
A Novel Approach for a Routing Algorithm Based on
a Discrete Time Hopfield Neural Network

Abstract—This articles proposes a new approach to accelerate
the routing algorithm based on Hopfield Neural Network. We
showed that one can calculate the best route in terms of cost in a
network using a discrete equation instead of the common used
differential formulation. We also demonstrated that the
formulation based on discrete parameters outperforms the well
known formulation in terms of simulation time.

Index Terms— Communication network, Hopfield neural
network, Shortest path, Routing.

I. INTRODUCTION

Routing algorithms have been hardly discussed in the
scientific community, mainly because the routing process
impacts drastically on communications networks performance.
Ideal routing algorithm comprises finding the best path
between source and destination nodes, enabling high quality
transmission and avoiding penalties caused by physical layer
impairments. There are different ways to find the optimal
route. Some algorithms determine the routes based on the
shortest path (SP) [1], minor delay [2], higher signal-to-noise
ratio (in All-Optical Networks case) [3], load balance [4],
among others.

Moreover, to maintain the Quality of Service (QoS)
computations have to be carried out in real time and should be
adaptative. To provide this flexibility, many techniques from
Computational Intelligence (CI) have been tested. The most
used techniques are Artificial Neural Networks (ANN) [2,4-
10], Ant Colony Optimization [11-12], Genetic Algorithms
[13-14], and Hybrid algorithms combining those techniques
[15-16].

ANN are very good candidates for solving the problem due
to its high computational speed [2]. Hopfield and Tank
described an ANN with feedback configuration suitable for
solving constrained optimization problems, especially the
Traveling Salesman Problem (TSP) [5]. Therefore, this ANN
configuration is called Hopfield neural network (HNN). The
use of HNN to find the shortest path between two nodes in a
communication network was initiated by Rauch and Winarske
[6]. However, this propose requires a prior knowledge of the
network topology. To outperform this limitation, Ali and
Kamoun [2] proposed a novel adaptive algorithm, where the
weight matrix just carries convergence information. The
information about the link cost and the topology is added
through the bias as shown in Fig. 1. Additional papers report

techniques to avoid involved loops and problems in the
algorithm convergence [7-8]. However these algorithms are
based on the same differential equation proposed by Ali and
Kamoun [2].

In this paper, we propose a new approach based on discrete
and finite difference equation to speed up the convergence of
the HNN. The rest of the paper is organized as follows. In
section II, we describe the ANN based routing algorithm
proposed by [2]. In section III, we show our contribution on
the solution method and in section IV we provide a detailed
description of the proposed algorithm and of a software tool
that we have developed for simulations. In section V, we
present the simulation results and compare our approach based
on difference equations to the formulation given by [2]. In
section VI, we present our conclusions.

II.HOPFIELD NEURAL NETWORKS FOR ROUTING IN
COMMUNICATIONS NETWORKS

The block diagram of the Hopfield neural network (HNN) is
depicted in Fig. l. The processing elements are the neurons
and they are full-connected, i.e. every output of each neuron is
connected to inputs of all other neurons via synaptic weights.
To solve routing problems in communication networks, Ali
and Kamoun [2] proposed that each link in the communication
network between two adjacent nodes has one neuron
associated. For example, a link from node x to node i is
associated to a neuron that have the xi description. The output
of a neuron Vxi, depends on its input Uxi, according the
sigmoidal function as expressed in (1). Notice that the input of
each neuron corresponds to the sum of all the outputs of the
neurons of the HNN multiplied by a factor represented by the

matrix yjxiT , added to an external bias xiI . The yjxiT , element
represents the synaptic weights connecting the output of the
neuron yj to the sum point in the input of the neuron xi.

ixNNix
e

V
xixiUxi

/,
1

1
 (1)

The parameter xi determines the computation time to
convergence and the correctness of the algorithm. In our

C. J. A. Bastos-Filho
Department of Computing Systems, UPE

50720-001
Recife - PE – Brazil
cjabf@dsc.upe.br

R. A. Santana
Department of Computing Systems, UPE

50720-001
Recife - PE - Brazil

Robson_poli@yahoo.com.br

A. L. I. Oliveira, IEEE Senior Member
Department of Computing Systems, UPE

50720-001
Recife - PE - Brazil

alio @dsc.upe.br

363

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

simulations we used the same xi for all neurons in the HNN.
Therefore, we call this parameter in the rest of the paper,
instead of xi . The behavior of the sigmoid logistic function
is shown in the Fig. 2 for different values of . As higher as
the parameter is, the logistic function tends to a step
function.

Fig. 1. Hopfield Neural Network Configuration.

Fig. 2. Sigmoid Logistic function behavior for different values of .

If every link in the network has a nonnegative cost
associated Cij, the goal of the HNN is to find the path that
minimizes the cost from some source node s to a destination
node d through the communication network. Thus, the HNN
should indicate a directed path as an ordered sequence of
nodes connecting s to d, so the sum of all the costs connecting
these nodes provides the lower possible cost. The path that
provides minimum cost is defined as Lsd. In most cases, the
cost matrix is symmetric (ixxi CC), though exists some
papers considering a asymmetric cost matrix (ixxi CC) [4].

Notice that elements iiC are nulls because one node cannot be
connected to itself.

The matrix xi defines if the arc xi exists in the topology of
the communication network used in the simulation. If the arc
xi exists then 0xi 0

, otherwise 1xi .
When the simulation converges, i.e. the change of every

output values xiV in an interactions are below a predefined
criteria, an adjustment is done in each output. If an output has
a value greater than 0.5 it is adjusted to “1”, otherwise it is

adjusted to “0”. The final value of the xiV will define if the
arc related with the neuron xi belongs or not to the shortest
path Lsd.

otherwise
Larc

V sdxi
xi ,0

,1 (2)

Beside this, each cell can be externally excited by input

bias xiI . These system inputs can be used to set the general
level of excitability of the whole network and represent the
actual data provided by the user to the neural network. We
used the following expression for the bias [2]:

iyix

CI

isxd

isxdxiisxdxixi

,
22

1
2

1
2

54

21

 (3)

where is the Kronecker function and 1 , 2 , 4 and 5

are constants.

The synaptic matrix yjxiT , and the energy function of the
HNN are described as [2]:

iyjxijxyijxyyjxiT 33334, (4)

ds

n

x

n

xi
i

xixi

n

x

n

xi
i

ix

n

xi
i

xi

n

sdix
x

n

xi
i

xixi

n

sdix
x

n

xi
i

xixi

VVV

VV

VVCE

1
2

1
2

2

22

5

1 1

4

1

2

11

3

,,
1 1

2

,,
1 1

1

 (5)

where E is the energy of the HNN and 3 is a constant.
 These parameters have specific functions on the energy
function: 1 minimizes the total cost; 2 prevents

nonexistent links from being included in the chosen path; 3

is zero for every node in the valid path; 4 forces the HNN to

converge to a stable state and 5 is introduced to ensure that
the source and the destination nodes belong to the solution.
Ahn et al proposed others terms to avoid loops [7], but we
did not considered them in this work.

Therefore, if the system is stable in Liapunov sense, then
iterations lead to smaller output changes. As a consequence,
after a convenient number of iterations the HNN reaches some

364

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

minima of the system energy. Ali and Kamoun [2] resolve the
system using the differential equation described below.

n

y
xi

n

yj
j

yjyjxi
xixi IVTU

dt
dU

1 1
,

 (6)

 Notice that the sum of second and the third terms represents
the energy variation of the HNN. Therefore, one can rewrite
(6) as follow:

xi

xixi

dV
dEU

dt
dU (7)

Ali and Kamoun [2] use the Runge-Kutta method to solve
the equation. To simplify and accelerate the resolution we
propose in the next section a new approach based on a discrete
difference equation.

III. HNN APPROACH BASED ON ENERGY FINITE DIFFERENCE
EQUATION

Some authors have proposed to solve Hopfield neural
networks using discrete time energy equations [17-18].
However, none of them applied it to the routing problem in
communications networks. Thus, we adapted the discrete time
formulation to HNN modeled to solve the routing problem.
We believed that it could accelerate the calculus of routes.
Therefore, instead of solving the systems using a differential
equation that requires sophisticated methods (like Runge-
Kutta, i.e., Eq. (7)), we propose a simple approach based on a
simple difference equation based on discrete time reference.
The equation used to calculate the next input value of the
neurons is shown below.

)(

211

1 1
, nInVTC

nBUnAUnUnU
n

y
xi

n

yj
j

yjyjxi

xixixixi

 (8)

where 1nU xi is the next input of the neuron xi calculated
based on the output values of all the neurons of the network

nVyj , the external bias nI xi and on its own input in

previous instants nU xi , 1nU xi and 2nU xi . A , B
and C are constants that regulate the weight of the previous
inputs.

IV. ALGORITHM DESCRIPTION AND SIMULATION TOOL

We developed a simulation tool in Java to calculate the
route based on HNN that follows the flow chart shown in Fig.
3. The first step is to get the parameters 1 , 2 , 3 , 4 and

5 to determine the weight matrix. After that, the simulations

parameters are required. Using this data the software
calculates the topology and the bias matrixes. So, the neurons
are initialized (the neurons input are set with a little noise to
accelerate the convergence). Default values of the simulation
parameters are presented in the table I.

Fig. 3. Flow chart of the discrete time Hopfield Neural Network algorithm for
routing in communications networks.

The value of the logistic function parameter used in the
simulations is also presented in table I. It is well known that
higher values for leads to faster convergence of the
algorithm, despite it can lead to error in the route

365

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

determination.

TABLE I
PARAMETERS USED IN SIMULATIONS AND THEIR DEFAULT VALUES.

PARAMETER VALUE
(DEFAULT)

1
950

2
2500

3
1500

4
475

5
2500

A 0.0001
B 0.00001
C 0.00001

1

V.SIMULATIONS RESULTS

In this section we report on a number of simulations
performed to compare the routing method proposed in this
paper with the method proposed by Ali and Kamoun [2]. The
routing algorithms based on Hopfiel neural networks are also
compared to Dijkstra's algorithm [1]. We have considered
three computer networks topologies in our simulations. They
are depicted in Figures 3, 4 and 5, respectively.

In each simulation set we are interested in comparing the
three routing methods regarding the number of optimal routes
found as well as simulation time. In addition, for the methods
based on HNN we have compared the number of iterations
needed for convergence.

Fig. 3. Network 1: one of the computer network topologies
used in the simulations. The numbers represent the costs of the
links.

One simulation set for a given computer network topology
consists of a number of simulations considering the three
routing algorithms. In each simulation, the source and
destination nodes are randomly selected. Next, Dijkstra's
algorithm is used to compute the shortest path between the
source and destination nodes. Finally, both the continuous
version of the HNN routing method [2] and the discrete
version proposed in this paper are executed independently to
obtain the shortest path. The paths obtained by the HNN

methods are compared to the one computed via Dijkstra's
algorithm.
 A simulation set is executed considering the same values
for the parameters of the HNNs. After a simulation set is
executed, we obtain the total simulation time for each of the
HNN-based routing methods. In addition, we obtain the mean
and standard deviation of the number of iterations needed for
each of the HNN-based routing methods. Finally, we compute,
for the HNN-based methods, the percentage of the simulations
in which these method produced an optimal path, that is, a
path identical to that produced by Dijkstra's algorithm for the
same simulation (that is, a simulation using the same source
and destination nodes).
 Tables 2, 3 and 4 report some simulation results for the
computer network 1, depicted in Figure 3. Each line of tables
2, 3 and 4 report the results obtained for a given simulation
set. Each simulation set comprised 100 simulations with
randomly selected source and destination nodes. In all
simulations, the HNN-based methods employed the default
values of the parameters μ1, μ2, μ3 , μ4 and μ5 given in Table
1. We varied the values of parameters A, B, C and to analyze
their influence on performance.
 Table 2 shows the accuracy of the HNN methods with
respect to the results furnished by Dijkstra's algorithm. The
results of table 2 show that for most values of the parameters
the HNN algorithms obtain the same paths obtained by
Dijkstra's algorithm (that is, HNNs obtained 100% accuracy).

TABLE II
COMPARISON OF HNN-BASED METHODS IN TERMS OF ACCURACY (OF THE

PATHS FOUND) FOR NETWOK 1 (FIGURE 3)

HNN
PARAMETERS

Accuracy

 HNN (Runge-Kutta) HNN (discrete-time)
A=1e-4, B=1e-5,

C=1e-5, =1 100.00% 100.00%
A=1e-4, B=1e-5,

C=1e-5, =2 100.00% 100.00%
A=1e-4, B=1e-5,

C=1e-5, =5 100.00% 100.00%
A=1e-4, B=1e-5,

C=1e-5, =10 100.00% 100.00%
A=1e-4, B=1e-5,

C=1e-5, =20 100.00% 100.00%
A=1e-4, B=1e-5,

C=1e-5, =50 100.00% 100.00%
A=2e-4, B=2e-5,

C=2e-5, =10 100.00% 100.00%
A=3e-4, B=3e-5,

C=3e-5, =10 100.00% 100.00%
A=4e-4, B=4e-5,

C=4e-5, =10 100.00% 100.00%
A=5e-2, B=5e-3,

C=5e-3, =10 100.00% 82.00%

 The mean (and standard deviation) number of iterations for
convergence of each HNN-based method for network 1 are
presented in Table 3. It can be observed that the number of
iterations depends significantly on the values of the
parameters. By comparing the best results obtained by each
method (in bold) we conclude that the proposed method is
able to converge using less iterations.

366

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE III
COMPARISON OF HNN-BASED METHODS IN TERMS OF ITERATIONS FOR

CONVERGENCE FOR NETWOK 1 (FIGURE 3)

HNN
PARAMETERS

Iterations

 HNN (Runge-Kutta) HNN (discrete-time)
A=1e-4, B=1e-5,

C=1e-5, =1
4163.79 (1059.71) 4277.45 (998.71)

A=1e-4, B=1e-5,
C=1e-5, =2

2569.23 (762.26) 2575.49 (664.21)

A=1e-4, B=1e-5,
C=1e-5, =5

1265.14 (407.82) 1267.40 (400.77)

A=1e-4, B=1e-5,
C=1e-5, =10

713.69 (241.67) 721.45 (229.99)

A=1e-4, B=1e-5,
C=1e-5, =20

464.93 (192.78) 460.52 (183.60)

A=1e-4, B=1e-5,
C=1e-5, =50

10157.82 (19921.19) 8321.70 (18238.32)

A=2e-4, B=2e-5,
C=2e-5, =10

835.0 (340.93) 487.72 (201.69)

A=3e-4, B=3e-5,
C=3e-5, =10

778.57 (269.36) 332.73 (126.98)

A=4e-4, B=4e-5,
C=4e-5, =10

765.52 (262.48) 2751.17 (201.69)

A=5e-2, B=5e-3,
C=5e-3, =10

4371.56 (1173.78) 29557.71 (24574.91)

Table 4 compares the routing methods in terms of
simulation time. The results show that for most combinations
of the parameters (expect that in the last line of the table) the
method proposed in this paper is much faster than HNN
solved with the Runge-Kutta method [2]. Moreover, the
smaller simulation time for the proposed method was much
smaller than that of HNN solved via Runge-Kutta (entries in
bold in table 4). For network 1, the smaller simulation time
obtained by Runge-Kutta was 8250ms whereas the proposed
method achieved 2021ms.

TABLE IV
COMPARISON OF ROUTING METHODS IN TERMS OF SIMULATION TIMES FOR

NETWOK 1 (FIGURE 3)

HNN
PARAMETERS

Simulation time (ms)

 HNN (Runge-Kutta) HNN (discrete-time)
A=1e-4, B=1e-5,

C=1e-5, =1
73735 26687

A=1e-4, B=1e-5,
C=1e-5, =2

45922 16078

A=1e-4, B=1e-5,
C=1e-5, =5

22782 7921

A=1e-4, B=1e-5,
C=1e-5, =10

12719 4562

A=1e-4, B=1e-5,
C=1e-5, =20

8250 2875

A=1e-4, B=1e-5,
C=1e-5, =50

172890 47125

A=2e-4, B=2e-5,
C=2e-5, =10

14641 3015

A=3e-4, B=3e-5,
C=3e-5, =10

13797 2031

A=4e-4, B=4e-5,
C=4e-5, =10

13703 16828

A=5e-2, B=5e-3,
C=5e-3, =10

81422 192015

Fig. 4. Network 2: one of the computer network topologies
used in the simulations. The numbers represent the costs of the
links.

 The simulation results for network 2 (Fig. 4) are show in
Tables 5, 6 and 7, which follow the same structure of tables 2,
3, and 4, respectively. We have also tested the proposed
method on a third computer network topology (network 3),
which is depicted in Figure 5. The simulation results for
network 3 are presented in Tables 8, 9, and 10. The same
observations made for network 1 can be made for networks 2
and 3, namely, the proposed method is able to produce
optimal routes with much smaller simulation times than the
HNN-based method solved via Runge-Kutta [2].

TABLE V
COMPARISON OF HNN-BASED METHODS IN TERMS OF ACCURACY (OF THE

PATHS FOUND) FOR NETWOK 2 (FIGURE 4)

HNN
PARAMETERS

Accuracy

 HNN (Runge-Kutta) HNN (discrete-time)
A=1e-4, B=1e-5,

C=1e-5, =1 100.00% 100.00%
A=1e-4, B=1e-5,

C=1e-5, =2 100.00% 100.00%
A=1e-4, B=1e-5,

C=1e-5, =5 100.00% 100.00%
A=1e-4, B=1e-5,

C=1e-5, =10 100.00% 100.00%
A=1e-4, B=1e-5,

C=1e-5, =20 100.00% 100.00%
A=1e-4, B=1e-5,

C=1e-5, =50 100.00% 100.00%
A=1e-4, B=1e-5,
C=1e-5, =100 100.00% 100.00%

A=2e-4, B=2e-5,
C=2e-5, =10 100.00% 100.00%

A=3e-4, B=3e-5,
C=3e-5, =10 100.00% 100.00%

A=4e-4, B=4e-5,
C=4e-5, =10 100.00% 100.00%

A=5e-4, B=5e-5,
C=5e-5, =10 100.00% 100.00%

A=1e-3, B=1e-4,
C=1e-4, =10 100.00% 100.00%

A=5e-3, B=5e-4,
C=5e-4, =10 100.00% 100.00%

A=5e-2, B=5e-3,
C=5e-3, =10 100.00% 95.00%

367

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE VI
COMPARISON OF HNN-BASED METHODS IN TERMS OF ITERATIONS FOR

CONVERGENCE FOR NETWOK 2 (FIGURE 4)

HNN
PARAMETERS

Iterations

 HNN (Runge-Kutta) HNN (discrete-time)
A=1e-4, B=1e-5,

C=1e-5, =1
4433.95 (1372.24) 4623.90 (1451.87)

A=1e-4, B=1e-5,
C=1e-5, =2

2705.53 (836.33) 2802.07 (883.75)

A=1e-4, B=1e-5,
C=1e-5, =5

1420.08 (385.44) 1463.95 (404.93)

A=1e-4, B=1e-5,
C=1e-5, =10

834.88 (245.88) 858.07 (252.09)

A=1e-4, B=1e-5,
C=1e-5, =20

495.75 (146.07) 502.75 (152.82)

A=1e-4, B=1e-5,
C=1e-5, =50

253.49 (77.82) 260.12 (74.1)

A=1e-4, B=1e-5,
C=1e-5, =100

4634.77 (14266.76) 192.06 (66.89)

A=2e-4, B=2e-5,
C=2e-5, =10

786.28 (248.24) 490.88 (160.81)

A=3e-4, B=3e-5,
C=3e-5, =10

830.34 (246.89) 391.53 (124.89)

A=4e-4, B=4e-5,
C=4e-5, =10

832.49 (233.22) 327.94 (94.86)

A=5e-4, B=5e-5,
C=5e-5, =10

822.15 (242.44) 267.20 (90.22)

A=1e-3, B=1e-4,
C=1e-4, =10

828.03 (213.48) 162.08 (48.73)

A=5e-3, B=5e-4,
C=5e-4, =10

805.86 (234.75) 552.26 (4970.55)

A=5e-2, B=5e-3,
C=5e-3, =10

869.77 (247.34) 4030.47 (13558.24)

TABLE VII
COMPARISON OF ROUTING METHODS IN TERMS OF SIMULATION TIMES FOR

NETWOK 2 (FIGURE 4)

HNN
PARAMETERS

Simulation time (ms)

 HNN (Runge-Kutta) HNN (discrete-time)
A=1e-4, B=1e-5,

C=1e-5, =1
259093 77844

A=1e-4, B=1e-5,
C=1e-5, =2

149906 46266

A=1e-4, B=1e-5,
C=1e-5, =5

81859 25188

A=1e-4, B=1e-5,
C=1e-5, =10

46156 15375

A=1e-4, B=1e-5,
C=1e-5, =20

27360 9000

A=1e-4, B=1e-5,
C=1e-5, =50

14359 4672

A=1e-4, B=1e-5,
C=1e-5, =100

257406 2579

A=2e-4, B=2e-5,
C=2e-5, =10

45828 8672

A=3e-4, B=3e-5,
C=3e-5, =10

48500 6766

A=4e-4, B=4e-5,
C=4e-5, =10

48500 5703

A=5e-4, B=5e-5,
C=5e-5, =10

48078 4532

A=1e-3, B=1e-4,
C=1e-4, =10

48422 2703

A=5e-3, B=5e-4,
C=5e-4, =10

46969 9250

A=5e-2, B=5e-3,
C=5e-3, =10

51672 69203

Fig. 5. Network 3: one of the computer network topologies
used in the simulations. The numbers represent the costs of the
links.

TABLE VIII
COMPARISON OF HNN-BASED METHODS IN TERMS OF ACCURACY (OF THE

PATHS FOUND) FOR NETWOK 3 (FIGURE 5)

HNN PARAMETERS Accuracy
 HNN (Runge-

Kutta)
HNN (discrete-time)

A=1e-4, B=1e-5, C=1e-5, =1 100.00% 100.00%
A=1e-4, B=1e-5, C=1e-5, =2 100.00% 100.00%
A=1e-4, B=1e-5, C=1e-5, =5 100.00% 100.00%
A=1e-4, B=1e-5, C=1e-5, =10 100.00% 100.00%
A=1e-4, B=1e-5, C=1e-5, =20 100.00% 100.00%
A=1e-4, B=1e-5, C=1e-5, =50 100.00% 100.00%
A=2e-4, B=2e-5, C=2e-5, =10 100.00% 100.00%
A=3e-4, B=3e-5, C=3e-5, =10 100.00% 100.00%
A=1e-3, B=1e-4, C=1e-4, =10 100.00% 100.00%
A=5e-2, B=5e-3, C=5e-3, =10 100.00% 86.00%

TABLE IX
COMPARISON OF HNN-BASED METHODS IN TERMS OF ITERATIONS FOR

CONVERGENCE FOR NETWOK 3 (FIGURE 5)

HNN
PARAMETERS

Iterations

 HNN (Runge-Kutta) HNN (discrete-time)
A=1e-4, B=1e-5,

C=1e-5, =1
4674.93 (2433.65) 4742.56 (2572.75)

A=1e-4, B=1e-5,
C=1e-5, =2

2663.18 (1197.25) 2692.09 (1214.80)

A=1e-4, B=1e-5,
C=1e-5, =5

1241.41 (420.57) 1246.74 (418.65)

A=1e-4, B=1e-5,
C=1e-5, =10

752.1 (311.52) 748.62 (307.55)

A=1e-4, B=1e-5,
C=1e-5, =20

3884.67 (12652.35) 472.11 (152.88)

A=1e-4, B=1e-5,
C=1e-5, =50

23597.75 (24862.92) 10874.62 (20295.35)

A=2e-4, B=2e-5,
C=2e-5, =10

764.47 (319.06) 4870.60 (14195.32)

A=3e-4, B=3e-5,
C=3e-5, =10

738.99 (268.14) 6753.91 (16719.99)

A=1e-3, B=1e-4,
C=1e-4, =10

828.03 (213.48) 162.08 (48.73)

A=5e-2, B=5e-3,
C=5e-3, =10

751.8 (281.56) 529.62 (4972.73)

368

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE X
COMPARISON OF ROUTING METHODS IN TERMS OF SIMULATION TIMES FOR

NETWOK 3 (FIGURE 5)

HNN
PARAMETERS

Simulation time (ms)

 HNN (Runge-Kutta) HNN (discrete-time)
A=1e-4, B=1e-5,

C=1e-5, =1
253860 78687

A=1e-4, B=1e-5,
C=1e-5, =2

145579 45125

A=1e-4, B=1e-5,
C=1e-5, =5

68235 20922

A=1e-4, B=1e-5,
C=1e-5, =10

41063 12484

A=1e-4, B=1e-5,
C=1e-5, =20

209032 7281

A=1e-4, B=1e-5,
C=1e-5, =50

1258469 166000

A=2e-4, B=2e-5,
C=2e-5, =10

41765 78953

A=3e-4, B=3e-5,
C=3e-5, =10

40297 109797

A=1e-3, B=1e-4,
C=1e-4, =10

48422 2703

A=5e-2, B=5e-3,
C=5e-3, =10

40953 8406

 Finally, Table 11 presents the best simulation results in
terms of simulation times obtained by the proposed method
and HNN solved via Runge-Kutta for each network topology.
These results of table 11 are the best results of tables 4, 7, and
10. Notice that as the complexity of the network (given by the
number of nodes and the node degree) increases, the
simulation time of the HNN solved by Runge-Kutta increases
at a significant pace. Conversely, for the method proposed in
this paper, the results of table 11 show that the increase in
simulation time with computer network complexity is much
smaller. Therefore, these simulations show that the proposed
method is more efficient than the solution based on Runge-
Kutta [2] and more adequate to handle more complex
computer networks.

TABLE XI
COMPARISON OF ROUTING METHODS IN TERMS OF THE SMALLER SIMULATION

TIMES OBTAINED FOR EACH COMPUTER NETWORK TOPOLOGY
Simulation Time (ms) Network Number

of nodes
Node
degree HNN (Runge-

Kutta)
HNN (discrete

time)
Network
1 (Fig. 3)

6 3.33 8250 2031

Network
2 (Fig. 4)

8 3.00 14359 2579

Network
3 (Fig. 5)

8 3.25 40297 2703

VI. CONCLUSIONS

In this paper we have proposed a routing algorithm based
on discrete-time Hopfield neural networks (HNN). The
proposed method is based on a previous formulation based on
HNNs which uses a differential equation solved through the
Runge-Kutta method. In contrast, our method is based on a
discrete difference equation.

We have carried out a number of simulations using three
computer networks topologies to evaluate the proposed
method. The results have shown that the proposed method is
able to find optimal paths much faster than the method based
on an HNN solved via Runge-Kutta. Furthermore, our
simulations have shown that simulation time of the method
based on continuous version of the HNN increases with the
complexity of the computer networks much faster than in the
case of the method proposed in this paper.

REFERENCES

[1] E. W. Dijkstra, ‘A Note on Two Problems in Connection with Graphs’,
Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[2] M. K. Ali, and F. Kamoun, ‘Neural Networks for Shortest Path
Computation and Routing in Computer Networks’, IEEE Trans. on
Neural Networks, vol. 4, no. 6, pp. 941-953, 1993.

[3] J. F. Martins-Filho, C. J. A. Bastos-Filho, E. A. J. Arantes, S. C.
Oliveira, L. D. Coelho, J. P. G. Oliveira, R. G. Dante, E. Fontana and F.
D. Nunes, “Novel Routing Algorithm for Transparent Optical Networks
Based on Noise Figure and Amplifier Saturation”, In Proc. of
SBMO/IEEE MTT-S IMOC 2003, vol.2, pp. 919-923, 2003.

[4] N. Kojic, I. Reljin, and B. Reljin, ‘Neural Network for finding Optimal
Path in Packet-Switched Network’, In: Proc. of IEEE 7th Seminar on
Neural Network Applications in Electrical Engineering, NEUREL 2004,
Serbia and Montenegro, pp. 91-96. September 2004.

[5] J. J. Hopfield, and D. W Tank, ‘”Neural’ computations of decision in
optimization problems”, Biol. Cybern., vol. 52, pp. 141- 152, 1985.

[6] H. E. Rauch, and T. Winarske, ‘Neural Networks for Routing
Communication Traffic’, IEEE Cont. Syst. Mag., pp. 26-30, April 1988.

[7] C. W. Ahn, R. S. Ramakrishna, C. G. Kang, and I. C. Choi, ‘Shortest
Path Routing Algorithm using Hopfield Neural Networks’, IEE
Electronics Letters, vol. 37, no. 19, pp. 1176-1178, 2001.

[8] D. C. Park, and S. E. Choi, ‘A neural network based multi-destination
routing algorithm for communication network’. In Proc. Joint. Conf.
Neural Networks, Anchorage, pp. 1673-1678, USA, 1998.

[9] L. Zhang and S. C. A. Thomopoulos, ‘Neural network implementation of
the shortest path algorithm for traffic routing in communication
networks’, In Proc. Int. Joint Con& Neural Networks, pp. II. 591, June
1989.

[10] N. Shaikh-Husin, M; K. Hani, and T. G. Seng, ‘Implementation of
Recurrent Neural Network Algorithm for Shortest Path Calculation in
Network Routing’, In: Proc. of IEEE International Symposium on
Parallel Architectures, Algorithm and Networks, ISPAN 2002, pp. 91-
96, 2004.

[11] K. M. Sim and W. H. Sun, ‘Ant Colony Optimization for Routing and
Load-Balancing: Survey and New Directions’, IEEE Trans. On Systems,
Man, and Cybernetics - Part A: Systems and Humans, vol. 33, no. 5, pp.
560-572, September 2003.

[12] G. D. Caro and M. Dorigo, ‘AntNet: Distributed stigmergetic control for
communications networks’, J. Artif. Intell. Res., vol. 9, pp. 317–365,
1998.

[13] S.H. Ngo et al., ‘Adaptive routing and wavelength assignment using ant-
based algorithm’, In Proc. of 12th IEEE ICON, vol. 2, pp 482-486,
Singapore, November, 2004.

[14] D. Bisbal et al., ‘Dynamic Routing and Wavelength Assignment in
Optical Networks by Means of Genetic Algorithms’, Photonic Network
Communications, vol. 7, no. 1, pp. 43-58, 2004.

[15] Y.-W. Yuan, H.-H. Zhan, and L.-M. Yan, ‘ An Adaptative QoS Route
Selection Algorithm Based on Genetic Approach in Combination with
Neural Netwok, In. Proc. of the Second Int. Conf. on Machine Learning
and Cybernetics, Xi´an, 2003.

[16] V. T. Le, X. Jiang, S. H. Ngo, S. Horiguchi, “Dynamic RWA Based on
the Combination of Mobile Agents Technique and Genetic Algorithms
in WDM Networks with Sparse Wavelength Conversion”, in Proc. of
19th IEEE IPDPS, 2005.

[17] G. G. Yen, and A. N. Michel, ’Stability analysis and synthesis algorithm
of a class of discrete-time neural networks’, Mathematical and
Computer Modelling, vol. 21, no. 1-2, pp. 1-29, January, 1995.
[18] S. Guo, L. Huang, and L. Wang, ‘Exponential stability of
discrete-time Hopfield neural networks’, Computers & Mathematics with
Applications, vol. 47, no. 8-9 , pp. 1249-1256, April-May 2004.

369

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

