
A Novel Approach for a Routing Algorithm Based on 
a Discrete Time Hopfield Neural Network

Abstract—This articles proposes a new approach to accelerate 
the routing algorithm based on Hopfield Neural Network. We 
showed that one can calculate the best route in terms of cost in a 
network using a discrete equation instead of the common used 
differential formulation. We also demonstrated that the 
formulation based on discrete parameters outperforms the well 
known formulation in terms of simulation time. 

Index Terms— Communication network, Hopfield neural 
network, Shortest path, Routing. 

I. INTRODUCTION

Routing algorithms have been hardly discussed in the 
scientific community, mainly because the routing process 
impacts drastically on communications networks performance. 
Ideal routing algorithm comprises finding the best path 
between source and destination nodes, enabling high quality 
transmission and avoiding penalties caused by physical layer 
impairments. There are different ways to find the optimal 
route. Some algorithms determine the routes based on the 
shortest path (SP) [1], minor delay [2], higher signal-to-noise 
ratio (in All-Optical Networks case) [3], load balance [4], 
among others.  

Moreover, to maintain the Quality of Service (QoS)
computations have to be carried out in real time and should be 
adaptative. To provide this flexibility, many techniques from 
Computational Intelligence (CI) have been tested. The most 
used techniques are Artificial Neural Networks (ANN) [2,4-
10], Ant Colony Optimization [11-12], Genetic Algorithms 
[13-14], and Hybrid algorithms combining those techniques 
[15-16]. 

ANN are very good candidates for solving the problem due 
to its high computational speed [2]. Hopfield and Tank 
described an ANN with feedback configuration suitable for 
solving constrained optimization problems, especially the 
Traveling Salesman Problem (TSP) [5]. Therefore, this ANN 
configuration is called Hopfield neural network (HNN). The 
use of HNN to find the shortest path between two nodes in a 
communication network was initiated by Rauch and Winarske 
[6]. However, this propose requires a prior knowledge of the 
network topology. To outperform this limitation, Ali and 
Kamoun [2] proposed a novel adaptive algorithm, where the 
weight matrix just carries convergence information. The 
information about the link cost and the topology is added 
through the bias as shown in Fig. 1. Additional papers report 

techniques to avoid involved loops and problems in the 
algorithm convergence [7-8]. However these algorithms are 
based on the same differential equation proposed by Ali and 
Kamoun [2].  

In this paper, we propose a new approach based on discrete 
and finite difference equation to speed up the convergence of 
the HNN. The rest of the paper is organized as follows. In 
section II, we describe the ANN based routing algorithm 
proposed by [2]. In section III, we show our contribution on 
the solution method and in section IV we provide a detailed 
description of the proposed algorithm and of a software tool 
that we have developed for simulations.  In section V, we 
present the simulation results and compare our approach based 
on difference equations to the formulation given by [2]. In 
section VI, we present our conclusions. 

II.HOPFIELD NEURAL NETWORKS FOR ROUTING IN 
COMMUNICATIONS NETWORKS

The block diagram of the Hopfield neural network (HNN) is 
depicted in Fig. l. The processing elements are the neurons 
and they are full-connected, i.e. every output of each neuron is 
connected to inputs of all other neurons via synaptic weights. 
To solve routing problems in communication networks, Ali 
and Kamoun [2] proposed that each link in the communication 
network between two adjacent nodes has one neuron 
associated. For example, a link from node x to node i is 
associated to a neuron that have the xi description. The output 
of a neuron Vxi, depends on its input Uxi, according the 
sigmoidal function as expressed in (1). Notice that the input of 
each neuron corresponds to the sum of all the outputs of the 
neurons of the HNN multiplied by a factor represented by the 

matrix yjxiT ,  added to an external bias xiI . The yjxiT ,  element 
represents the synaptic weights connecting the output of the 
neuron yj to the sum point in the input of the neuron xi.
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The parameter xi determines the computation time to 
convergence and the correctness of the algorithm. In our 
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simulations we used the same xi   for all neurons in the HNN. 
Therefore, we call this parameter  in the rest of the paper, 
instead of xi . The behavior of the sigmoid logistic function 
is shown in the Fig. 2 for different values of . As higher as 
the parameter  is, the logistic function tends to a step 
function.  

Fig. 1. Hopfield Neural Network Configuration. 

Fig. 2. Sigmoid Logistic function behavior for different values of .

If every link in the network has a nonnegative cost 
associated Cij, the goal of the HNN is to find the path that 
minimizes the cost from some source node s to a destination 
node d through the communication network. Thus, the HNN 
should indicate a directed path as an ordered sequence of 
nodes connecting s to d, so the sum of all the costs connecting 
these nodes provides the lower possible cost. The path that 
provides minimum cost is defined as Lsd. In most cases, the 
cost matrix is symmetric ( ixxi CC ), though exists some 
papers considering a asymmetric cost matrix ( ixxi CC ) [4]. 

Notice that elements iiC  are nulls because one node cannot be 
connected to itself. 

The matrix xi defines if the arc xi exists in the topology of 
the communication network used in the simulation. If the arc 
xi exists then 0xi 0

, otherwise 1xi .
When the simulation converges, i.e. the change of every 

output values xiV  in an interactions are below a predefined 
criteria, an adjustment is done in each output. If an output has 
a value greater than 0.5 it is adjusted to “1”, otherwise it is 

adjusted to “0”. The final value of the xiV  will define if the 
arc related with the neuron xi belongs or not to the shortest 
path Lsd.

otherwise
Larc

V sdxi
xi ,0

,1  (2) 

Beside this, each cell can be externally excited by input 

bias xiI . These system inputs can be used to set the general 
level of excitability of the whole network and represent the 
actual data provided by the user to the neural network. We 
used the following expression for the bias [2]: 
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where  is the Kronecker function and 1 , 2 , 4  and 5

are constants.

The synaptic matrix yjxiT ,  and the energy function of the 
HNN are described as [2]: 

iyjxijxyijxyyjxiT 33334,  (4) 
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where E is the energy of the HNN and 3  is a constant. 
 These parameters have specific functions on the energy 
function: 1  minimizes the total cost; 2  prevents 

nonexistent links from being included in the chosen path; 3

is zero for every node in the valid path; 4  forces the HNN to 

converge to a stable state and 5  is introduced to ensure that 
the source and the destination nodes belong to the solution. 
Ahn et al  proposed others terms to avoid loops [7], but we 
did not considered them in this work. 

Therefore, if the system is stable in Liapunov sense, then 
iterations lead to smaller output changes. As a consequence, 
after a convenient number of iterations the HNN reaches some 
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minima of the system energy. Ali and Kamoun [2] resolve the 
system using the differential equation described below.   

n
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 Notice that the sum of second and the third terms represents 
the energy variation of the HNN. Therefore, one can rewrite 
(6) as follow: 

xi

xixi

dV
dEU

dt
dU  (7) 

Ali and Kamoun [2] use the Runge-Kutta method to solve 
the equation. To simplify and accelerate the resolution we 
propose in the next section a new approach based on a discrete 
difference equation. 

III. HNN APPROACH BASED ON ENERGY FINITE DIFFERENCE
EQUATION

Some authors have proposed to solve Hopfield neural 
networks using discrete time energy equations [17-18]. 
However, none of them applied it to the routing problem in 
communications networks. Thus, we adapted the discrete time 
formulation to HNN modeled to solve the routing problem. 
We believed that it could accelerate the calculus of routes. 
Therefore, instead of solving the systems using a differential 
equation that requires sophisticated methods (like Runge-
Kutta, i.e., Eq. (7)), we propose a simple approach based on a 
simple difference equation based on discrete time reference. 
The equation used to calculate the next input value of the 
neurons is shown below. 
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where 1nU xi  is the next input of the neuron xi calculated 
based on the output values of all the neurons of the network 

nVyj , the external bias nI xi  and on its own input in 

previous instants nU xi , 1nU xi  and 2nU xi . A , B
and C  are constants that regulate the weight of the previous 
inputs. 

IV. ALGORITHM DESCRIPTION AND SIMULATION TOOL

We developed a simulation tool in Java to calculate the 
route based on HNN that follows the flow chart shown in Fig. 
3. The first step is to get the parameters 1 , 2 , 3 , 4  and 

5  to determine the weight matrix. After that, the simulations 

parameters are required. Using this data the software 
calculates the topology and the bias matrixes. So, the neurons 
are initialized (the neurons input are set with a little noise to 
accelerate the convergence). Default values of the simulation 
parameters are presented in the table I. 

Fig. 3. Flow chart of the discrete time Hopfield Neural Network algorithm for 
routing in communications networks. 

The value of the logistic function parameter used in the 
simulations is also presented in table I. It is well known that 
higher values for  leads to faster convergence of the 
algorithm, despite it can lead to error in the route 
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determination. 

TABLE I
PARAMETERS USED IN SIMULATIONS AND THEIR DEFAULT VALUES.

PARAMETER VALUE 
(DEFAULT)

1
950

2
2500

3
1500

4
475

5
2500

A 0.0001 
B 0.00001 
C 0.00001 

1

V.SIMULATIONS RESULTS

In this section we report on a number of simulations 
performed to compare the routing method proposed in this 
paper with the method proposed by Ali and Kamoun [2]. The 
routing algorithms based on Hopfiel neural networks are also 
compared to Dijkstra's algorithm [1]. We have considered 
three computer networks topologies in our simulations. They 
are depicted in Figures 3, 4 and 5, respectively. 

In each simulation set we are interested in comparing the 
three routing methods regarding the number of optimal routes 
found as well as simulation time. In addition, for the methods 
based on HNN we have compared the number of iterations 
needed for convergence. 

Fig. 3. Network 1: one of the computer network topologies 
used in the simulations. The numbers represent the costs of the 
links. 

One simulation set for a given computer network topology 
consists of a number of simulations considering the three 
routing algorithms. In each simulation, the source and 
destination nodes are randomly selected. Next, Dijkstra's 
algorithm is used to compute the shortest path between the 
source and destination nodes. Finally, both the continuous 
version of the HNN routing method [2] and the discrete 
version proposed in this paper are executed independently to 
obtain the shortest path. The paths obtained by the HNN 

methods are compared to the one computed via Dijkstra's 
algorithm.  
 A simulation set is executed considering the same values 
for the parameters of the HNNs. After a simulation set is 
executed, we obtain the total simulation time for each of the 
HNN-based routing methods. In addition, we obtain the mean 
and standard deviation of the number of iterations needed for 
each of the HNN-based routing methods. Finally, we compute, 
for the HNN-based methods, the percentage of the simulations 
in which these method produced an optimal path, that is, a 
path identical to that produced by  Dijkstra's algorithm for the 
same simulation (that is, a simulation using the same source 
and destination nodes). 
 Tables 2, 3 and 4 report some simulation results for the 
computer network 1, depicted in Figure  3. Each line of tables 
2, 3 and 4 report the results obtained for a given simulation 
set. Each simulation set comprised 100 simulations with 
randomly selected source and destination nodes. In all 
simulations, the HNN-based methods employed the default 
values of the parameters μ1, μ2, μ3 , μ4  and μ5 given in Table 
1. We varied the values of parameters A, B, C and to analyze 
their influence on performance. 
 Table 2 shows the accuracy of the HNN methods with 
respect to the results furnished by Dijkstra's algorithm. The 
results of table 2 show that for most values of the parameters 
the HNN algorithms obtain the same paths obtained by 
Dijkstra's algorithm (that is, HNNs obtained 100% accuracy).

TABLE II
COMPARISON OF HNN-BASED METHODS IN TERMS OF ACCURACY (OF THE 

PATHS FOUND) FOR NETWOK 1 (FIGURE 3) 

HNN
PARAMETERS

Accuracy

 HNN (Runge-Kutta) HNN (discrete-time) 
A=1e-4, B=1e-5, 

C=1e-5, =1 100.00% 100.00% 
A=1e-4, B=1e-5, 

C=1e-5, =2 100.00% 100.00% 
A=1e-4, B=1e-5, 

C=1e-5, =5 100.00% 100.00% 
A=1e-4, B=1e-5, 

C=1e-5, =10 100.00% 100.00% 
A=1e-4, B=1e-5, 

C=1e-5, =20 100.00% 100.00% 
A=1e-4, B=1e-5, 

C=1e-5, =50 100.00% 100.00% 
A=2e-4, B=2e-5, 

C=2e-5, =10 100.00% 100.00% 
A=3e-4, B=3e-5, 

C=3e-5, =10 100.00% 100.00% 
A=4e-4, B=4e-5, 

C=4e-5, =10 100.00% 100.00% 
A=5e-2, B=5e-3, 

C=5e-3, =10 100.00% 82.00% 

 The mean (and standard deviation) number of iterations for 
convergence of each HNN-based method for network 1 are 
presented in Table 3.  It can be observed that the number of 
iterations depends significantly on the values of the 
parameters. By comparing the best results obtained by each 
method (in bold) we conclude that the proposed method is 
able to converge using less iterations. 
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TABLE III
COMPARISON OF HNN-BASED METHODS IN TERMS OF ITERATIONS FOR 

CONVERGENCE FOR NETWOK 1 (FIGURE 3) 

HNN
PARAMETERS

Iterations

 HNN (Runge-Kutta) HNN (discrete-time) 
A=1e-4, B=1e-5, 

C=1e-5, =1
4163.79 (1059.71) 4277.45 (998.71) 

A=1e-4, B=1e-5, 
C=1e-5, =2

2569.23 (762.26) 2575.49 (664.21) 

A=1e-4, B=1e-5, 
C=1e-5, =5

1265.14 (407.82) 1267.40 (400.77) 

A=1e-4, B=1e-5, 
C=1e-5, =10

713.69 (241.67) 721.45 (229.99) 

A=1e-4, B=1e-5, 
C=1e-5, =20

464.93 (192.78) 460.52 (183.60) 

A=1e-4, B=1e-5, 
C=1e-5, =50

10157.82 (19921.19) 8321.70 (18238.32) 

A=2e-4, B=2e-5, 
C=2e-5, =10

835.0 (340.93) 487.72 (201.69) 

A=3e-4, B=3e-5, 
C=3e-5, =10

778.57 (269.36) 332.73 (126.98) 

A=4e-4, B=4e-5, 
C=4e-5, =10

765.52 (262.48) 2751.17 (201.69) 

A=5e-2, B=5e-3, 
C=5e-3, =10

4371.56 (1173.78) 29557.71 (24574.91) 

Table 4 compares the routing methods in terms of 
simulation time. The results show that for most combinations 
of the parameters (expect that in the last line of the table) the 
method proposed in this paper is much faster than HNN 
solved with the Runge-Kutta method [2]. Moreover, the 
smaller simulation time for the proposed method was much 
smaller than that of HNN solved via Runge-Kutta (entries in 
bold in table 4). For network 1, the smaller simulation time 
obtained by Runge-Kutta was 8250ms whereas the proposed 
method achieved 2021ms. 

TABLE IV
COMPARISON OF ROUTING METHODS IN TERMS OF SIMULATION TIMES FOR 

NETWOK 1 (FIGURE 3) 

HNN
PARAMETERS

Simulation time (ms) 

 HNN (Runge-Kutta) HNN (discrete-time) 
A=1e-4, B=1e-5, 

C=1e-5, =1
73735 26687 

A=1e-4, B=1e-5, 
C=1e-5, =2

45922 16078 

A=1e-4, B=1e-5, 
C=1e-5, =5

22782 7921 

A=1e-4, B=1e-5, 
C=1e-5, =10

12719 4562 

A=1e-4, B=1e-5, 
C=1e-5, =20

8250 2875

A=1e-4, B=1e-5, 
C=1e-5, =50

172890 47125 

A=2e-4, B=2e-5, 
C=2e-5, =10

14641 3015 

A=3e-4, B=3e-5, 
C=3e-5, =10

13797 2031

A=4e-4, B=4e-5, 
C=4e-5, =10

13703 16828 

A=5e-2, B=5e-3, 
C=5e-3, =10

81422 192015 

Fig. 4. Network 2: one of the computer network topologies 
used in the simulations. The numbers represent the costs of the 
links. 

 The simulation results for network 2 (Fig. 4) are show in 
Tables 5, 6 and 7, which follow the same structure of tables 2, 
3,  and 4, respectively. We have also tested the proposed 
method on a third computer network topology (network 3), 
which is depicted in Figure 5. The simulation results for 
network 3 are presented in Tables 8, 9, and 10. The same 
observations made for network 1 can be made for networks 2 
and 3, namely, the proposed method is able to produce 
optimal routes with much smaller simulation times than the 
HNN-based method solved via Runge-Kutta [2]. 

TABLE V
COMPARISON OF HNN-BASED METHODS IN TERMS OF ACCURACY (OF THE 

PATHS FOUND) FOR NETWOK 2 (FIGURE 4) 

HNN
PARAMETERS

Accuracy

 HNN (Runge-Kutta) HNN (discrete-time) 
A=1e-4, B=1e-5, 

C=1e-5, =1 100.00% 100.00% 
A=1e-4, B=1e-5, 

C=1e-5, =2 100.00% 100.00% 
A=1e-4, B=1e-5, 

C=1e-5, =5 100.00% 100.00% 
A=1e-4, B=1e-5, 

C=1e-5, =10 100.00% 100.00% 
A=1e-4, B=1e-5, 

C=1e-5, =20 100.00% 100.00% 
A=1e-4, B=1e-5, 

C=1e-5, =50 100.00% 100.00% 
A=1e-4, B=1e-5, 
C=1e-5, =100 100.00% 100.00% 

A=2e-4, B=2e-5, 
C=2e-5, =10 100.00% 100.00% 

A=3e-4, B=3e-5, 
C=3e-5, =10 100.00% 100.00% 

A=4e-4, B=4e-5, 
C=4e-5, =10 100.00% 100.00% 

A=5e-4, B=5e-5, 
C=5e-5, =10 100.00% 100.00% 

A=1e-3, B=1e-4, 
C=1e-4, =10 100.00% 100.00% 

A=5e-3, B=5e-4, 
C=5e-4, =10 100.00% 100.00% 

A=5e-2, B=5e-3, 
C=5e-3, =10 100.00% 95.00% 
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TABLE VI
COMPARISON OF HNN-BASED METHODS IN TERMS OF ITERATIONS FOR 

CONVERGENCE FOR NETWOK 2 (FIGURE 4) 

HNN
PARAMETERS

Iterations

 HNN (Runge-Kutta) HNN (discrete-time) 
A=1e-4, B=1e-5, 

C=1e-5, =1
4433.95 (1372.24) 4623.90 (1451.87) 

A=1e-4, B=1e-5, 
C=1e-5, =2

2705.53 (836.33) 2802.07 (883.75) 

A=1e-4, B=1e-5, 
C=1e-5, =5

1420.08 (385.44) 1463.95 (404.93) 

A=1e-4, B=1e-5, 
C=1e-5, =10

834.88 (245.88) 858.07 (252.09) 

A=1e-4, B=1e-5, 
C=1e-5, =20

495.75 (146.07) 502.75 (152.82) 

A=1e-4, B=1e-5, 
C=1e-5, =50

253.49 (77.82) 260.12 (74.1) 

A=1e-4, B=1e-5, 
C=1e-5, =100

4634.77 (14266.76) 192.06 (66.89) 

A=2e-4, B=2e-5, 
C=2e-5, =10

786.28 (248.24) 490.88 (160.81) 

A=3e-4, B=3e-5, 
C=3e-5, =10

830.34 (246.89) 391.53 (124.89) 

A=4e-4, B=4e-5, 
C=4e-5, =10

832.49 (233.22) 327.94 (94.86) 

A=5e-4, B=5e-5, 
C=5e-5, =10

822.15 (242.44) 267.20 (90.22) 

A=1e-3, B=1e-4, 
C=1e-4, =10

828.03 (213.48) 162.08 (48.73) 

A=5e-3, B=5e-4, 
C=5e-4, =10

805.86 (234.75) 552.26 (4970.55) 

A=5e-2, B=5e-3, 
C=5e-3, =10

869.77 (247.34) 4030.47 (13558.24) 

TABLE VII
COMPARISON OF ROUTING METHODS IN TERMS OF SIMULATION TIMES FOR 

NETWOK 2 (FIGURE 4) 

HNN
PARAMETERS

Simulation time (ms) 

 HNN (Runge-Kutta) HNN (discrete-time) 
A=1e-4, B=1e-5, 

C=1e-5, =1
259093 77844 

A=1e-4, B=1e-5, 
C=1e-5, =2

149906 46266 

A=1e-4, B=1e-5, 
C=1e-5, =5

81859 25188 

A=1e-4, B=1e-5, 
C=1e-5, =10

46156 15375 

A=1e-4, B=1e-5, 
C=1e-5, =20

27360 9000 

A=1e-4, B=1e-5, 
C=1e-5, =50

14359 4672

A=1e-4, B=1e-5, 
C=1e-5, =100

257406 2579

A=2e-4, B=2e-5, 
C=2e-5, =10

45828 8672 

A=3e-4, B=3e-5, 
C=3e-5, =10

48500 6766 

A=4e-4, B=4e-5, 
C=4e-5, =10

48500 5703 

A=5e-4, B=5e-5, 
C=5e-5, =10

48078 4532 

A=1e-3, B=1e-4, 
C=1e-4, =10

48422 2703 

A=5e-3, B=5e-4, 
C=5e-4, =10

46969 9250 

A=5e-2, B=5e-3, 
C=5e-3, =10

51672 69203 

Fig. 5. Network 3: one of the computer network topologies 
used in the simulations. The numbers represent the costs of the 
links. 

TABLE VIII
COMPARISON OF HNN-BASED METHODS IN TERMS OF ACCURACY (OF THE 

PATHS FOUND) FOR NETWOK 3 (FIGURE 5) 

HNN PARAMETERS Accuracy 
 HNN (Runge-

Kutta)
HNN (discrete-time)

A=1e-4, B=1e-5, C=1e-5, =1 100.00% 100.00% 
A=1e-4, B=1e-5, C=1e-5, =2 100.00% 100.00% 
A=1e-4, B=1e-5, C=1e-5, =5 100.00% 100.00% 
A=1e-4, B=1e-5, C=1e-5, =10 100.00% 100.00% 
A=1e-4, B=1e-5, C=1e-5, =20 100.00% 100.00% 
A=1e-4, B=1e-5, C=1e-5, =50 100.00% 100.00% 
A=2e-4, B=2e-5, C=2e-5, =10 100.00% 100.00% 
A=3e-4, B=3e-5, C=3e-5, =10 100.00% 100.00% 
A=1e-3, B=1e-4, C=1e-4, =10 100.00% 100.00% 
A=5e-2, B=5e-3, C=5e-3, =10 100.00% 86.00% 

TABLE IX
COMPARISON OF HNN-BASED METHODS IN TERMS OF ITERATIONS FOR 

CONVERGENCE FOR NETWOK 3 (FIGURE 5) 

HNN
PARAMETERS

Iterations

 HNN (Runge-Kutta) HNN (discrete-time) 
A=1e-4, B=1e-5, 

C=1e-5, =1
4674.93 (2433.65) 4742.56 (2572.75) 

A=1e-4, B=1e-5, 
C=1e-5, =2

2663.18 (1197.25) 2692.09 (1214.80) 

A=1e-4, B=1e-5, 
C=1e-5, =5

1241.41 (420.57) 1246.74 (418.65) 

A=1e-4, B=1e-5, 
C=1e-5, =10

752.1 (311.52) 748.62 (307.55) 

A=1e-4, B=1e-5, 
C=1e-5, =20

3884.67 (12652.35) 472.11 (152.88) 

A=1e-4, B=1e-5, 
C=1e-5, =50

23597.75 (24862.92) 10874.62 (20295.35) 

A=2e-4, B=2e-5, 
C=2e-5, =10

764.47 (319.06) 4870.60 (14195.32) 

A=3e-4, B=3e-5, 
C=3e-5, =10

738.99 (268.14) 6753.91 (16719.99) 

A=1e-3, B=1e-4, 
C=1e-4, =10

828.03 (213.48) 162.08 (48.73) 

A=5e-2, B=5e-3, 
C=5e-3, =10

751.8 (281.56) 529.62 (4972.73) 
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TABLE X
COMPARISON OF ROUTING METHODS IN TERMS OF SIMULATION TIMES FOR 

NETWOK 3 (FIGURE 5) 

HNN
PARAMETERS

Simulation time (ms) 

 HNN (Runge-Kutta) HNN (discrete-time) 
A=1e-4, B=1e-5, 

C=1e-5, =1
253860 78687 

A=1e-4, B=1e-5, 
C=1e-5, =2

145579 45125 

A=1e-4, B=1e-5, 
C=1e-5, =5

68235 20922 

A=1e-4, B=1e-5, 
C=1e-5, =10

41063 12484 

A=1e-4, B=1e-5, 
C=1e-5, =20

209032 7281 

A=1e-4, B=1e-5, 
C=1e-5, =50

1258469 166000 

A=2e-4, B=2e-5, 
C=2e-5, =10

41765 78953 

A=3e-4, B=3e-5, 
C=3e-5, =10

40297 109797

A=1e-3, B=1e-4, 
C=1e-4, =10

48422 2703

A=5e-2, B=5e-3, 
C=5e-3, =10

40953 8406 

 Finally, Table 11 presents the best simulation results in 
terms of simulation times obtained by the proposed method 
and HNN solved via Runge-Kutta for each network topology. 
These results of table 11 are the best results of tables 4, 7, and 
10. Notice that as the complexity of the network (given by the 
number of nodes and the node degree) increases, the 
simulation time of the HNN solved by Runge-Kutta increases 
at a significant pace. Conversely, for the method proposed in 
this paper, the results of table 11 show that the increase in 
simulation time with computer network complexity is much 
smaller. Therefore, these simulations show that the proposed 
method is more efficient than the solution based on Runge-
Kutta [2] and more adequate to handle more complex 
computer networks. 

TABLE XI
COMPARISON OF ROUTING METHODS IN TERMS OF THE SMALLER SIMULATION 

TIMES OBTAINED FOR EACH COMPUTER NETWORK TOPOLOGY
Simulation Time (ms) Network Number 

of nodes 
Node
degree HNN (Runge-

Kutta)  
HNN (discrete 

time) 
Network 
1 (Fig. 3) 

6 3.33 8250 2031

Network 
2 (Fig. 4) 

8 3.00 14359 2579

Network 
3 (Fig. 5) 

8 3.25 40297 2703

VI. CONCLUSIONS

In this paper we have proposed a routing algorithm based 
on discrete-time Hopfield neural networks (HNN). The 
proposed method is based on a previous formulation based on 
HNNs which uses a differential equation solved through the 
Runge-Kutta method.  In contrast, our method is based on a 
discrete difference equation. 

We have carried out a number of simulations using three 
computer networks topologies to evaluate the proposed 
method. The results have shown that the proposed method is 
able to find optimal paths much faster than the method based 
on an HNN solved via Runge-Kutta. Furthermore, our 
simulations have shown that simulation time of the method 
based on continuous version of the HNN increases with the 
complexity of the computer networks much faster than in the 
case of the method proposed in this paper. 
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