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ABSTRACT

A biologically based learning framework is established to 
study neural modeling with respect to sound source 
localization. This involves a 2-dimensional environment 
wherein agents must locate sound sources that are 
periodically resituated whilst emitting pulses at regular 
intervals. Agents employ a spiking neural model that 
controls movement on the basis of binaural inputs, and 
evolutionary learning (EL) is applied to evolve neural 
connectivity and weights. It is demonstrated that agents are 
successfully able to locate sound sources and that the 
simulative framework can be extended to address questions 
pertaining to the evolution of spiking neural networks.   

1. INTRODUCTION 

Organisms that display sophisticated behaviour provide a 
framework for investigating models of intelligence and the 
neural functionality that underpins such behavior. However, 
deciphering brain functioning is conceptually similar to 
reverse-engineering the structure of a complex piece of 
electronics; it becomes increasingly difficult with more 
advanced designs. It is therefore helpful to study simpler 
models which, despite dissimilarities, still utilize many of 
the same fundamental building blocks found in more 
complex systems. By looking at sequential items along the 
same development process, the steps and decisions through 
various stages of advancement in complexity may explain 
aspects of more sophisticated designs. Likewise, organisms 
with simpler brains than humans (albeit still very 
complicated) are part of an advancement process that can 
provide insights throughout the various stages of 
evolutionary development. 

One approach to understanding brain functionality 
is therefore to investigate the composition and signaling in 
simple neural structures that evolve into more complicated 
designs. Simulations that employ an evolutionary process 
provide a framework for such an investigation and a number 
of works have successfully approached the evolution of 
neural networks [1-4]. Such simulations have provided 
insights into agent behavior with respect to neural 
development. They however make use of rate based neural 
models (models that do not take temporal effects of neurons 
into  account)   although   it   has  been  shown  that  sensory  

stimuli are temporally encoded by neurons [5-9]. In 
contrast, the simulations presented here employ a 
biologically-based spiking neural model which takes 
temporal behavior into account.     

The work reported in this paper constitutes part of 
a larger investigation into a simulative framework for the 
evolution of biologically based neural models by using 
evolutionary learning (EL). The simulation described here is 
intended to provide an important proof of concept to 
demonstrate that EL can be used to successfully evolve a 
spiking neural network for agents that receive stimuli in a 
simulative environment. The successful evolution of a 
spiking neural network would support the use of simulative 
work for analysing neural connectivity and signalling, in 
particular the temporal encoding of stimuli.  This paper 
focuses on the evolution of neural networks for the task of 
sound localization.  
 Sound localization is an aspect of animal behaviour 
that can be critical in situations like those between predator 
and prey, parents and offspring, and potential mates. It is 
therefore an important behavioural attribute in animals and 
it also provides a simple yet effective simulative framework 
for testing agents in different scenarios. The simulation 
described below is inspired by that of Werner and Dyer [1], 
where blind male agents must locate immobile female 
agents based on incoming signals. It however differs in a 
number of important respects. Particularly, in W&D’s work, 
male and female agents communicate, agents meet to 
reproduce, and the simulation employs rate based neural 
networks. In the simulation reported here, a genetic 
algorithm is used to select and produce offspring, agents 
locating sound sources cannot signal, and spiking neural 
networks have been employed. This work thus provides a 
greater focus on the development of the spiking neural 
network in a simulative environment.  

2. SIMULATIVE ENVIRONMENT

The overall scenario is that a community of agents must 
locate sound sources that emit a simulated acoustic pulse 
once every 10 msecs. In order to evaluate agent 
performance at finding sources in different directions, each 
source is randomly repositioned every two seconds over a 
period of 10 seconds. When an agent successfully reaches a 
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source it is randomly resituated on the map for a new 
attempt. 

Similar to Werner and Dyer’s simulation, agents 
populate an environment that consists of a two-dimensional 
world that is 200 x 200 units in size. The world is flat and 
constrained by imaginary walls. This constrained 
arrangement (as opposed to an unconstrained round world) 
means that agents do not develop the trivial behavior of 
constantly moving in a random single direction, which can 
falsely make it seem like an agent sometimes moves closer 
to a source.

2.1. Agent Neural Structure 

Each agent possesses an artificial neural network that 
receives input and controls agent actions. The neural 
network is defined by a genome consisting of input neurons, 
hidden neurons, and output neurons. These neuron types are 
allocated according to genome makeup and neurons are 
fully connected within a prior set of constraints: input 
neurons act as sensors and do not receive any neural inputs, 
whilst output neurons control agent movement and receive 
connections from input and hidden neurons. Hidden neurons 
function as an adjoining layer between input and output 
neurons, and they connect to one another as well as to 
output neurons. The connections between neurons can be 
either excitatory or inhibitory, and are specified through 
genome data.  
 The genome consists of real numbers that are 
divided into sections pertaining to one of two neural 
aspects: a neuron’s connections or its type (input, hidden or 
output). As such, each neuron has a ‘connection’ and a 
‘type’ section in the genome, and the genome can be 
sequentially divided according to neural indices.

Figure 1 – Genome representing neural structure consisting of four 
neurons.

An example of this structure is depicted in figure 1, which 
shows a network consisting of four neurons. Neuron 1 
receives connections from neurons 1, 2, 3 and 4 with 
corresponding weights of -0.43, 0.21, 0.76, -0.23. A neuron 
is however not allowed to connect to itself, so the 
connection from neuron 1 to itself is ignored.  

A neuron’s type is decided by the following 
formula:  

modnNeurontype S T

where T is the number of neural types and in the simulation 
T = 3. Sn is given by summating genome values for a given 
neuron n:

     (10 )n i
i

S Round g

The genome value at position i is depicted by gi, which is 
multiplied by ten to attain sufficiently high values. In the 
case of figure 1, the type of neuron 1 is for example 
calculated with gi values of 0.62, -0.32, 0.92, 0.21. Absolute 
values are used, which are then rounded off. Neuron types 
are then classified according to the following: 

          

0

1

2

Neurontype Input neuron

Neurontype Hidden neuron

Neurontype Output neuron

For the sake of simplicity, and to provide a suitable amount 
of flexibility for genome change during crossovers and 
mutations, the number of  ‘type’ values in the genome is set 
to the number of ‘connection’ values for each neuron (as in 
figure 1). The genome length is therefore , where N is
the total number of neurons in each neural network.  

22N

The genome was designed with a simple genetic 
algorithm in mind and it should be noted that more optimal 
designs could be derived to reduce the genetic algorithm’s 
search space. Likewise, a simple crossover function was 
employed but utilizing a more sophisticated crossover 
method designed for real values would also improve GA 
efficiency. Although the genome design and crossover 
function sufficed for the needs of the simulation, a more 
efficient algorithm could as such be derived.    

3. SPIKE RESPONSE MODEL 

The spike response model [10] (SRM) has been selected to 
model neural firing dynamics. SRM has shown that it can 
successfully capture many of the dynamic behaviors of 
biological neurons [10,11], and its kernel flexibility makes 
it adaptable to the agent scenario. Floreano and Mattiussi 
[12] have also demonstrated the applicability of 
evolutionary learning to an SRM network, although their 

351

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



work involves development of weights in a statically 
connected neural network for vision-based navigation of a 
robot. Nevertheless, F&M’s model selections have provided 
a useful basis to follow.  

The functionality of the SRM investigated here is 
explained below, but for an understanding of the model’s 
relation to the underlying biological substrate, the reader is 
referred to Kistler et al. [10].   

The SRM can be thought of as a generic ‘integrate 
and fire’ model and it consists of different kernels that have 
been derived on the basis of neural firing characteristics. In 
the case of the simulation described here, membrane 
potentials are calculated depending on whether a neuron 
receives sensory input (input neurons) or not (hidden and 
output neurons). The membrane potential of a neuron at 
time t is calculated using the following spike response 
models: 

Input neurons: 
0

ˆ( ) ( ) ˆ( , ) ( )i i
ext

iu t t t t t s I t s ds

Other neurons: ( )ˆ( ) ( ) ( )f
i i ij ij

j f

u t t t w t t j

where , , and  are the kernels mentioned, and j is 

used to index the presynaptic neurons that connect to 
neuron i. The same  and kernels employed by Floreano 

and Mattiussi were chosen, and was selected from 
Gerstner and Kistler [11]. 

0( ) ( ) ( ) m

s

thresh rests s u u e

where  describes the effects on the membrane potential 

after a neuron has generated a spike, refers to the last 

time it fired, uthresh is the membrane threshold, and urest is the 
membrane resting potential. A neuron’s membrane potential 
is reset to its resting potential after it has fired. This effect 
negates such that the neuron ‘recovers’ over a time period 
that is dependent on the membrane time constant 

t̂

m .

The effect of incoming spikes declines over time 
such that more recent spikes incur greater influence on the 
membrane potential. This effect is dependent on the 
properties of the neural membrane and the synaptic 
connection (time constants m and s  respectively) and is 

expressed by: 

( ) (1 ) ( )
abs abs

m s

s s

abss e e s

where as such expresses the response to presynaptic input 
and is dependent on the last firing times tf

j of the 
presynaptic neurons. Spikes coming from presynaptic 
neurons do not arrive immediately, but after a time delay of 

abs. This is enforced by the Heaviside step function :
(x) = 1, x > 0 else (x) = 0.

The external current Iext that input neurons receive, 
contributes with an increase in membrane potential, which 
has a decay rate that is dependent on when the neuron last 
fired. Neural membrane potential quickly drops after a 
spike, and the input I must not be able to disrupt this 
mechanism. Otherwise, a neuron could potentially fire 
without any refraction time, which in biological neurons 
would be impossible. These dynamics are dependent on the 

decay factor / mse and the recovery response 

.( ) /(1 )rect te

( , ) (1 ) ( ) ( )rec m

x s

m

R
x s e e x s s

where describes a linear response in membrane potential 
to an external input current with an input resistance of R (s
= t - tf

i )and is included to simplify the integral factor). 
 Based on Gerstner and Kistler [11] and initial 
experimental results, simulation parameters were set to:  

1R
0.02m

0.0015s

0.0125rec

0.002abs

0.5threshu

0restu

Membrane potentials were calculated using an iterative time 
step of 1 msec. As such, one iteration in the simulation 
corresponds to this value. 

4. AGENT PROPERTIES 

Agents in this simulation were not provided with any visual 
sensors and only pulse signals are received as input. 
Movement is based on two wheels that each have one axis 
of freedom. Agents thus turn by adjusting relative speeds of 
the wheels. When an agent moves, it is always at a constant 
speed of one unit per 20 msec, regardless of how fast the 
wheels turn.

4.1 Agent Motor Control 

 Agent neural structures consist of N neurons, 
which is an experimental variable in the simulation. An 
agent’s wheels are controlled by the output neurons where 
one half of the neurons is connected to the left wheel and 
the second half is connected to the right. If there are an odd 
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number of neurons, then one output neuron is disregarded. 
Following the approach of Floreano and Mattiusi [12], 
wheels are turned on the basis of the spike rate to each 
wheel in a 20 msec timeframe. Agents do not move if each 
wheel receives zero spikes in the timeframe, and if only one 
wheel receives spikes, then the agent turns but does not 
move forward. If both wheels receive spikes, the agent 
turns and moves at a constant speed of one unit. When 
turning, each wheel’s turning speed is proportional to the 
amount of spikes it receives denoted by and for the 

left and right wheel respectively. A maximum turning 
speed is invoked for each wheel by the constant

ln rn

M : if 
or are greater than M they are set to M. In practice, 

this works as a normalizing factor when calculating the 
new direction (where

ln rn

d 0 2d ):

( 2 ) mod 2r ln n
d d

M

If is negative, it is normalized to bring it 
within and

d
0 2 .

4.2 Agent Sensor Input 

Agents possess two sensors with which they can receive 
pulse signals. These can be thought of as ears that are 
placed on opposite sides of the agent, at an equal distance 
from its centre (see Figure 2). The absolute positions of the 
ears in the environment are calculated every time an agent 
moves. Given that an agent has a direction , then the ears 
are positioned with relative angles to d such that:  

d

       Angle of left ear = 
2

d  Angle of right ear = 
2

d

The x and y coordinates of the ears (relative to the centre of 
the agent) can then calculated using basic trigonometry:  

cos( )left leftx a , sin( )left lefty a

cos( )right rightx a , sin( )right righty a

where a can be used as a scaling factor to adjust the distance 
between the ears. In the simulations one unit in the 
environment is considered to be 1 meter in length and 
signals move at the speed of sound ( 340.0 m/s). Thus, if no 
scaling factor is utilized between the ears, they will have a 
distance of 2 meters apart and a time delay between them of 
up to about 6 msec. Alternatively if a=0.1 then the ears are 
only 0.2 meters apart providing a more realistic scenario. 

Interaural time differences (ITDs) are calculated 
according to the position of the ears relative to the sound 
source (see Figure 2). For example, if an agent’s left ear is 

closest to the source, it will receive a pulse emitted at time t 
depending on its position. The signal will arrive at the right 
ear at t + delta, where delta is the ITD that would exist 
between the ears.

Figure 2 – Illustrative example of how ears are positioned with 
respect to an agent’s direction (denoted by the arrow) and a sound 
source.

Interaural intensity differences (IIDs), also termed 
interaural level differences (ILDs) in some literature, have 
been highly simplified and are based on a simple scaling 
factor c  (where ).  Given   a  signal  strength  of 1c

baseI  then  the  closest  ear  to  the  source  receives  a  signal 

strength of: 

base
closest

closest

I
I

x

where xclosest is the distance from the ear to the source. The 
ear farthest away receives: 

base
farthest

farthest

I
I

c x

If the ears are almost the same distance to the source then 
the signal strength for both ears is calculated such that 
signals coming from in front are louder than those coming 
from behind: 

,base base
front behind

front behind

I I
I I

x c x
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Figure 3 – Agent positions at four different iterations in a simulation where agents must locate a single sound source (black square).
The source has been repositioned at 2000 and 4000 iterations, and the majority of agents can be observed to successfully move directly 
towards the source at its new positions. The small black points on agents indicate their approximate direction. 

These values are then directly inserted as extI  when 
calculating membrane potentials for input neurons. 

4.3 Evolutionary Learning 

Agents are evaluated every 20 msecs (the timeframe for 
agents to move their wheels) exclusively on the basis of 
how much closer they have moved to the nearest source. 
Reaching the source does not offer any additional reward. 
An agent’s fitness score is then calculated by summing the 
scores  over  all  evaluated  iterations. Each iterative score is  
calculated depending on whether an agent moved closer to 
the source or not: 

Moved closer: 2
2 1( )nv d d

Idle or moved farther away: 4
2 1( )nv d d

where d1 is an agent’s distance to source before moving and 
d2 is the distance after moving, for the nth evaluated 
iteration. As agents always move at a constant speed of one 
unit, then |d1 - d2|  1. Given a total of Z iterations the 
fitness score f of an agent can then be calculated as: 

n
n

v

f
Z

It is possible for agents to receive negative scores since they 
are penalized for moving further away. In this case the 
fitness score is set to zero. Agents were sometimes observed 
to move in small circles or back and forth (and thus 
receiving reasonable fitness scores), which prompted the 
introduction of a lesser penalty score for moving in the 
wrong direction. This type of scoring seemed to reduce the 
frequency of such behavior from early generations onwards.  

5. EXPERIMENT 

5.1. Experimental Set-up 

In the simulations, single crossovers were used with a 
crossover rate of 0.15 and a mutation rate of 0.07, and the 
population size was set to 40.   

Simulations were made with neural structures 
consisting of 15 neurons. This number was decided on 
through early experimental runs where results indicated this 
to be an approximate optimum for the simulations. 
Typically agents that employed models with less than 8 
neurons would not perform well and increasing the number 
above 15 neurons did not appear to improve results. It 
should be noted though, that this figure was not explored 
with respect to a large variation of parameters. 
 To affirm the effects of IIDs and ITDs, simulation 
runs where made with only IIDs (by setting a = 0, ITDs are 
always zero) and with only ITDs (with c = 1, IIDs become 
zero). Different ranges of IIDs and ITDs were also tested, 
typically with ears 0.2 to 2.0 meters apart, and an IID 
scaling factor between 1.25 and 2.0 was applied (and 
Ibase=1).  Simulations using 1, 2, and 4 different sound 
sources were made to observe agent performance with 
respect to multiple sources. All simulation runs were for 
100 generations.  

Videos of simulations can be found at: 
http://www.dcs.shef.ac.uk/~thomas/videos.html 

5.2. Single Sounds Source Results

5.2.1. Simulations with both ITDs and IIDs 

In the first simulation experiment, agents had to find a 
single sound source in the environment. Simulations were 
made using different scaling factors for IIDs and ITDs, and  
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the following values were employed:  

       a = 0.1, 0.5, 1.0

       c = 1.25, 1.5, 2.0 

Agents trying to locate a single sound are 
illustrated in figure 3. The sound source is repositioned at 
2000 iterations, and as can be observed, most agents have 
gathered around the source at 3500 iterations. The source is 
repositioned again at 4000 iterations, and at 5500 
iterations, the progress of many agents can be observed.  It 
is important to note that some agents are not close to the 
source either because it was positioned far away from them 
or because they had already reached it (and thus had been 
repositioned on the map). 

Agents were overall very successful in reaching a 
single source, with the best agents reaching fitness values 
up to about 0.9. Figure 4 illustrates such a simulation 
where a = 1.0 and c = 2.0.  Performance was affected 
slightly by using lower values of a and c such that fitness 
values usually decreased overall by about 0.05. These 
values reflect very good performances, especially 
considering the relatively stringent evaluations that have 
been applied. The evolutionary progress of agents can be 
observed in figure 4, where agent fitness values reached a 
plateau after approximately 30 generations.  This was 
typical for most simulations. 

Figure 4 – Agent fitness development in an environment with one 
sound source (a = 1.0, c = 2.0). Fitness values increase until 
approximately 30 generations after which values level out.

5.2.2. Simulations with either ITDs or IIDs

To verify that ITDs and IIDs were indeed being utilized by 
agents, simulations were made where agents could only 
detect one of the two. The following scaling factors were 
used: 

       No ITDs: a = 0.0; c = 1.25, 1.5, 2.0
       No IIDs: c = 1.0; a = 0.1, 0.5, 1.0 

Figure 5 depicts the results from a simulation where agents 
are only able to detect IIDs. As can be seen, this affected 
results considerably. Similar scores to those in figure 5 were 
produced when only ITDs existed. These results 
demonstrate that agents exploited IIDs and ITDs, and that 
they were important to their success. 

Figure 5 – Results from a simulation with a single sound source 
where agents were only able to detect IIDs. It is interesting to note 
the decline in results compared with those in figure 4, where 
agents could detect both ITDs and IIDs. 

5.3. Multiple Sounds Source Results

Locating multiple sound sources is a considerably more 
difficult task than a single source, and it is therefore an 
interesting experiment to observe if agents can locate the 
correct sound source (where the correct source is the closest 
source to an agent).  Every source emits signals with equal 
strength Ibase, which reach agents at a given time based on 
their position (as described in section 4.2). There is a small 
likelihood that signals will arrive at the same time given 
iterations of 1 msec in the simulation, but in such an event, 
they are simply processed as separate neural inputs. 

Looking at figure 6 it can be observed that agents 
were able to perform very well with two sound sources in 
the environment. However, observing agent movements 
revealed that many of them did not move to the closest 
source, but instead seemed to choose arbitrarily. This would 
account for the slightly lower fitness scores (compared with 
a single source), since agents would be penalized until they 
got close enough to the source that they were moving 
towards. Simulations with four sound sources provided 
lower results such that fitness values were overall 
approximately 0.1 less than fitness scores with two sound 
sources. Not surprisingly, introducing more sound sources 
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into the environment confuses agents, but it is interesting to 
note that agent performances are still respectable. 

6. CONCLUDING REMARKS 

Most agents were able to successfully locate single sound 
sources and reached high fitness values of approximately 
0.9. Introducing multiple sound sources prompted lower 
fitness scores, and agents did not always move to the correct 
source. Yet agents were still generally capable of locating a 
sound source despite this added confusion. The 
experimental results overall demonstrated successfully that 
the simulation framework was able to evolve neural models 
for sound localization.  

Implementing features like acoustic representation 
and more accurate calculations of ITDs and IIDs would 
provide a further realistic simulative framework that could 
be used for investigating questions that relate to sound 
localization. Simulations could then be used to study the 
neural encoding involved in sound localization, building full 
auditory systems, or investigating more specific aspects like 
how neurons factor out reverberation from direct sounds.  

The investigation reported here was conducted in 
the context of a wider research programme into the 
evolution of neural networks and neural encoding of signals 
for communication. Follow-up research is extending the 
simulation to more realistic scenarios of sound localization 
in order to provide the basis for a neuroethological analysis. 
Such an analysis (e.g. Floareano and Mattiusi [12]) 
encompasses aspects such as measuring the significance of 
synaptic channels and evaluating the roles of individual 
neurons. We anticipate that this line of research will provide 
insights into neural encoding and structuring in agent-based 
communication.  
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