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Abstract—Satisficing game theory is an alternative to tradi-
tional game theory which offers more flexibility in modeling
players in social interactions. Unfortunately, satisficing players
with conflicting attitudes may implement dysfunctional behaviors,
resulting in poor performance. We present a method based on
evolutionary game theory by which players may adapt their
attitudes to their circumstances, allowing them to overcome dys-
function. Additionally, we extend the Nash equilibrium concept
to satisficing games, showing that the method presented leads
the players toward equilibrium in their attitudes. These ideas
are applied to the Ultimatum game as a simple example.

I. INTRODUCTION

Game-theoretic models are often used to construct societies
of artificial agents. Classical game theory is founded upon
rational choice, or individual rationality. Individual rationality
asserts that players are concerned solely with maximizing
individual payoff. Rationality leads players towards Nash
equilibria, which are strategies such that no single player
can improve its payoff by changing strategies. Unfortunately,
such self-interested behavior places significant limitations in
terms of the players’ social interactions. It is typically difficult
to engender cooperation and other social behaviors under
classical game theory, causing it to come under criticism in
recent years [1, 2].

Satisficing game theory [3] is an alternative to classical
decision theory that addresses these social shortcomings. Its
approach is fundamentally different, relaxing the assumption
of individual rationality and instead endowing players with
social rationality. Social rationality provides a natural mecha-
nism by which players may consider the preferences of others
in formulating their utility functions. Players’ utilities are
expressed conditionally, and may depend on other players’
preferences for action.

Satisficing models are often successful in overcoming the
social hurdles presented by classical theory. Players can exhibit
sophisticated social behaviors such as cooperation, altruism,
negotiation, and compromise [4, 5]. However, satisficing the-
ory also presents its own set of challenges. As in real-life
social situations, satisficing communities may behave dysfunc-
tionally. When players with incompatible attitudes are grouped
together, they may choose incoherent behaviors that lead to a
different breed of poor performance.

In this paper, we aim to “bridge the gap” between classical
and satisficing game theory by equipping satisficing players
with a form of individual rationality. We provide a method
whereby players may modify their attitudes according to the
game structure and the attitudes of other players. In this
method, which is based upon the multipopulation replicator

dynamics from evolutionary game theory [6], players modify
their attitudes to improve their individual payoffs, allowing
dysfunctional societies to adapt. The result is a blend of the
two decision theories: players retain the conditional utility
structure of satisficing theory while seeking to improve indi-
vidual payoff. The dynamics lead the society towards a social
Nash equilibrium, which is essentially a Nash equilibrium in
players’ attitudes rather than in their actions.

In Section II we familiarize the reader with the basics of sat-
isficing game theory. In Section III we present the Ultimatum
game under the classical and satisficing frameworks, which
will be used as an example throughout the paper. In Section IV
we define the social Nash equilibrium and present the attitude
dynamics. We apply these to the satisficing Ultimatum game
to explore the dynamics issues from multipopulation replicator
dynamics such as initial conditions and varying adaptation
rates in Section V. We draw our conclusions in Section VI.

II. SATISFICING GAME THEORY

In satisficing game theory, player eschew individual ratio-
nality and instead exhibit social rationality, which comprises
two basic tenets: (a) players may consider the preferences
of others in constructing their utilities, and (b) instead of
seeking for maximal utility, players are content with actions
that are “good enough.” As mentioned in the introduction, the
first tenet is accommodated by introducing conditional utilities
(which are called social utilities). Social utilities are patterned
after probability mass functions, allowing concepts such as
conditioning and independence—which are typically used only
in the probabilistic sense—to be extended to decision-making
problems.

To accommodate the second tenet, each player possesses
two social utilities. For Player i, we denote the selectability
and rejectability functions pSi

(ui) and pRi
(ui), respectively,

where the pure strategies ui are elements of Player i’s strategy
space Ui. Each function quantifies the preferences for the
strategy ui from a different perspective. The selectability quan-
tifies them according to their benefits, while the rejectability
quantifies them in terms of their costs. Since pSi

(·) and pRi
(·)

are mass functions, they are normalized and nonnegative,
and thus give measures of the relative benefits or costs for
implementing a strategy. The two utilities allow a precise def-
inition of “good enough” for Player i. Define the individually
satisficing set as all strategies for which the relative benefits
are at least as great as the relative costs:

Σi = {ui ∈ Ui : pSi
(ui) ≥ qpRi

(ui)}, (1)
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where q is the index of caution. Essentially q is a tuning
parameter that with which Player i can alter its definition of
“good enough.” Since pSi

(·) and pRi
(·) are normalized mass

functions, setting q = 1 ensures that Σi contains at least one
element.

For multiple players, we typically wish to consider strategy
profiles u = (u1, u2, . . . un) that are acceptable to each player.
Define the satisficing rectangle as

�12···n = Σ1 × Σ2 × · · · × Σn, (2)

the Cartesian product of the individual players’ individually
satisficing sets. Any u ∈ �12···n is simultaneously acceptable
to each player.

In specifying the players’ conditional utilities, it is conve-
nient to express the relationship between players graphically.
In probability theory, relationships between random variables
are expressed in Bayesian networks [7, 8]. Similarly, in sat-
isficing theory the relationship between players’ utilities are
expressed in praxeic networks.1 The praxeic network consists
of a directed acyclic graph (DAG), where the nodes are
the selecting and rejecting perspectives of each player and
the edges are the conditional utility functions. For example,
consider the simple two-player community depicted in Figure
1. For each player, the rejecting preferences depend on the
selecting preferences of the other player, while the selecting
preferences are independent. For large communities where
the interdependence structure is highly complex, we may
employ established methods such as Pearl’s Belief Propagation
Algorithm [7] to analyze the community.

S1 S2

R1 R2

Fig. 1. A simple praxeic network.

In discussing the players’ social utilities, we retain the ter-
minology of probability theory. In the community from Figure
1, we refer to Player 1’s conditional rejectability function, de-
noted pR1|S2

(v1|u2). The conditional mass function expresses
hypothetical utility: if Player 2’s selecting preferences entirely
favored strategy u2, what would be Player 1’s rejectability
for v1? As with probability mass functions, we may compute
the marginal rejectability by summing over the conditionals,
pR1

=
∑

u2∈U2
pR1|S2

(v1|u2)pS2
(u2). The marginal utilities

determine the individually satisficing sets and the satisficing
rectangle. If a utility is independent (such as the selectability
functions in this example), its marginal may be expressed
directly, without conditioning.

With the marginal and conditional utilities
defined, we can form the interdependence function

1The term praxeic is derived from praxeology, which refers to the study of
human behavior.

pS1···SnR1···Rn
(u1, · · · , un, v1, · · · , vn), which is

the joint mass function of all players’ selecting
and rejecting preferences. By the chain rule of
probability theory, the interdependence function
for this example is pS1S2R1R2

(u1, u2, v1, v2) =
pR1|S2

(v1|u2)pR2|S1
(v2|u1)pS1

(u1)pS1
(u1).

Satisficing games are characterized by the triple
(X,U, pS1···SnR1···Rn

), where X is the set of players,
U is the Cartesian product of the players’ strategy spaces,
and pS1···SnR1···Rn

is the interdependence function. From this
information, all necessary marginal utilities can be computed
and solution concepts such as the satisficing rectangle can be
determined.

III. THE ULTIMATUM GAME

A. Classical Model

The Ultimatum Game has become a common example for
illustrating the weakness of classical game theory as a model
for human behavior [9, 10]. The game consists of two players:
the proposer (Player 1, referred to for convenience as a male)
and the responder (Player 2, a female). The proposer and the
responder must agree on the division of a dollar. The game is
played sequentially: the proposer offers some fraction to the
responder, who must decide whether or not to accept it. If she
does, they divide the dollar as proposed. If not, each player
receives nothing.

The proposer’s (uncountable) strategy space is the interval
[0, 1], which makes analysis difficult. Thus, we will pattern
our discussion after Gale et al. [11] and examine the two-
option minigame, which captures the “heart” of the game while
simplifying analysis. In this minigame, the proposer offers
either a high or low fraction (h or l) to the responder, who
again may choose to accept or reject (a or r) the offer. The
payoffs for this minigame are shown in Table I.2

TABLE I
PAYOFF MATRIX FOR THE ULTIMATUM MINIGAME.

Responder
Proposer a r

h (1 − h, h) (0, 0)
l (1 − l, l) (0, 0)

As long as h > l, the unique Nash equilibrium for is for
the proposer to offer the low fraction and for the proposer
to accept it. However, this strategy is rarely implemented by
human decision-makers. Real-life proposers are more likely to
give fair offers, and responders often reject unfair offers, even
though doing so reduces raw payoff. These results suggest that
players’ desire to maximize payoffs are tempered by social
considerations. Such considerations are difficult to model
under classical game theory, which has prompted Stirling et al.
to cast the Ultimatum game as a satisficing game [12], where
social factors may influence players’ decisions. We briefly
present their model, which we will use throughout the paper.

2We use h and l to denote both the strategies of offering the two fractions
and the numerical value of each fraction.

332

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



B. Satisficing Model

In the proposed model, the players’ behavior is governed
by their attitudes. The proposer’s attitudes are described by
his intemperance index 0 ≤ τ ≤ 1. If τ = 1, he is exclusively
concerned with maximizing payoff. As τ decreases, he is
increasingly willing to compromise. The responder’s attitudes
are described by her indignation index 0 ≤ δ ≤ 1. If δ = 0,
she will accept any fraction offered her. As δ increases, she
becomes increasingly willing to forfeit her share in order to
punish the proposer.

This is modeled explicitly by defining the players’ social
utilities. In this game, the selectability functions are associated
with the benefits—the fraction of the dollar received. The
rejectability functions are concerned with the risk of losing
the entire dollar due to the responder’s rejection. Since the
proposer acts first, his utilities are specified unconditionally.
His selectability is concerned only with his own benefit, and
his desire to keep the larger fraction for himself is determined
by his intemperance:

pS1
(u1) =

{
1 − τ, for u1 = h

τ, for u1 = l
. (3)

To avoid losing the entire dollar, the proposer considers the
responder’s indignation index in constructing his rejectability:

pR1
(v1) =

{
τ(1 − δ), for u1 = h

1 − τ(1 − δ), for u1 = l
. (4)

The responder, who plays second, conditions her utility
functions on those of the proposer. She wishes to maintain
her fraction of the dollar, but reserves the right to punish an
intemperate proposer. Her conditional rejectability is

pS2|S1
(u2|u1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, for u2 = a|u1 = h

0, for u2 = r|u1 = h

1 − δ, for u2 = a|u1 = l

δ, for u2 = r|u1 = l

. (5)

If the proposer unilaterally favors the high offer (τ = 0), the
responder will entirely prefer to accept the offer. However, if
the proposer favors the low offer (τ = 1), she prefers to reject
the offer according to her indignation index δ. Her conditional
rejectability essentially encodes the same preferences, and is
given by

pR2|S1
(v2|u1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, for v2 = a|u1 = h

1, for v2 = r|u1 = h

δ, for v2 = a|u1 = l

1 − δ, for v2 = r|u1 = l

. (6)

Summing over the conditional mass functions, the respon-
der’s marginal utilities are

pS2
(u2) =

{
1 − τδ, for u2 = a

τδ, for u2 = r
(7)

pR2
(v2) =

{
τδ, for v2 = a

1 − τδ, for v2 = r
. (8)

The interdependence function for the Ultimatum game is
constructed according to the chain rule:

pS1S2R1R2
(u1, u2, v1, v2) = pS2|S1

(u2|u1)pR2|S1
(v2|u1)

· pS1
(u1)pR1

(v1). (9)

C. The Satisficing Rectangle

Now that the players’ utility functions are defined, we can
examine their actions according to the satisficing rectangle.
Recall that an strategy ui is individually satisficing for Player
i if pSi

(ui) ≥ qpRi
(ui). In Figure 2 we set q = 1 and

show the satisficing rectangle as functions of τ and δ. Four
possibilities result depending on the players’ attitudes. In
the (l, a) region, the proposer is sufficiently greedy and the
responder sufficiently conciliatory that the low fraction is
accepted. In the (h, a), where τ is lower and/or δ is higher,
the high fraction is accepted. In regions (h, r) and (l, r), the
responder is sufficiently indignant that the offers are rejected.
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(h, r)(l, a)

(h, a)

Fig. 2. (τ, δ) regions for the satisficing rectangles.

Figure 2 shows a few interesting properties that are typical
of satisficing games. Consider a responder with an indignation
index of, say, δ = 0.6. Notice that her actions are not
simply (or even primarily) based on the offer proposed. For
τ = 0.75, she accepts the low offer. However, if the proposer’s
intemperance index increases much higher, she refuses. She
accepts an low offer from a somewhat moderate proposer and
refuses it from an intemperate one. In this highly sophisticated
behavior, the responder punishes the proposer not for his
actions, but for his attitudes. Such social behaviors may be
desirable in the synthesis of artificial decision-makers, and are
extremely difficult to model under classical game theory.

However, this framework also allows for undesirable be-
havior. Consider the (h, r) region, where the responder rejects
the high fraction. Her intemperance is sufficiently high that
she punishes even a moderately intemperate proposer. Such
dysfunctional behavior is somewhat common in satisficing
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games and is a consequence of the structure of the utilities:
players’ utilities depend on the others’ attitudes rather than the
strategies they implement. Note that this poor performance is
quite distinct from the difficulties of the Nash equilibrium.
Under classical game theory, players’ narrow focus on payoff
allows the proposer to exploit the responder. Here, an overly
indignant responder ignores payoff to reject even a high offer.

We hasten to note that dysfunctional behavior is not a failure
per se of the satisficing model. Dysfunctional societies do exist
in practice, and satisficing theory simply tells us that players
with incompatible attitudes (in this case a highly indignant
responder with a moderately intemperate proposer) may act
incoherently. Unfortunately, in designing artificial societies,
we typically prefer to avoid incoherent behaviors, sociologi-
cally justifiable or not. And while there are refinements to the
satisficing rectangle that help identify dysfunctional societies,
satisficing theory so far has nothing to say about how they
might resolve their dysfunction.

IV. ATTITUDE DYNAMICS

A. Social Nash Equilibria

To introduce the social Nash equilibrium and the attitude
dynamics, we must first embellish the structure of the satisfic-
ing game. To do this, we endow each player with a classical
utility function which is based solely on the strategies that the
players implement.

Definition 4.1: An augmented satisficing game is a 5-tuple
(X,U, pS1···SnR1···Rn

,A, π(u)). The first three elements are
the set of players, the product strategy space, and interde-
pendence function as normal. Additionally, we introduce the
product attitude space A= A1 × A2 × · · · × An containing
the attitudes that the players may adopt, and π(u), a vector
payoff function which describes the raw payoff to the players
for implementing the strategy profile u ∈ U.

In order to be able to augment a satisficing game, the play-
ers’ attitudes must be specified as distinct parameters in the
players’ social utilities. Further, we must be able to construct a
“raw” payoff function that is separate from the social utilities.
While this may not be possible for all satisficing games, the
extension is straightforward for the Ultimatum game. The
players’ attitudes are the intemperance and indignation indices
τ and δ, yielding a product attitude space of A = [0, 1]×[0, 1].
The payoff function π(u) is described by the payoff matrix
in Table I.

The augmented satisficing game describes a two-step map-
ping from attitudes to payoffs. The social utilities—determined
by the interdependence function—map the players’ attitudes to
strategy profiles.3 The payoff function then maps the strategy
profile to raw payoffs. Thus, in an augmented satisficing
game, we may evaluate the raw utility of possessing particular
attitudes. To simplify notation, we will occasionally refer to
π(a), the payoff to the players for implementing the strategy

3Here, we have glossed over the fact that the satisficing rectangle may
contain multiple strategy profiles. For simplicity, we will assume that, if
necessary, the players employ a tie-breaking mechanism to select a unique
strategy profile.

profile determined by the attitude profile a ∈ A. That is, we
may think of an augmented satisficing game as a classical
game where players’ payoffs are determined by the attitudes
they adopt, rather than the strategies they implement. Players
may now consider changing their attitudes if they result in poor
payoff. This concept provides the motivation for the social
Nash equilibrium.

Definition 4.2: An attitude profile a ∈ A is a social
Nash equilibrium if no single player can improve its pay-
off by changing attitudes; that is πi(a1, . . . , ai, . . . , an) ≥
πi(a1, . . . , a

′

i, . . . , an) for all a′

i ∈ Ai, i = 1, 2, . . . , n.
In his original paper [13], Nash proves that at least one equi-

librium exists for any game with finite strategy spaces. How-
ever, this equilibrium may only exist in mixed strategies, which
are probability distributions over players’ strategy spaces. In
the case of mixed strategies (as opposed to pure strategies),
Nash equilibria are points where no player can improve its
expected payoff by deviating. By the same argument, a social
Nash equilibrium exists for every game with a finite attitude
space, but may exist only in a probability distribution over
the players’ attitude spaces which we will refer to as mixed
attitudes.

For the Ultimatum game, even though the attitude spaces are
infinite, it is straightforward to show that social Nash equilibria
exist in “pure” attitudes. In Figure 3, the social Nash equilibria
are the shaded regions. If the players’ attitude vector lies in
these regions, there is no incentive for either player to change
attitudes. Consider the shaded region in (h, a). The responder
receives maximum payoff, and therefore has no reason to
deviate. Similarly, the proposer cannot improve his payoff by
changing τ . While the proposer is not earning his maximum
payoff, changing τ can only drive the responder to reject the
offer, resulting in lower payoff. Similarly, in the (l, a) shaded
region, altering δ can only result in the offer being rejected.
For any other attitude vector in A, at least one player stands
to increase payoff by changing attitudes.

The players’ social Nash equilibria result in the acceptance
of either the high or low offer. By contrast, the classical
Nash equilibrium results in only the low offer being accepted.
This new concept provides a useful juxtaposition of social
and individual rationality: we retain the social structure which
allows the high fraction to be offered, but eliminate the
possibility that conflicting attitudes will result in the forfeiture
of the entire dollar.

Unfortunately, the social Nash equilibrium concept does
not tell us which equilibrium these players will adopt. It
simply says that if their attitudes lie in the equilibrium region,
neither player has incentive to deviate. Therefore, we turn to
evolutionary mechanisms to explore which equilibrium will
result under different conditions.

B. Replicator Dynamics

The multipopulation replicator dynamics describes evolu-
tion in asymmetric games where players are selected from
separate populations. In the Ultimatum game, for example,
there are two populations: a population of proposers and a
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Fig. 3. Social Nash equilibria for the Ultimatum game.

population of responders. Each player is “pre-programmed” to
play a particular strategy. In the classical game, the proposers
are programmed to offer either the high or low fraction, and the
responders are programmed either to accept or reject the offer.
Players are randomly selected from the populations, play the
game, and earn payoffs according to their payoff functions.
They then (asexually) reproduce according to their payoffs:
the number of offspring a player has is proportional to its
payoffs. A player’s offspring always play the same strategy as
the parent.

The replicator dynamics examines the ratio of players
playing particular strategies. There is in general an arbitrary
number of populations, but here we will restrict our attention to
the two-population case. Define two normalized state vectors
x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , ym)T for a game
where Player 1 and Player 2 have n and m pure strategies to
choose from, respectively. Each element xi or yj represents
the population shares of i and j, or the fraction of Population
1 or 2 playing pure strategy i or j. We may equivalently regard
x and y as probability distributions over the two populations.

The standard two-player replicator dynamics [6] are given
by a system of n + m differential equations

ẋi =
[
π1(i,y) − π1(x,y)

]
xi (10)

ẏj =
[
π2(j,x) − π2(y,x)

]
yj, (11)

where π1(i,y) =
∑

k π1(i, k)yk is the expected utility of
playing pure strategy i against a member of the population
described by y and π1(x,y) =

∑
l π1(l,y)xl is the average

expected payoff for players in Population 1. If a particular
strategy is more successful than average, its population share
grows. If a strategy is unsuccessful, the players playing it are
overwhelmed by the offspring of more successful players, and
its population share diminishes.

The replicator dynamics is typically used to describe the
evolution of the distributions of large populations. However, it

can also be used as a Bayesian deliberation process [14] where
two players may update their mixed strategies according to the
mixed strategies of the other player. Here, we interpret x and y

as the mixed strategies of Player 1 and Player 2. Each player
updates its mixed strategy according to (10) and (11). It is
shown in [6] that if all pure strategies are represented in the
initial conditions x(0) and y(0), then any steady state of the
dynamics is a Nash equilibrium in the players’ strategies.

To extend this to the satisficing case, we operate the de-
liberation/replicator dynamics on the players’ attitudes rather
than the strategies they implement. We require that both
players have finite attitude spaces so that x and y are finite-
dimensional. Instead of representing mixed strategies, the state
vectors represent “mixed” attitudes, and the dynamics allow
the players to alter the probability with which they will exhibit
the attitudes in their attitude spaces. The attitude dynamics is
exactly as in equations (10) and (11), except that we consider
the expected utility of the attitudes rather than the strategy
profiles. Thus, as long as all attitudes are represented in the
initial conditions, any steady state of the dynamics is a social
Nash equilibrium.

V. RESULTS

To apply the attitude dynamics to the Ultimatum game,
we must quantize the players’ attitude spaces. Each player’s
attitude space is A = {a1, a2, . . . , a100}, a set of 100 evenly
spaced values on the interval [0, 1]. Although this provides a
finite state space for the attitude dynamics, the high dimension-
ality and nonlinearity of the system of differential equations
makes analysis difficult. However, we can make a few general
statements about the results of the attitude dynamics.

From the previous section, we know that, given well-
behaved initial conditions, the steady state of the dynamics is a
social Nash equilibrium in either pure or mixed attitudes. The
pure-attitude equilibria are straightforward and have already
been shown in Figure 3. While the mixed-strategy equilibria
are more complicated, we still can extract a few simple and
useful facts without overly complicated analysis. First, it’s
straightforward to show that any attitude profile with all of
its probability within one of the equilibrium regions of Figure
3 is itself an equilibrium. It is also possible to have probability
mass located in the non-equilibrium portions of the (l, a) and
(h, a) regions. Fortunately, however, a social Nash equilibrium
cannot have probability mass in either the (l, r) or (h, r)
regions. When there is probability in those regions, both
players can improve expected utility by modifying his or her
mixed attitudes until there is no probability of rejecting the
fraction. Therefore, the attitude dynamics are guaranteed to
eliminate the dysfunctional behavior observed in Section III.

To illustrate the behavior of the attitude dynamics, we study
the dynamics of the Ultimatum game under two different
scenarios by numerically approximating the solution to the
differential equations defined by (10) and (11). For each
player’s initial conditions, we use a two-sided exponential
distribution similar to the Laplace distribution. Unlike the
Laplace distribution, however, the two sides are not symmetric.
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That is, the initial conditions are given by

xi(0) =

{
ceλ1(ai−μ), for ai ≤ μ

ceλ2(μ−ai), for ai > μ
, (12)

where λ1 and λ2 are chosen such that the expected value
of the distribution is μ and the variance is an arbitrary σ2,
and c ensures normalization. The exponential distribution
provides several benefits in the attitude dynamics. First, we
can define an arbitrarily “tight” distribution around the player’s
desired initial attitudes while still giving nonzero probability
to each element in the player’s attitude space. This is important
because nonzero initial conditions are necessary to ensure that
the steady-state distribution is a social Nash equilibrium.

Also, the exponential distribution encourages players’ dis-
tributions to “shift” to adjacent values rather than “jump”
across the attitude space. The form of the replicator dynamics
equations explains this. Equations (10) and (11) show that
the probabilities grow not only according to their relative
utility, but also their current values. Therefore, this distribution
ensures that attitudes close to the initial mean can grow more
readily than those far away. This allows for a smoother and
perhaps more realistic transition in the players’ attitudes.

A. The “Arms Race”

In our simulations we let l = 0.25 and h = 0.75 be the low
and high fractions offered. In this first scenario, we initialize
the players’ attitudes such that μ1 = μ2 = 0.2 and σ2

1 = σ2
2 =

0.001. Initially, the players’ attitudes almost invariably lead
to the offer and acceptance of the high fraction. While such
behavior is not necessarily dysfunctional, their attitudes are
not in equilibrium. The dynamics of this scenario provides a
useful demonstration of the social Nash equilibrium as well
as a highly interesting steady state.

Figure 4(a) shows the initial joint distribution of the player’s
attitudes. Since the responder is earning maximal payoff, she
has no incentive to shift her attitudes. The proposer, however,
can improve his payoff by increasing τ . In Figure 4(b), we
see that the proposer shifts his attitudes such that the joint
distribution peaks right on the boundary between the (l, a) and
(h, a) regions of the satisficing rectangle. He has shifted his
attitudes just enough move the players into the region where
he gets maximum payoff.

Once the shift is made, however, the responder stands to
gain by modifying her preferences. In Figure 4(c), we see
the results of an “arms race”: the responder slightly increases
δ to move the players to the (h, a) region, prompting the
proposer to increase τ . The players “walk” their attitudes
along the high/low boundary until it intersects the accept/reject
boundary. At this point (Figure 4(d)), neither player can
improve payoff by changing attitudes, and the distribution
becomes almost entirely focused on boundary point between
the four regions. In this case, the specific behavior is an artifact
of the quantization of the attitude spaces, and the players end
up in the (h, a) region preferred by the responder.

(a)

(b)

(c)

(d)

Fig. 4. “Arms race” joint attitude distribution for (a) t = 0, (b) t = 35, (c)
t = 60, and (d) t = 125.
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B. Adaptation Rates

An important consideration in multipopulation replicator
dynamics is the relative size of the populations. If, for exam-
ple, Population 1 is significantly smaller than Population 2, the
players from Population 2 are paired less frequently, and the
population shares for Population 2 evolve more slowly than for
Population 1. While in the attitude dynamics the populations
represent single players’ attitude distributions, we still may
consider the players’ adaptation rates. A well-established
principle in evolutionary game theory is that if all players’
payoffs are multiplied by a constant β, the solution trajectories
and steady state behavior remain unchanged; the dynamics
simply progresses faster. However, if Player 1’s payoffs are
multiplied by β1 and Player 2’s payoffs are multiplied by β2,
the players adapt at different rates, and the final distribution
may be different.

Consider the dysfunctional pair whose initial conditions are
μ1 = 0.8, μ2 = 0.9, σ2

1 = σ2
2 = 0.001 (Figure 5(a)). Here, the

responder rejects the high offer. The dynamics shift both of the
players’ attitudes toward a social Nash equilibrium, but which
one? The proposer, of course, would prefer to end up in the
(l, a) region, while the responder prefers (h, a). The answer
lies with which one adapts most quickly. If β1 = β2 = 1, the
responder is able to shift her attitudes more quickly than the
proposer. She begins accepting the low offer, and the proposer
no longer has any reason to adjust his attitudes, resulting in
(l, a) as the steady state behavior (Figure 5(b).

However, if we let β1 = 5, the proposer adapts more
quickly. He reduces τ until the responder is willing to accept
the high offer, leaving the players in the (h, a) equilibrium
(Figure 5(c)). In this scenario, we get an interesting result:
initially, both players have incentive to adapt to avoid losing
the entire dollar. However, the player who adapts more slowly
eventually ends up in his or her preferred equilibrium.

VI. CONCLUSION

In this paper we have presented a solution for overcoming
dysfunction in satisficing players. Since players’ utilities are
functions of others’ attitudes, rather than their actions, players
with conflicting or incompatible attitudes may enact dysfunc-
tional behaviors. In our solution, we augment the satisficing
game with a classical payoff function, allowing us to examine
the raw payoff to each player for exhibiting particular attitudes.
This approach allows us to incorporate elements of individual
rationality (classical game theory) and social rationality (sat-
isficing game theory) into a single framework.

We define a social Nash equilibrium where no player in
an augmented satisficing game can improve raw payoff by
changing attitudes. We use the standard multipopulation repli-
cator dynamics as a means for players to adjust their attitudes
to the game and the other players’ attitudes. If the players’
initial distributions assign nonzero probability to each attitude
in their attitude space, then any steady state of the dynamics is
a social Nash equilibrium. The attitude dynamics can be used
as a non-heuristic negotiation model for satisficing players:
players enter the game with their attitude distributions formed

(a)

(b)

(c)

Fig. 5. Adaptation rates: (a) initial distribution, (b) steady state for β1 =
β2 = 1, (c) steady state for β2 = 5.

independently. Through the dynamics, the players respond to
each other’s attitudes, adapting until a social Nash equilibrium
results.

Finally, we note that this work does not address all sources
of dysfunctional behavior. Players may still act poorly given
noisy communication or incomplete knowledge of each other’s
preferences. However, our solution addresses an issue that
is unique to the satisficing approach. Players’ conflicting
attitudes may be resolved as they adjust their preferences to
improve payoff.
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