions of the population for species
a, b, and c respectively, then 0 ≤ px ≤ 1, ∀x ∈ S(P ), and
pa+pb+pc = 1. Since we are dealing with proportions, we
do not need to name or manipulate an explicit population
size N = |P |.
3.1 RFS Equilibrium

A population distribution is said to be at evolutionary
equilibrium if it is equal to the expected distribution of
the population after application of the selection operator
(Maynard-Smith, 1982):

E[px(t + 1)] = px(t), (3)

where px(t) is the proportion of species x in the popula-
tion at time t, and E[px(t + 1)] is the expected proportion
of x at time t + 1 (e.g., the subsequent generation). Under
RFS and proportionate selection, the expected proportion
px(t) of species x at time t + 1 is a function of its propor-
tion px(t) at time t and of its shared fitness fsh,x(t) and
the population’s average fitness f(t) at time t:

E[px(t + 1)] = px(t)
fsh,x(t)

f(t)
(4)

= px(t)
fsh,x(t)∑

y∈S(P ) py(t)fsh,y(t)
. (5)

Substituting the above expression into Equation 3 and
cancelling px(t), we find that at equilibrium (here we drop
the notation for a specific time step t) the shared fitness
fsh,x of all species must be equal to the average fitness,

∀(x ∈ S(P )) : fsh,x =
∑

y∈S(P )

pyfsh,y ,

and therefore must be equal to each other:

∀(x, y ∈ S(P )) : fsh,x = fsh,y .

3.2 The General Case

For three species, the most general situation (i.e., arbi-
trary pair-wise overlaps; no assumptions) has the follow-
ing equilibrium equations:

fsh,a = fsh,c

fsh,c = fsh,b

pa + pb + pc = 1.

That is, all of the shared fitnesses are the same, so that no
individual (a member of a species) and hence no species,

3

324

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



receives any preference during selection. Under RFS (as
well as under Goldberg and Richardson’s (1987) original
fitness sharing), the shared fitness of an individual mem-
ber of species x is simply the share of its objective (static)
fitness fx when divided by the current (dynamic) niche
count for x:

fa

niche count(a)
=

fc

niche count(c)
,

fc

niche count(c)
=

fb

niche count(b)
,

pa + pb + pc = 1.

Assuming that all objective fitnesses are equal, then with-
out loss of generality we can normalize them to one, so
that ∀xfx = 1. Cross multiplying and substituting the
formula for niche count yields (basically, we are setting all
niche counts, shown in Equation 2, equal to each other)

∑

x∈S(P )

(pxfcx) =
∑

x∈S(P )

(pxfax),

∑

x∈S(P )

(pxfbx) =
∑

x∈S(P )

(pxfbx),

pa + pb + pc = 1.

Expanding the above, we find

pafac + pbfbc + pcfcc = pafaa + pbfab + pcfac,

pafab + pbfbb + pcfbc = pafac + pbfbc + pcfcc,

pa + pb + pc = 1.

Noting that ∀xfxx = 1,

pafac + pbfbc + pc = pa + pbfab + pcfac, (6)
pafab + pb + pcfbc = pafac + pbfbc + pc, (7)

pa + pb + pc = 1. (8)

These niching equilibrium equations correspond to the
most general situation with three niches/species.

3.3 Properties I and II: a and b Form an Exact Cover

Now we specialize Equations 6, 7, and 8 to deal with the
“exact cover” by two out of three species. An example of
this situation is shown in Figure 4.

Property I: Minimum a ↔ b Competition

fab = 0

Now assume Property I, which is the special case in
which species a and b do not overlap, so that fab = 0:

pafac + pbfbc + pc = pa + pcfac (9)
pafac + pbfbc + pc = pb + pcfbc (10)

pa + pb + pc = 1 (11)

Re-arranging Equation 9 above,

(fac − 1)pa + fbcpb + (1− fac)pc = 0. (12)

We now make the key assumption of Property II.

Property II: Maximum (a, b) ↔ c Competition

fac + fbc − fab = fc

Under Property II species c is completely covered by a
and b, which means (assuming Property I holds as well)
that fc = fac + fbc = 1 and therefore fac = 1− fbc.

Substituting 1−fbc for fac in Equation 12 above gives

−fbcpa + fbcpb + fbcpc = 0 (13)
⇒ pa − pb − pc = 0. (14)

Similarly we re-arrange Equation 10,

facpa + (fbc − 1)pb + (1− fbc)pc = 0.

And substituting 1− fac for fbc,

facpa − facpb + facpc = 0 (15)
⇒ pa − pb + pc = 0. (16)

From Equations 14, 16, and Equation 11, we conclude that

(pa, pb, pc) = (
1
2
,
1
2
, 0)

Thus we have shown that if an exact cover of resources
exists in a population, then under RFS selection only the
species representing the exact cover will be expected to
survive to niching equilibrium (with other species being
driven to extinction), at least for the case of two-niche ex-
act covers and a single (third) species not part of the exact
cover.

We next examine how general is this result (the ex-
tinction of the third species c), by removing each of our
key assumptions.
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Figure 4: A situation in which Properties I and II hold.

Figure 5: Properties I and II hold in this experiment from
(Horn, 2002).

3.4 Property II Only

First, we remove the assumption of Property I, that
species a and b do not overlap (that is, fab = 0). We
retain the assumption of Property II, which implies that
a and b completely cover the available resources, so that
the union of their coverage contains all of the resources,
including fc. Figure 6 is an example of this situation.

Now that fab > 0, we must account for the fact that
fc might include fab. Returning to the set of equilib-
rium equations in 8, in which fab appears, we first solve
the equations for the expected proportions of the three
species at equilibrium, without using the assumption that
a and b cover all resources. Thus the following result is
general for all cases of overlap amongst a, b, and c:

pa =
(1− fab − fac + fbc)(1− fbc)

D

pb =
(1− fab + fac − fbc)(−1 + fac)

D
(17)

pc =
(1 + fab − fac − fbc)(−1 + fab)

D

Figure 6: Here Property II, but not I, holds.

where the common denominator, D, is

D =f2
ab + f2

ac − 2fac(fbc − 1) + 2fbc

+ f2
bc − 2fab(−1 + fac + fbc)− 3 .

We now return to Property II, maximum competition
between c and the pair (a, b). We assert here that maxi-
mum competition implies (1) c is completely covered by a
and b so that there are no resources that are covered only
by c, and (2) any overlap fab is completely covered2 by
c. Thus assuming maximum competition between c and
(a, b),

fc = fac + fbc − fab = 1 , (18)

since the quantity fac + fbc includes the intersection fab

twice.
Before applying fac + fbc − fab = 1 to the numer-

ators on the right side of Equations17, we check to see
that that the fractions are meaningful by making sure that
D 6= 0. Substituting fab = fac + fbc − 1 (from Equa-
tionr̃efeq:PropII), we get

D = 4(fac − 1)(1− fbc).

Setting the above expression for D equal to zero and solv-
ing, yields fac = 1 and fbc = 1. Thus the expressions
in Equations 17 are useful outside of the extreme cases in
which species c is identical (in coverage) to either a or b.

Substituting the Property II assumption (fab = fac +
fbc − 1) into the numerators of the expressions in Equa-
tions 17 above, and simplifying, yields

(pa, pb, pc) = (
1
2
,
1
2
, 0),

the same proportions as earlier. Thus even with some
overlap between the two ”covering” species (a and b),

2This second implication of maximum competition follows from the
idea that any “private” competition between a and b would somehow
detract from their mutual competition with c.
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species c will be eliminated, as long as a and b maxi-
mally compete with c (Property II). It is clear that the dom-
inance of the cooperative species pair a, b depends solely
on Property II, the complete coverage of resources by a
and b together. It is not necessary for a and b to be disjoint
(i.e., minimally competitive) in their coverage; as long
as both species are needed for complete coverage (i.e.,
fab < 1), and c is NOT needed (i.e., fc−fac−fbc+fab = 0),
and c covers any competition (fab) between the two, then
c will be driven to extinction while a and b will survive.

Theorem 1 Assuming a population made up of only three dis-
tinct species (a, b, c), a sufficient condition for RFS with pro-
portionate selection to drive species c, and only species c, to
extinction is the following: fac + fbc − fab = fc.

PROOF: The proof is given above.

Corollary 1 If two species a and b form an exact cover of re-
sources, then RFS with proportionate selection will drive any
third species c to extinction.

PROOF: Since a and b form an exact cover, then
fab = 0 and fac + fbc = fc (all resources are cov-
ered by a and b). Therefore the sufficient condition
fac + fbc − fab = fc from Theorem 1 holds.

Next we look at some situations in which a and b
do NOT completely cover the resources; that is, c covers
some resources “of its own”: fc > fac + fbc. So we re-
move the assumption of Property II. Will c then survive
at equilibrium?

3.5 Property I Only

To simplify our analysis, we constrain our niching situa-
tion in two ways. First, we assume disjoint coverage by
returning to the assumption of Property I. That is, we now
assume that a and b do NOT overlap (fab = 0). (While re-
moving the assumption of Property II, we are adding the
assumption of Property I). Thus our equilibrium equa-
tions are the same as in Equations 9, 10, and 11 above.
Second, we assume a third property,

Property III, Symmetry of Competition: fac = fbc

These two assumptions, of Properties I and III, sim-
plify our foray into situations in which Property II, maxi-
mum competition, does not hold.

Property III allows us to substitute fac for fbc in Equa-
tions 9, 10, and 11. After substituting and re-arranging,
we have the following set of equations:

(fac − 1)pa + facpb + (1− facpc) = 0, (19)
(−fac)pa − (1− fac)pb + (fac − 1)pc = 0, (20)

pa + pb + pc = 1. (21)

Adding the first two equations above yields −pa + pb = 0
which means that pa = pb. Substituting this last result
into the Equation 21 above, and solving for pc results in

pc = 1− 2pa, (22)

which can then be substituted for pc in Equation 20 above,
giving

(−fac)pa − (1− fac)pb + (fac − 1)(1− 2pa) = 0.

Solving this for pa results in

pa =
1− fac

3− 4fac
= pb.

Substituting these values of pa and pb into Equation 21
and solving for pc:

pc =
1− 2fac

3− 4fac
. (23)

Equation 23 is plotted in Figure 7, which shows how
the population proportion of c decreases with increasing
overlap fac up to fac = 1

2 . (Recall that since fac = fbc

the maximum value of fac is 1
2 so that the denominator

in Equation 23 can never be zero.) As Figure 7 reveals,
when fac = 0, there is no overlap between any of the three
species, and the equilibrium distribution divides the pop-
ulation equally among a, b, and c.

3.6 Visualizing the Combined Results

We can now visualize all of the above results together in
a three dimensional plot of species c (that is, pc) as a func-
tion of pairwise overlap with species a and b (that is, as a
function of fac and fbc).

First we re-compute the general function pc(fac, fbc)
under only one assumption, that of Property I (fab = 0).
Going back to the most general expression for pc, in Equa-
tion 17, we substitute 0 for fab and get

pc =
1− (fac + fbc)

f2
ac + f2

bc + 2facfbc + 2fac + 2fbc − 3
.

We note that the expression above applies only if fac +
fbc ≤ 1 (otherwise, pc becomes negative). Property I im-
plies this condition,

fab = 0 ⇒ fac + fbc ≤ 1,

6
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Figure 7: When Properties I and III hold, but II does not,
then pc decreases with increasing overlap fac = fbc.

therefore,
fac + fbc > 1 ⇒ fab > 0.

If there is non-zero overlap between a and b, then there
are many ways for c to interact with a, b, and the overlap
of a and b. In particular, when fab > 0, and there are
no other contraints on the species’ interactions, then pc

becomes a function of fac,fbc, fab, and fabc. So to keep
our visualization of pc a surface plot function of just fac

and fbc, we assume Property II (fac + fbc − fab = fc = 1)
when fac + fbc > 1. We have already shown that pc = 0
under the assumption of Property II. Thus we have

pc =

{
1−fac−fbc

(fac+fbc)2+2(fac+fbc)−3 if fac + fbc ≤ 1,

0 if fac + fbc ≥ 1.
(24)

In Figure 8 we plot this pc(fac, fbc). We can see that
species c should survive at equilibrium if it covers any re-
sources not covered by a or b (i.e., 1−fac−fbc > 1). We can
see how all three species receive an equal share (one third)
of the population when there is no inter-species overlap at
all (i.e., when fac = fbc = fab = 0). And we can see that
the representation of c, that is, pc, decreases with any in-
crease in the combined overlap with other species (that is,
fac + fbc).

To help relate the surface in Figure 8 to the various
earlier analyses under different assumptions, we label a
contour plot of the surface with the assumed properties (I,
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Figure 8: The more general situation in which c’s overlaps
with a and with b are allowed to vary independently.

II, or both) in Figure 9. In the figure, the lower left triangle
of the fac-fbc plane is the region in which fac + fbc ≤ 1,
and so Property I, fab = 0, can hold.

4 Conclusions

The RFS algorithm, unlike many other effective and im-
portant co-evolutionary systems, lends itself to a static
analysis. Interaction among individuals, and thus be-
tween species, is limited to pair-wise competition for re-
sources. Furthermore, the formulation for the niche-count
calculation leads to linear equations to describe niching
equilibrium. These linear equations can be manipulated
for analysis via simple algebra.

The analytical results for three interacting species
show that if two species together exactly cover the re-
sources of a third species, then the first two species will
take over the population at niching equilibrium, driving
the third, “redundant” species to extinction. Furthermore,
for the three niche case, if a two-niche complete cover ex-
ists, even if not exact, then that cover will be “selected”
by RFS niching, and will be the sole surviving ensemble
at niching equilibrium, as long as the third species cov-
ers any overlap between the first two. If however, all
three species cover some resource(s) uniquely (that is, for
each species there is some resource covered only by that
species), then all three species will be present when the
population reaches niching equilibrium.

One might interpret the relationship between two
covering species to be “cooperative” in that they both
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Figure 9: To plot a function of two independent variables
(overlaps fac and fbc), certain properties are assumed in
certain regions.

“compete” against (overlap) a common competitor: the
third, and losing, species. This is a remarkable result.
The three species all have the same objective fitness (that
is, unshared fitness); they all cover the same amount of
resources. Yet RFS selection strongly favors two of the
three. This preference must be due solely to the greater
resource coverage of one particular ensemble of species
over any other.

We note that the RFS algorithm analysed here, and
the analysis itself, are general to all types of RFS applica-
tions. The results are not limited to axis-aligned squares.
They apply to any shapes, with or without rotation, in
any number of dimensions. Furthermore, the results of
this paper are not limited to spatial “nesting” of geomet-
ric shapes. The RFS algorithm, and hence the current ana-
lyis of the algorithm, apply to the nesting of any kind of
sets. Shape overlap is really just a special case of set inter-
section. Thus the most general problem domain to which
this analysis is applicable is exact k-cover (from the general
domain of set covering).

5 Future Work

This paper presents only a first foray into the theoretical
analysis of RFS. In particular, it uses only a static analysis,
looking only at niching equilibrium, and considers only
three niches, in which two of the three form a complete

Figure 10: Examples reveal the range of three-way nich-
ing situations in the surface plot of pc.

cover of the resources.
A logical next step in the analysis would be to con-

sider the case of two-against-k. Would the two covering
species still emerge as the sole surviving species at nich-
ing equilibrium, when competing against two, three, or
an arbitrarily large number k of other, covered, species?
If the answer is “yes”, then does that result extend to h
(h > 2) covering species against k species? If so, then we
will have proven that RFS converges to the optimal tiling
in shape nesting problems (e.g., Horn, 2002).

Other directions for future work include a compari-
son with resource sharing (Horn, Goldberg, & Deb, 1994).
Does resource sharing behave similarly to RFS when
two of three species exactly/completely cover all the re-
sources? (We note that there seems to be little need to con-
duct a similar analsis of, and comparison with, fitness shar-
ing (Goldberg & Richardson, 1987) because FS and RFS
use the same functional structure in their sharing func-
tions, with the caveat that FS is limited to rotationally
symmetric niche shapes.) Finally, beyond static analysis
lie many tools of dynamic analysis of niching and shar-
ing methods (Deb & Goldberg, 1989; Horn, 1997), such
as convergence to equilibrium, stability of equilibrium,
using expected proportions over time via recurrence re-
lations, and Markov chains, which have mostly been ap-
plied to two-niche scenarios.
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