
Random Hypergraph Models of Learning and Memory in
Biomolecular Networks: Shorter-Term Adaptability vs.

Longer-Term Persistency

Byoung-Tak Zhang

Abstract— Recent progress in genomics and proteomics
makes it possible to understand the biological networks at
the systems level. We aim to develop computational models of
learning and memory inspired by the biomolecular networks
embedded in their environment. One fundamental question is
how the systems rapidly adapt to their changing environment
in a short period (learning) while performing persistently
through the longer time span (memory). We study this issue
in a probabilistic hypergraph model called the hypernetworks.
The hypernetwork architecture consists of a huge number of
randomly sampled hyperedges, each corresponding to higher-
order micromodules in the input. We find that a system
consisting of a large number of a wide range of heterogeneous
low-dimensional components has a fairly competitive chance
of long-term survival (memory, persistency) and short-term
performance (learning, adaptability) as opposed to a system
consisting of a small number of high-dimensional, fine-tuned,
complex components. Empirical evidence is offered to support
these findings and theoretical explanations are given.

I. INTRODUCTION

Cells are highly complex information processing systems.
Much progress has been made in elucidating the molecular
mechanisms of individual cells during the last decades.
In particular, recent progress in genomics and proteomics
makes it possible to understand the biological units and
processes at the systems level. These include gene regulation
networks [7], metabolic pathways [5], signal transduction
networks [2][8], and other protein interaction networks [9].
For example, Figure 1 shows an example regulatory network
in a human cell [1], where a small number of genes interact
more closely than others and the whole network builds an
Internet-like hub structure.

These findings may shed light on the design principles of
biological information processing systems which might be
useful for building artificial information processing systems.
For example, in contrast to the typical problem settings
in machine learning, the biological learning systems are
faced with continuous exposure to the environment. Simple
organisms such as bacteria should strive to adapt to the
changes in their resources of both beneficial (food) and
harmful (poison) nature to swim and to survive [4]. Also, it is
interesting to know how the biochemical networks maintain
the stability while adapting to the cellular environmental
changes. The life time of each molecule is very limited but

Biointelligence Laboratory (http://bi.snu.ac.kr/), School of Computer Sci-
ence and Engineering and Graduate Programs in Bioinformatics, Brain
Science, and Cognitive Science, Seoul National University, Seoul, 151-744
Korea. E-mail: btzhang@bi.snu.ac.kr

the system or the population of the biomolecules maintains
its robustness [14].

We aim to develop computational systems by mimicking
the organizational and processing principles underlying the
biomolecular networks. We ask the fundamental question of
how the organisms adapt to the short-term environmental
change (learning issue) while maintaining the longer-term
persistency in performing a task (memory issue). Here we
hypothesize that a key to the biological solution to this
challenge is the diversity of the variety, size, and complexity
of the molecular species and structures in the cell (and the
organism). The biochemical signal transduction networks,
for example, consist of various molecular species interact-
ing with each other massively yet specifically [12]. The
molecules are relatively simple, but their massive interaction
in a network may exhibit complex, emergent behavior [2].

We use the random hypergraph models [6] to study the
hypothesis that the diversity of the system in its organi-
zational structure plays an important role in their adapt-
ability in a short term and survivability in a long term.
In Section II, we define the hypernetwork architecture. In
Section III, we use the random graph process to build the
hypernetwork structures that model the training data coming
from the environment. The resulting network structures and
their performances are examined in Section IV to study the
relationship between the structural and functional properties.
Section V summarizes the results and discusses future work.

II. THE HYPERNETWORK ARCHITECTURE

Hypernetworks are a generalization of the hypergraphs. A
hypergraph is an undirected graph G whose edges connect
a non-null number of vertices [3], i.e. G = (X,E), where
X = {x1, x2, ..., xn}, E = {E1, E2, ..., Em}, and Ei =
{xi1 , xi2 , ..., xik

}. Ei is called the hyperedges. Mathemat-
ically, Ei is a set and its cardinality (size) is k ≥ 1, i.e.,
the hyperedges can connect more than two vertices while in
ordinary graphs the edges connect up to two vertices, i.e.,
k ≤ 2. A hyperedge of cardinality k will be referred to as a
k-hyperedge.

For example, a hypergraph may consist of seven ver-
tices X = {x1, x2, ..., x7} and five hyperedges E =
{E1, E2, E3, E4, E5} each having a different cardinality. A
hypergraph can be represented as an incidence matrix. The
incidence matrix of a hypergraph G = (X, E) is a matrix
[ai

j] with m rows that represent the hyperedges of G and n

344

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

Fig. 1. An example of regulatory networks in the cell. This MYC
subnetwork in a human B cell shows some micromodules, i.e. groups of a
small number of genes accounting for many of the connections. The network
contains 56 genes directly connected to MYC, the hub, and 444 genes
connected thorough an intermediate. The size of each circle is proportional
to the number of the gene interactions. Source: Nature Genetics [1].

columns that represent the vertices of G, such that ai
j = 1 if

xj ∈ Ei and ai
j = 0 if xj /∈ Ei.

A hypernetwork is a hypergraph that is augmented with
a weight value to each hyperedge (Figure 2). Formally,
we define a hypernetwork as a triple H = (X, E,W),
where X = {x1, x2, ..., xn}, E = {E1, E2, ..., Em},W =
{w1, w2, ..., wm}, where Ei = {xi1 , xi2 , ..., xik

}. A k-
hypernetwork consists of a set X of vertices, a subset E of
X[k], and a set W of hyperedge weights, where E = X[k]
is a set of subsets of X whose elements have precisely k
members. A hypernetwork H is said to be k-uniform if every
edge Ei in E has cardinality k. A hypernetwork H is k-
regular if every vertex has degree k. Note that an ordinary
graph is a 2-uniform hypernetwork with wi = 1.

From the biological network point of view, the hyperedges
in a hypernetwork can be viewed as building blocks, such as
for pathways, motifs, modules, and circuits [11][13][16]. For
example, the set of a small number of genes in Figure 1 can
be represented as a hyperedge in the hypernetwork model
shown in Figure 2. In the hypernetwork model, the coupling
strength of the vertices in the hyperedge is represented by
the weight value associated with the hyperedge. In this sense
the random hypernetwork structure can be used to model and
identify primitive “micromotifs” or higher-order “micromod-
ules” to build massively-interacting “microcircuits”.

Formally, the hypernetworks can be used as a probabilistic
memory to store a data set D = {x(n)}N

n=1 so that they can
be retrieved later by content, where x(n) denotes the n-th
pattern to store. We define the energy of the hypernetwork
as

E(x(n); W) =
|E|∑

i=1

wi1i2...i|Ei|
x

(n)
i1

x
(n)
i2

...x
(n)
i|Ei|

, (1)

where W represents the parameters (hyperedge weights)

Fig. 2. A hypernetwork H = (X, E, W) is a weighted hypergraph
consisting of a set X of vertices, a set E of hyperedges, and a set W
of weights. In contrast to ordinary graphs, a hypergraph consists of edges
of cardinality 1 ≤ k ≤ n, where n = |X|. In this figure, each hyperedge
Ei is represented as a polygon connecting the vertices in it. The thickness
of each hyperedge is proportional to its weight wi.

for the hypernetwork model. Note that x
(n
i1

x
(n)
i2

...x
(n)
i|Ei|

is a
combination of k = |Ei| elements of the data item x(n)

which is represented as a k-hyperedge in the network.
Then, the probability of the data being generated from the

hypernetwork is given as Gibbs distribution

P (x(n)|W) =
1

Z(W)
exp

{
−E(x(n); W)

}
, (2)

where exp
{−E(x(n);W)

}
is called the Boltzmann factor

and the normalizing term Z(W) is expressed as

Z(W) =
∑

x(m)

|E|∑

i=1

wi1i2...i|Ei|
x

(m)
i1

x
(m)
i2

...x
(m)
i|Ei|

. (3)

In effect, the hypernetwork represents a probabilistic model
of the data set using a population of hyperedges and their
weights.

It is interesting to note the relationship of the hypernetwork
architecture and the traditional neural network or machine
learning models. To see the connection, we define the poten-
tial function associated with the hyperegdes as

ΦEi(x) =
∏

xj∈Ei

xj = x11 , xi2 , ..., xi|Ei|
, (4)

where k = |Ei| is the size of the ith hyperedge. When
the variables xi are binary-valued, this potential function
computes a logical conjunction of the variables. Using this
potential function, the energy function can be expressed as

E(x; W) =
|E|∑

i=1

wi1i2...i|Ei|
ΦEi(x), (5)

which is a weighted sum of the potential functions. The
weighting has a smoothing effect to make the logical de-
cisions more robust [15]. If the x-variables take real values,

345

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

this results in a higher-order polynomial networks [18]. Thus
the hypernetwork structure in this case is a generalization
of the conventional polynomial networks where the degree
and order of the polynomials are arbitrary. Allowing only
k-hyperedges, the hypernetwork represents a polynomial
network of order k.

The similarity to the multilayer perceptron is to be seen
by defining a sigmoid potential function, i.e.,

ΦEi(x) =
1

1 + exp
{
−∑

xj∈Ei
wjxj

} , (6)

where ki = |Ei| is the size of receptive field of the sigmoid
unit. In general, different hyperedges have different ki and ki

is smaller than the number of inputs n, i.e. ki < n, kj < n,
and ki 6= kj , i 6= j for most of i and j. This heterogeneous
structure of the hypernetwork of sigmoid units is contrasted
with the conventional sigmoid neural networks where the
structure is homogeneous with a fixed receptive field size n
for all the neurons.

The hypernetwork can emulate the radial basis function
networks by defining a Gaussian potential function:

ΦEi(x) = exp
{
− 1

σi
||x(i) − x||Ei

}
, (7)

where ||x(i) − x||Ei =
∑

xj∈Ei
x

(i)
j xj . Again, the hypernet-

work takes heterogeneous radial basis functions where the
dimension of the basis function is variable.

Figure 3 compares the output functions for the hyperedges
of different potential functions. Also shown is the effect
of the size of hyperedges. When the hyperedges are small,
i.e. for small k = |Ei|, the receptive fields are narrow
and thus the hypernetwork builds a representation consisting
of low-dimensional, general components (micromodules).
When the hyperedges are large, the hypernetwork builds
a representation consisting of high-dimensional, specialized
components. To see the profile of distribution we consider the
histogram of k-hyperedges within a hypernetwork. We define
the hypergram of a hypernetwork H = (X, E,W), denoted
h(k1...k2), as the weight spectrum of the k-hyperedges for
k = k1, ..., k2:

h(k1...k2) = {(wk1 , wk1+1, ..., wk2)|wi = |Ei|, Ei ∈ E}, (8)

where Ei are the hyperedge set of the hypernetwork H . In
Section IV, we anlyze the hypergrams on various problems.

III. GENERATING RANDOM HYPERNETWORKS FROM
DATA

For a k-hypergraph, the number of possible edges are

|E| = C(n, k) =
n!

k!(n− k)!
, (9)

where n = |X| and C(n, k) denotes the number of cases to
choose k elements from a population of n elements. If we
denote the set of all graphs as Ω, its size is

|Ω| = 2C(n,k). (10)

Sigmoid

Product

Gaussian

Large k = |Ei|Small k = |Ei|

Sigmoid

Product

Gaussian

Large k = |Ei|Small k = |Ei|

Fig. 3. Three examples of potential (basis) functions to be associated with
the hyperedges. The potential functions with small k-hyperedges receive
inputs from a narrow range (in dimensions) while those with large k-
hyperedges observe a wide range of the input space. Thus, changing the
parameter k in the random hypernetworks has an effect of varying the
receptive-field size in neural networks.

Since a hypernetwork is a multiset of hypergraphs, the size of
k-hypernetworks H(k) is the multiples of |Ω|. For the class
of (0, n)-hypernetworks, the number of possible hyperedges
is the multiples of

|E| =
n∑

k=0

C(n, k) =
n∑

k=0

n!
k!(n− k)!

= 2n, (11)

and the size of the space of (0, n)-hypernetworks is

|Ω| = 2κ·2n

, (12)

where κ is the maximum number of copies of an hyperedge
to appear in a hypernetwork.

We now introduce a stochastic method to search this
space. A random graph is a graph constructed by a random
procedure [6]. A random graph model chooses a graph at
random, with equal probabilities, from the set of all 2n

graphs whose vertex set is [n] = {1, 2, ..., n}. We consider a
probability space

(Ω,F ,P), (13)

where Ω is the set of all graphs with vertex set [n], F is the
family of all subsets of Ω, and to every ω ∈ Ω we assign its
probability as

P(ω) = 2−C(n,k). (14)

The probability space can be viewed as the product of
C(n, k) binary spaces. It is a result of C(n, k) independent
tosses of a fair coin, i.e. Bernoulli experiments.

The random hypernetworks can be generated by a binomial
random graph process. Given a real number p, 0 ≤ p ≤ 1,
the binomial random (hyper)graph, denoted by G(n, p), is
defined by taking as Ω the set of all hypergraphs on vertex
set [n] and setting

P (G) = p|E(G)|(1− p)C(n,k)−|E(G)|, (15)

346

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

where |E(G)| stands for the number of edges of G. The
hypernetworks are generated by repeating the random hy-
pergraph process.

Alternatively, we can generate the random hypergraphs
using a uniform random graph process. Given an integer M ,
0 ≤ p ≤ C(n, k), the uniform random hypergraph, denoted
by G(n,M), is defined by taking as Ω the family of all
graphs on the vertex set [n] with exactly M edges, and as P
the uniform probability on Ω,

P (G) = C(C(n, k), M)−1, (16)

where G ∈ Ω. The hypernetworks are then generated by
repeating the random hypergraph process. The binomial
random graph model and the uniform random graph model
are known to be asymptotically equivalent if C(n, k)p is
close to M [6].

One difference in our approach from the typical random
graph process is that we want to build a model of an
environment rather than simply generate a random graph
structure. This is where the role of training data D = {x}
comes in. The basic idea is that, instead of inserting the
structure of hyperedge, the random graph process inserts
into the hypernetwork a hyperedge that is instantiated by
the training sample. The whole procedure for building a k-
hypernetwork that fits a given data set D is summarized as
follows.

• 1. Start with the initial hypernetwork H = (X, E, W) =
(∅, ∅, ∅).

• 2. Get a training sample x ∈ D. Generate a hypernet-
work H ′ = (X ′, E′, W ′) as follows:

– Generate hyperedges (duplication permitted), Ei,
of cardinality k from x by a random hypergraph
process.

– E′ ← E′ ∪ {Ei}.
– W ′ = {wi|wi = |Ei|, i = 1, ..., |E′|}.
– X ′ = {xj |xj ∈ Ei ∈ E′}.

• 3. H ← H ∪H ′.
• 4. Go to step 2 if not terminated.

The repeated application of the random graph process
for the samples in the training set D results in resampling
the training data onto the hypernetwork structure. When
the problem is a supervised learning task, we can modify
the random process to add an error correction procedure.
It can be shown that this biased random process performs
gradient search to find maximum-likelihood parameters for
the training data set. To see this, given a set D = {x(n)}N

n=1

of n independently and identically distributed examples, we
consider the likelihood of the parameters W :

P (D|W) =
N∏

n=1

P (x(n)|W), (17)

where P (x(n)|W) has the form in Eqn. (2) and W consists
of the weights or the number of copies of the hyperedges of

size k. Taking the logarithm of the likelihood we obtain

ln P (D|W) (18)

= ln
N∏

n=1

P (x(n)|W)

=
N∑

n=1

 ∑

i1,...,i|Ei|

wi1...i|Ei|
x

(n)
i1

...x
(n)
i|Ei|

− ln Z(W)

 .

We take the derivative of the log-likelihood

∇
∇wi1,...,i|Ei|

ln
N∏

n=1

P (x(n)|W) (19)

which leads to a learning rule (see [17] for derivation)

N

{〈
xi1 ...xi|Ei|

〉
Data

−
〈
xi1 ...xi|Ei|

〉
P (x|W)

}
, (20)

where the two terms are defined as

〈
xi1 ...xi|Ei|

〉
Data

=
1
N

N∑
n=1

[
x

(n)
i1

...x
(n)
i|Ei|

]
(21)

〈
xi1 ...xi|Ei|

〉
P (x|W)

=
∑
x

[
xi1 ...xi|Ei|

P (x|W)
]
.(22)

Eqn. (20) suggests that maximum-likelihood is achieved by
reducing the difference between the average frequencies of
the hyperedges in the data set and in the hypernetwork model,
as was described above.

IV. ADAPTABILITY VS. PERSISTENCY

The random hypernetwork architecture is inspired by
the complex, heterogeneous organization of biomolecular
networks in nature. We are interested to understand and
simulate the process by which a complex randomized system
organizes itself to a structured system to perform a task
persistently while adapting to be robust against temporary
perturbations from the environment. For empirical study, here
we use various data sets as a surrogate for the environment.
These include 3760 digit images (of 64 bits each), 165
face images (480 bits), and 120 gene expression samples
(12600 bits) [19]. The characteristics of these data sets
interesting to us in this study is they represent highly noisy
and corrupted environments. Based on the data we build
hypernetworks by the procedure described in the previous
section, and the structural and functional properties of the
networks are examined to see what factors are crucial. In
particular, we anlyze the hypergrams to see the relationship
between the diversity of the hyperedges and the performance
of hypernetworks for a wide range of tasks.

We use the hypernetwork model consisting of hyperedges
with simple product potential functions. The random graph
process generates random subsets of variables whose values
are sampled from the training data. The use of a large number
of relatively simple yet heterogeneous hyperedges may test
the potential role of diversity and flexibility of representation

347

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50 55 60

A
cc

ur
ac

y

Order

100,000 bits
200,000 bits

1,000,000 bits
2,000,000 bits

Fig. 4. The hypergram for the digit image data showing the performance
profile for k-hypernetworks, i.e. uniform hypernetworks of k-hyperedges,
for k = 1, ..., 64. The four curves are for the different settings of the
maximum network size. The overall result indicates that microcircuits
consisting of hyperedges of size k = 1 to 20 (30 for large networks)
constructed out of 64-bit images contain high information content for this
specific data set.

20 30 40 50 60 70 80 90 100
0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Cardinality

C
la

ss
ifi

ca
tio

n
ra

tio

10000

15000

Subsampling count per training pattern

Fig. 5. The hypergram for the face image data showing the performance
profile for k-hypernetworks, i.e. uniform hypernetworks of k-hyperedges,
for k = 20, ..., 100. The two different curves are for the different settings
of the maximum network size. The overall result indicates that microcircuits
consisting of hyperedges of size k = 20 to 50 constructed out of 480-
bit images contain high information content for this specific data set. The
general shape of the hypergram for this data is very similar to that for the
digit data, except for the regions of low-k values.

in adaptivity of the whole system. This can test the hypothe-
ses that the organizational complexity of biological networks
is a source of its adaptability and survivability.

Figure 4 shows the hypergram for the face image data
showing the performance profile of k-hypernetworks for k =
1, ..., 64. The training data for this problem contains 2630
examples and the test set contains 1130 examples of 64-bit
image. It is interesting that the hypernetworks show a good
performance in the low-k range, meaning there are useful
modules in the low-dimensional subspace. The overall result
suggests that microcircuits consisting of hyperedges of size
k = 1 to 20 (or 30 for large network sizes) contain high
information content for this specific data set. Note that the
performance degrades for k > 20 (and k > 30 for large
networks). This seems attributed to the fact that as k grows
the probability of a test sample being matched to a training

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

Corruption intensity

A
ve

ra
ge

 e
rr

or
 (

of

 m
is

m
at

ch
es

)

cardinality 2

cardinality 4
cardinality 15

cardinality 25

cardinality 35

cardinality 40
cardinality 45

cardinality 49

Fig. 6. The effect of corrupted inputs on the persistent behavior of the
hypernetworks, compared for various sizes of micromodules, i.e. hyperedges
of size ranging k = 2 to 49 for the digit image data. The hypernetworks
consisting of larger micromodules (hyperedges of larger cardinalities) are
more susceptible to data corruption (or environmental perturbations). The
hypernetworks consisting only of very small micromodules, say k = 2 in
this specific setting, lack the ability to adapt and perform well.

sample gets smaller.
For this problem, |X| = 64 and the size of the full search

space is |E| = 264. According to this simulation result, for
k = 20, the k-hypernetwork consisting of |E(H(k))| =
100, 000 hyperedges (= 2, 000, 000/20) achieves a good
performance. The effectivenss of this search can be expressed
as the ratio r = |E(H(k))|

|E| = 100,000
264 << 1. This suggests

that, though the full search space is intractably big, the
random hypernetwork manages to handle this problem. We
have compared the performance of hypernetworks with the
state-of-the-art machine learning models, such as multilayer
perceptrons, naive Bayes classifiers, decision trees, k-nearest
neighbors, and support vector machines, and obtained very
competitive results. The best performance of 95.1 % was
obtained by k-nearest neighbors with k = 3, and the hyper-
networks obtained 94.4 % with uniform hyperedge size of
33. The hypernetworks outperformed all the other methods.

Figure 5 shows a similar trend for the face image data
set. This task consists of 150 face images for training and
15 test images, each consisting of 480 bits (Yale face data).
The hypernetworks generated by the random graph process
biased by the training set achieved a competitive performance
for the range of k = 20 to 50. The complete search space
is of size 2480. For k-hypernetworks, the effective ratio of
search for k = 30 is r = |E(H(k))|

|E| = 1,500,000
2480 << 1, where

the number 1,500,000 comes from 10,000 hyperedges × 150
images (of 15 people).

The effect of noise in sampling and performance was
investigated. Biological cells seem robust against environ-
mental noise and perturbations [9][12]. We test this effect
in our surrogate data by randomly corrupting the digit
images. Figure 6 shows the classification error (y-axis) vs.
the corruption intensity (x-axis) for various k values. As
expected, the error rate increases as the corruption intensity
increases. The error increases more dramatically for large k-
hypernetworks than for small k-hypernetworks. This implies

348

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Fig. 7. Evolution of the hypergrams for learning the gene expression
data. The left panel shows the histogram of k-hyperedges in the initial
hypernetwork. The next two right panels show the hypergrams for the next
two stages of evolutionary learning. As learning proceeds, the frequency of
small hyperedges tends to increase while that of large hyperedges tends to
decrease. No explicit complexity penalty was enforced.

that high k-hypernetworks are more susceptible to data cor-
ruption. Conversely, the low k-hyperedges are more robust to
build a reliable system when faced with noisy environments.

The diversity of the system components can be increased
further by incorporating hyperedges of various k’s. Figure
7 shows the evolution of the hypergrams in the complete
10-hypernetwork. The data set came from microarray ex-
periments. Ten genes were selected to build a hypernetwork
classifier for disease diagnosis. The learning process started
with a complete, but randomly instantiated hypernetwork
and the hyperedges in the current network are amplified
or retracted depending on their match with the hyperedges
sampled from the training data. The training proceeded by
repeatedly sweeping the training set to sample more hyper-
edges. Each sweep constitutes an epoch. The figure shows
the general trend that, as learning proceeds, the frequency
of small hyperedges tends to increase while that of large
hyperedges tends to decrease. This seems to conform to
the Occam’s razor principle, i.e. simple models should be
preferred to complex models when everything else is the
same [18]. This is especially interesting since the biased
random graph process tends to reduce the complexity of
the system even though we did not enforce any explicit
complexity penalty. This seems because smaller hyperedges
are less susceptable to the noise than the larger ones.

V. CONCLUSION

We introduced the random hypernetwork architecture in-
spired by biomolecular networks in cells. The network con-
sists of a large number of heterogeneous “micromodules”
(i.e. hyperedges) which interact with each other in a massive
way to build potential “microcircuits”. We analyzed the
structural properties of the hypernetworks to cope with a
short-term change (adaptability) and a long-term change
(persistency) in the environment, where the environment was
simulated by a sequence of training examples. For intelligent
organisms, including humans, learning is a capability useful
to cope with the first kind of perturbations, and memory is
a faculty necessary to deal with the second kind of change.

Our analysis suggests that large micromodules are advan-
tageous to agile learning of specific examples while small
micromodules are useful to keep the hypernetwork system
stable and persistent for a wide range of inputs in the longer

term. This kind of specific yet stable behavior is also found
in interaction and transcriptional regulatory networks in cells
[9] and neuronal synapses [8][10]. This observation offers
an important lesson for designing computational learning
systems. Most of neural network architectures are designed
to consist of high-dimensional, fine-tuned components of
homogeneous structure, which is not necessarily the best
strategy to build a computational intelligence system that
prospers and survives across the entire life. Applied back
to biology, it would be also interesting to see if the random
hypernetworks identify motifs and modules of real biological
networks.

ACKNOWLEDGEMENTS

The author would like to thank Joo-Kyung Kim, Sun Kim,
and Ha-Young Jang for performing simulations. This research was
supported by MOST (NRL 2002-2007), MICE (MEC 2000-2009),
and BK21-IT.

REFERENCES

[1] Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla-Favera,
R., and Califano, A., “Reverse engineering of regulatory networks in
human B cells,” Nature Genetics, 37(4): 382-390, 2005.

[2] Bhalla, U.S. and Iyengar, R., “Emergent properties of networks of
biological signaling pathways,” Science, 283(5400):381-7, 1999.

[3] Berge, C. Graphs and Hypergraphs, North-Holland Publishing, Am-
sterdam, 1973.

[4] Bren, A./ and Eisenbach, M., “How signals are heard during bacterial
chemotaxis: Protein-protein interaction in sensory signal propagation,”
Journal of Bacteriology, 182(24):6865-6873, 2000.

[5] Cho, D.-Y., Cho, K.-H., and Zhang, B.-T., “Identification of biochem-
ical networks by S-tree based genetic programming,” Bioinformatics,
22(13):1631-1640, 2006.

[6] Janson, S., Luczak, T., and Rucinski, A., Random Graphs, Wiley, 2000.
[7] Lee, D.I., Rinaldi, N.J., Robert, F., ..., and Young, R.A., “Tran-

scriptional regulartory networks in Saccharomyes cerevisiae,” Science,
298:799-804, 2002.

[8] Lisman, J., Schulman, H., and Cline, H., “The molecular basis of
CaMKII function in synaptic and behavioural memory”, Nature Review
Neuroscience, 3(3):175-90, 2002.

[9] Maslov, S. and Sneppen, K., “Specificity and stability of topology in
protein networks,” Science, 296:910-913, 2002.

[10] Miller, P., Zhabotinsky, A.M., Lisman, J.E., Wang, X.J., “The stability
of a stochastic CaMKII switch: dependence on the number of enzyme
molecules and protein turnover,” PLoS Biology, 3(4):e107, 2005.

[11] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashitan, N., Chklovskii, D.,
and Alon, U., “Network motifs: simple building blocks of complex
networks,” Science, 298:824-827, 2002.

[12] Shengupta, A.M., Djordijevic, M., and Shraiman, B.I., “Specificity and
robustness in transcription control networks,” Proc Natl Acad Sci U S
A, 99(4):2072-7, 2002.

[13] Shilling, C.H. and Palsson, B.O., “The underlying pathway structure of
biochemical reaction networks,” Proc Natl Acad Sci U S A, 95:4193-
4198, 1998.

[14] Shouval, H.Z., “Clusters of interacting receptors can stabilize synaptic
efficacies,” Proc Natl Acad Sci U S A, 102(40):14440-5, 2005.

[15] Valiant, L., “Robust logics”, Proc. ACM Symposium on the Theory of
Computing (STOC 99), pp. 642-651, 1999.

[16] Wolf, D.M. and Arkin, A.P. “Motifs, modules and games in bacteria,”
Curr Opin Microbiol, 6(2):125-34, 2003.

[17] Zhang, B.-T. and Kim, J.-K., “DNA hypernetworks for information
storage and retrieval,” Lecture Notes in Computer Science, DNA12,
4287:298-307, 2006.

[18] Zhang, B.-T. Ohm, P., and Mühlenbein, H., “Evolutionary induction of
sparse neural trees,” Evolutionary Computation, 5(2):213-236, 1997.

[19] Zhang, B.-T. Yang, J.-S., and Chi, S.-W., “Self-organizing latent lattice
models for temporal gene expression profiling,” Machine Learning,
52(1/2):67-89, 2003.

349

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

