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 Abstract–This article presents a new learning methodology 
based on a hybrid algorithm for interval type-1 non-singleton 
type-2 TSK fuzzy logic systems (FLS). Using input-output data 
pairs during the forward pass of the training process, the 
interval type-1 non-singleton type-2 TSK FLS output is 
calculated and the consequent parameters are estimated by the 
recursive least-squares (RLS) method. In the backward pass, 
the error propagates backward, and the antecedent parameters 
are estimated by the back-propagation (BP) method. The 
proposed hybrid methodology was used to construct an interval 
type-1 non-singleton type-2 TSK fuzzy model capable of 
approximating the behaviour of the steel strip temperature as it 
is being rolled in an industrial Hot Strip Mill (HSM) and used 
to predict the transfer bar surface temperature at finishing 
Scale Breaker (SB) entry zone. Comparative results show the 
performance of the hybrid learning method (RLS-BP) against 
the only BP learning method. 
 

I.  INTRODUCTION 

NTERVAL type-2 (IT2) fuzzy logic systems (FLS) constitute 
an emerging technology. In [1] both, one-pass and back-

propagation (BP) methods are presented as IT2 Mamdani 
FLS learning methods, but only BP is presented for IT2 
Takagi-Sugeno-Kang (TSK) FLS systems. One-pass method 
generates a set of IF-THEN rules by using the given training 
data one time, and combines the rules to construct the final 
FLS. When BP method is used in both Mamdani and TSK 
FLS, none of antecedent and consequent parameters of the 
IT2 FLS are fixed at starting of training process; they are 
tuned using exclusively steepest descent method. In [1] 
recursive least-squares (RLS) and recursive filter (REFIL) 
algorithms are not presented as IT2 FLS learning methods. 

The hybrid algorithm for IT2 Mamdani FLS has been 
already presented elsewhere [2, 3, 4] with three combinations 
of learning methods: RLS-BP, REFIL-BP and orthogonal 
least-squares (OLS)-BP, whilst the hybrid algorithm for 
singleton IT2 TSK FLS (IT2 TSK SFLS or IT2 ANFIS) has 
been presented elsewhere [5] with two combinations of 
learning methods: RLS-BP and REFIL-BP. 

The aim of this work is to present and discuss a new hybrid 
learning algorithm for interval type-1 non-singleton type-2 
TSK FLS (IT2 TSK NSFLS-1 or IT2 NS1 ANFIS) using 
RLS-BP combination in order to estimate the antecedent and 
consequent parameters during the training process. The 
proposed IT2 TSK NSFLS-1 inference system is evaluated 
making transfer bar surface temperature predictions at Hot 
Strip Mill (HSM) Finishing Scale Breaker (SB) entry zone. 

 

II.  PROPOSED METHODOLOGY 

A.  Input-Output Data Pairs 
Most of the industrial processes are highly uncertain, non-

linear, time varying and non-stationary [2, 6], having very 
complex mathematical representations. Interval type-2 TSK 
NSFLS-1 takes easily the random and systematic components 
of type A or B standard uncertainty [7] of industrial 
measurements. The non-linearities are handled by FLS as 
identifiers and universal approximators of nonlinear dynamic 
systems [8, 9, 10, 11]. Stationary and non-stationary additive 
noise is modeled as a Gaussian function centred at the 
measurement value. In stationary additive noise the standard 
deviation takes a single value, whereas in non-stationary 
additive noise the standard deviation varies over an interval 
of values [1]. Such characteristics make IT2 TSK NSFLS-1 a 
powerful inference system to model and control industrial 
processes.  

Only the BP learning method for IT2 TSK SFLS has been 
proposed in the literature and it is used as a benchmark 
algorithm for parameter estimation or systems identification 
on IT2 TSK FLS systems [1]. To the best knowledge of the 
authors, IT2 TSK NSFLS-1 has not been reported in the 
literature [1, 12, 13], using neither BP nor hybrid RLS-BP 
training. 

One of the main contributions of this work is to implement 
an application of the IT2 TSK NSFLS-1 (IT2 NS1 ANFIS) 
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using the hybrid REFIL-BP learning algorithm, capable of 
compensate for uncertain measurements. 

B. Using Hybrid RLS-BP Method in Interval Type-2 TSK 
FLS Training 

The Table 1 shows the activities of the one pass learning 
algorithm of BP method. Both, IT2 TSK SFLS (BP) and IT2 
TSK NSFLS-1 (BP) outputs are calculated during forward 
pass. During the backward pass, the error propagates 
backward and the antecedent and consequent parameters are 
estimated using only the BP method. 

 
TABLE I 

ONE  PASS IN LEARNING PROCEDURE FOR IT2 TSK SFLS 
 Forward Pass Backward Pass 

Antecedent 
Parameters Fixed BP 

Consequent 
Parameters Fixed BP 

 
The proposed hybrid algorithm (IT2 NS1 ANFIS) uses 

RLS during forward pass for tuning of consequent parameters 
as well as the BP method for tuning of antecedent parameters, 
as shown in Table II. It looks like Sugeno type-1 ANFIS [13, 
14], which uses RLS-BP hybrid learning rule for type-1 FLS 
systems. 

 
TABLE II 

TWO  PASSES  IN HYBRID LEARNING PROCEDURE FOR  IT2  NS1 ANFIS 
 Forward Pass Backward Pass 

Antecedent 
Parameters Fixed BP 

Consequent 
Parameters RLS Fixed 

 

C. Adaptive Learning Algorithm 
The training method is presented as in [1]: Given N input-

output training data pairs, the training algorithm for E 
training epochs, should minimize the error function: 

 

( ) ( )( ) ( )[ ]2
22

1 tt
FLSIT

t yfe −= − x       

 (1) 
 

D. Hot Strip Mill 
Because of the complexities and uncertainties involved in 

rolling operations, the development of mathematical theories 
has been largely restricted to two-dimensional models 
applicable to heat losing in flat rolling operations. 

Fig. 1, shows a simplified diagram of a HSM, from the 
initial point of the process at the reheat furnace entry to its 
end at the coilers. 

Besides the mechanical, electrical and electronic 
equipment, a big potential for ensuring good quality lies in 
the automation systems and the used control techniques. The 

most critical process in the HSM occurs in the Finishing Mill 
(FM). There are several mathematical model based systems 
for setting up the FM. There is a model-based set-up system 
[18] that calculates the FM working references needed to 
obtain gauge, width and temperature at the FM exit stands. It 
takes as inputs: FM exit target gage, target width and target 
temperature, steel grade, hardness ratio from slab chemistry, 
load distribution, gauge offset, temperature offset, roll 
diameters, load distribution, transfer bar gauge, transfer bar 
width and transfer bar temperature entry. 
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Fig. 1. Typical Hot Strip Mill 

 
The errors in the gauge of the transfer bar are absorbed in 

the first two FM stands and therefore have a little effect on 
the target exit gauge. It is very important for the model to 
know the FM entry temperature accurately. A temperature 
error will propagate through the entire FM. 

 
E. Design of the IT2 NSFLS-l 

The architecture of the IT2 TSK NSFLS-1 was established 
in such away that its parameters are continuously optimized. 
The number of rule-antecedents was fixed to two; one for the 
Roughing Mill (RM) exit surface temperature and one for 
transfer bar head traveling time. Each antecedent-input space 
was divided in three fuzzy sets (FSs), fixing the number of 
rules to nine. Gaussian primary membership functions (MFs) 
of uncertain means were chosen for the antecedents. Each 
rule of the each IT2 TSK NSFLS-1 is characterized by six 
antecedent MFs parameters (two for left-hand and right-hand 
bounds of the mean and one for standard deviation, for each 
of the two antecedent Gaussian MFs) and six consequent 
parameters (one for left-hand and one for right-hand end 
points of each of the three consequent type-1 FSs), giving a 
total of twelve parameters per rule. Each input value has one 
standard deviation parameter, giving two additional 
parameters. 

 
F. Noisy Input-Output Training Data 

From an industrial HSM, noisy input-output pairs of three 
different product types were collected and used as training 
and checking data. The inputs are the noisy measured RM 
exit surface temperature and the measured RM exit to SB 
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entry transfer bar traveling time. The output is the noisy 
measured SB entry surface temperature. 

 
G. Fuzzy Rule Base 

The IT2 TSK NSFLS-1 fuzzy rule base consists of a set of 
IF-THEN rules that represents the model of the system. The 
IT2 TSK NSFLS-1 has two inputs 11 Xx ∈ , 22 Xx ∈  and one 
output Yy ∈ . The rule base has M = 9 rules of the form: 

 

,~~: 2211
iii FisxandFisxIFR      

22110 xCxCCYTHEN iiii ++=       (2) 
 
where iY the output of the ith rule is a fuzzy type-1 set, and 

the parameters i
jC , with i = 1,2,3,…,9 and j = 0,1,2, are the 

consequent type-1 FSs. 
 

H. Input Membership Functions 
The primary MFs for each input of the interval type-2 

NSFLS-1 are Gaussians of the form: 
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where: =k 1,2 (the number of type-2 non-singleton 

inputs), ( )kX x
k

µ  is centered at '
kk xx =  and 

kXσ  is the 

standard deviation. The standard deviation of the RM exit 
surface temperature measurement, 

1Xσ , was initially set to 

13.0 Co  and the standard deviation of head end traveling 
time measurement, 

2Xσ , was initially set to 2.41 s. The 

uncertainty of the input data is modeled as stationary additive 
noise using type-1 FSs 

 
I. Antecedent Membership Functions 

The primary MFs for each antecedent are interval type-2 
FSs described by Gaussian primary MFs with uncertain 
means: 
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where [ ]i

k
i
k

i
k mmm 21,∈  is the uncertain mean, with k =1,2 

(the number of antecedents) and i = 1,2,..9 (the number of M 
rules), and i

kσ is the standard deviation. The means of the 
antecedent FSs are uniformly distributed over the entire input 
space.  

Table 3 shows the calculated interval values of uncertainty 
of 1x  input, where [ ]1211, mm  is the uncertain mean and 1σ is 
the standard deviation for all the 9 rules. Fig. 2 shows the 
initial MFs of the antecedents for of 1x input. 

 
TABLE  III 

1x INPUT INTERVALS OF UNCERTAINTY 

FS 11m  
Co  

12m  
Co  

1σ  
Co  

1 950 952 60 
2 1016 1018 60 
3 1080 1082 60 

 

 
Co  

Fig. 2. MF s of the Antecedents for  1x  Input 

 
Table 4 shows the interval values of uncertainty for 

2x input, where [ ]2221, mm  is the uncertain mean and 2σ is 
the standard deviation for all the 9 rules. Fig. 3 shows the 
initial MFs of the antecedents for of 2x  input. 

 
TABLE IV 

2x INPUT INTERVALS OF UNCERTAINTY   

 
Product 

Type 

21m  
s 

22m  
S 

2σ

s 

A 32 34 10
B 42 44 10
C 56 58 10

 
 
The standard deviation of temperature noise 1nσ was 

initially set to 1 Co and the standard deviation of time noise 

2nσ  was set to 1 s. 
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Fig. 3. MFs of the Antecedents for of 2x  Input 

 
J. Consequent Membership Functions 

Each consequent is an interval type-1 FS with 
[ ]i
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where i

jc  denotes the center (mean) of i
jC , and i

js  

denotes the spread of i
jC , with =i 1,2,3,..,9. Then i

ly  and 
i
ry are the consequent parameters. When only the input-

output data training pairs ( ) ( )( )11 : yx ,…, ( ) ( )( )NN yx :  are 
available and there is no data information about the 
consequents, the initial values for the centroid parameters i

jc  

and i
js can be chosen arbitrarily in the output space [16-17]. 

In this work the initial values of i
jc  were set equal to 0.001 

and the initial values of i
js  equal to 0.0001. 

 

III.  RESULTS 

The IT2 TSK NSFLS-1(RLS-BP) system was trained and 
used to predict the SB entry temperature, applying the RM 
exit measured transfer bar surface temperature and RM exit to 
SB entry zone traveling time as inputs. We ran fifteen epochs 
of training; one hundred and ten parameters were tuned using 
eighty seven, sixty-eight and twenty-eight input-output 
training data pairs per epoch, for type A, type B and type C 
products respectively.  

The performance evaluation for the hybrid IT2 TSK 

NSFLS-1 (RLS-BP) system was based on root mean-squared 
error (RMSE) benchmarking criteria as in [1]: 

 

( ) ( ) ( )( )[ ] 2

1 *22
1* ∑ = −− −= n

k
k

sFLSIT fkY
n

RMSE x  

 (7) 
 
where ( )kY  is the output data from the input-output 

checking data pairs. 
( )*2 FLSITRMSE −  stands for ( )BPRMSE SFLSTSK ,2 [the 

RMSE of the IT2 TSK SFLS (BP)] and for 
( )BPRMSE NSFLSTSK 1,2 −  [the RMSE of the IT2 TSK 

NSFLS-1(BP)], whereas ( )BPREFILRMSE NSFLSTSK −−1,2  

[the RMSE of the IT2 TSK NSFLS-1(RLS-BP)] is obtained 
when the hybrid algorithm is applied to IT2 TSK NSFLS-1. 

Fig. 4 shows the RMSEs of the two IT2 TSK SNFLS-1 
systems and the base line IT2 TSK SFLS (BP) for fifty 
epochs’ of training for the case for type C products. Observe 
that from epoch 1 to 4 the hybrid IT2 TSK NSFLS-1 (RLS-
BP) has better performance than both: the IT2 TSK SFLS 
(BP) and the IT2 TSK NSFLS-1 (BP). From epoch 1 to 4 the 
RMSE of the IT2 TSK SFLS has an oscillation, meaning that 
it is very sensitive to its learning parameters values. At epoch 
5, it reaches its minimum RMSE and is stable for the rest of 
training. 

 

V.  CONCLUSIONS 

An IT2 TSK NSFLS-1 (IT2 NS1 ANFIS)  using the hybrid 
RLS-BP training method was tested and compared for 
predicting the surface temperature of the transfer bar at SB 
entry. The antecedent MFs and consequent centroids of the 
IT2 TSK NSFLS-1 tested, absorbed the uncertainty 
introduced by all the factors: the antecedent and consequent 
values initially selected, the noisy temperature measurements, 
and the inaccurate traveling time estimation. The non-
singleton type-1 fuzzy inputs are able to compensate the 
uncertain measurements, expanding the applicability of IT2 
NS1 ANFIS systems.  

It has been shown that the proposed IT2 NS1 ANFIS 
system can be applied in modeling and control of the steel 
coil temperature. It has also been envisaged its application in 
any uncertain and non-linear system prediction and control. 
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