
Almost All Learning Machines are Singular
(Invited Paper in FOCI2007)

Sumio WATANABE
Precision and Intelligence Laboratory

Tokyo Institute of Technology
4259 Nagatsuda, Midori-ku, Yokohama 226-8503

Email: swatanab@pi.titech.ac.jp

Abstract— A learning machine is called singular if its Fisher
information matrix is singular.

Almost all learning machines used in information processing
are singular, for example, layered neural networks, normal
mixtures, binomial mixtures, Bayes networks, hidden Markov
models, Boltzmann machines, stochastic context-free grammars,
and reduced rank regressions are singular.

In singular learning machines, the likelihood function can
not be approximated by any quadratic form of the parameter.
Moreover, neither the distribution of the maximum likelihood
estimator nor the Bayes a posteriori distribution converges to
the normal distribution, even if the number of training samples
tends to infinity. Therefore, the conventional statistical learning
theory does not hold in singular learning machines.

This paper establishes the new mathematical foundation for
singular learning machines. We propose that, by using resolution
of singularities, the likelihood function can be represented as the
standard form, by which we can prove the asymptotic behavior
of the generalization errors of the maximum likelihood method
and the Bayes estimation. The result will be a base on which
training algorithms of singular learning machines are devised
and optimized.

I. INTRODUCTION

A learning machine is called regular if its Fisher information
matrix is well-defined and positive definite. It is called singular
if its Fisher information matrix is singular, in other words, it
has zero eigenvalues.

A lot of learning machines used in practical applications
are singular. For example, layered neural networks, nor-
mal mixtures, mixture of binomial distributions, Bayes net-
works, hidden Markov models, stochastic context-free gram-
mars, Boltzmann machines, and reduced rank regressions are
singular learning machines. In singular learning machines, the
conventional statistical learning theory does not hold. The
likelihood function can not be approximated by any quadratic
form, resulting that neither the distribution of the maximum
likelihood estimator nor the Bayes a posteriori distribution
converges to a normal distribution [6] [5] [17]. Consequently,
AIC, BIC, or MDL, respectively does not correspond to the
average prediction error, the Bayes marginal likelihood, or the
minimum description length. Since singular learning machines
play a central role in information processing systems, it is
important to construct the new mathematical foundation, on
which statistical learning theory of them can be built.

Let ������� ���
	�� represent a learning machine which infers a
probabilistic output � from an input � using a parameter 	 .

Then 
 ������� ���
	����
	������
is the set of all conditional probabilities, where � is the
set of parameters. We can introduce a geometry on this set
by using Kullback-Leibler distance, whose metric is given by
the Fisher information matrix. In a regular statistical model,� can be understood as a smooth differential manifold,
whereas, in a singular learning machine, it is an algebraic
variety or an analytic set with singularities. Therefore, in order
to construct statistical learning theory of singular models,
we need a new mathematical foundation such as algebraic
geometry and algebraic analysis. In this paper, we show that
resolution of singularities gives the standard form of the
likelihood function of a singular learning machine, by which
the generalization errors of the maximum likelihood method
and Bayes estimation are clarified.

II. FRAMEWORK OF STATISTICAL LEARNING

A. Learning Machine and Training Data

Let ������� ���
	�� be a conditional probability distribution of an
output � for a given input � and a parameter 	 . Here ������� ���
	��
is referred to as a learning machine. We assume that the set of
all parameters � is a subset of the � dimensional Euclidean
space. Let ����� 
 ��� �!�"�#�$���
% �'& �"()�+*,*,*,�"-��
be a set of training samples which are independently taken
from the true and unknown distribution./�����"�0� � ./�����1./����� ����*
By using the sample data set

� �
, the learning machine

estimates the true conditional probability ./����� ��� and obtains
an trained inference ��23����� ��� . For example, in the maximum
likelihood learning, the trained inference is given by� 2 ����� ��� � ������� ���54	6�7�
where 4	 is the maximum likelihood estimator (MLE). In the
Bayes learning, the trained inference is given by� 2 ����� ��� �98 ������� ���"	:������	;� � � � � 	<�
where ����	=� �<� � is the Bayes a posteriori distribution. The gen-
eralization error of the trained inference ��20����� ��� is defined by
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the Kullback information from the true conditional probability
to the estimated conditional probability,> �?8@8 ./����� ���!./�����/A,B3C ./����� ���� 2 ����� ��� � � � �)*
Note that

>�D?E
is a random variable because it is a function

of the sample set
� �

. Its expectation value FHG >:I is called the
average generalization error. The smaller generalization error
means that the learning is more appropriate.

B. Regular and Singular Learning Machines

The Fisher information matrix J ��	�� � 
 J �LK ��	:�
� is defined
byJ �LK ��	�� � 8M8ON � ��	<�
���
�3� N K ��	<�
���"�0�P������� ���"	:�1./����� � � � � �
where N � ��	<�
���"�0� � QQ 	R� A,B3C�������� ���
	���*
Note that Fisher information matrix is positive semi-definite
in both regular and singular models, in other words, its eigen
values are all nonnegative.

Example. If a learning machine is a regression model using
a parametric function S �����
	��������� ���
	��UTWV�X/Y6Z\[ &( ���][ S �����
	��!�1^7_`�
then the Fisher information matrix is equal toJ � K ��	�� � 8 Q � S �����
	�� Q K S �����
	��P������� ���
	��1./����� � ���
where

Q � � � Q�a0Q 	R�$� . The Fisher information matrix is positive
definite if and only if


 Q � S �����
	��b� is linearly independent.

A learning machine is called regular if J ��	:� is positive
definite for an arbitrary 	 . If otherwise, then the learning
machine is called singular. In a singular learning machine,
there exists a parameter 	 such that c V�d J ��	:� � E

. Such
a parameter is called a singularity of the Fisher information
matrix. At a singularity of the Fisher information matrix, the
likelihood function can not be approximated by any quadratic
form of the parameter.

Remark. If a learning machine has a singularity of the Fisher
information matrix, the set of such pointse � 
 	?���'� c V�d J ��	�� � E �
is not the empty set. In general, the set

e
is not one point, and

it contains singularities in itself (singularities of the analytic
set

e
).

Example. Let us study a function with a parameter 	 �
gf0h �"i h � ,
S �����"	:� �kjlh\m�nbo f0h`p!qsr �����utvi hUw B p �����7xy� E;z � z (0{u���

then Fisher information matrix is always positive definite.
Hence the regression model which employs Fourier series is
regular. However, if a function with a parameter 	 � 
gf0h �
i h � ,

S �����
	�� � jlhgm�n f0h d"| r)} ��i h ���~� E�z � z & � (1)

is used in a regression model, then the set
 QQ f h S �����
	���� QQ i h S �����
	��b�
is not linearly independent if at least one of

f3h
or i h is equal

to zero. Hence the regression model is singular. It was shown
[22] that the set of all singularities of the Fisher information
matrix of this machinee � 
 	<� c V�d J ��	:� � E �
is an algebraic variety which is determined by the ideal
generated by jlh\m�n f h i�^
��� nh � E ��� ��& �
( �#*,*s�
���7*
This algebraic variety

e
contains singularities.

Remark. In singular learning machines, a parameter which
corresponds to a smaller model is a singularity of the Fisher
information matrix in the larger model, whereas, in regular
statistical models, it is not.

Example. The normal distribution�����U� f �UTWV�X/Y��$[�� ��[ f � ^( �
is regular, whereas its mixture������� f �
i\�"�7�uT f V�X/Y��$[�� ��[�i � ^( � t�� & [ f ��V�X/YU�$[�� �;[�� � ^( �
is singular. In general, if a learning machine has a layered
structure or a hidden variable, then it is singular, in general.
Hence almost all learning machines in neural information
processing is singular.

Remark. Some researchers claim that the conventional sta-
tistical learning theory even holds in a singular learning
machine in the case when the optimal parameter for function
approximation is uniquely determined. It is not true. Even if
the optimal parameter in function approximation is unique,
singularities affects the learning process by the bias-variance
problem. It should be emphasized that singularities of the
Fisher information matrix has the larger bias but the smaller
variance than the ordinary points. In statistical engineering
process such as model selection and hypothesis testing, we
have to study the balance of the bias and the variance of
the parameter. It depends on the true distribution, the learning
machine, and the number of training samples [21][23] [13].
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III. MATHEMATICAL FOUNDATION

A. Standard Form of Singular Likelihood

In singular learning machines, the conventional statisti-
cal learning theory does not hold, hence we need a new
mathematical foundation on which the likelihood function is
appropriately treated. We propose the following theorem is
the basic one for singular learning machines, which is called
resolution of singularities, or resolution theorem in algebraic
geometry.

Resolution Theorem. (Hironaka,1964). Let � ��	�� be an an-
alytic function on an open set � in ��� , which satisfies� ��	:� D�E

( 	���� ) and � ��	6�#� � E
for some 	6�:��� . Then

there exist both a � dimensional manifold � and an analytic
function ���/��� � , such that, for an arbitrary coordinate in��� � , � � � �����1� � � ^ h\�n��#�#� � ^ h+�� �� ��� �����+� � i\�����!� � �n �#�+� � � �� �
where � n �#*s*,*,� � � �"� n �#*,*s*,�
� � are nonnegative integers, � � � �����#� is
the Jacobian of the map 	 � � ����� , and i\�����¡  E

is an analytic
function.

Remark. This theorem is the well-known basic theorem in
algebraic geometry proved by Hironaka [8], on which Atiyah
and Kashiwara respectively made the foundation of distri-
bution theory [4] and algebraic analysis [11]. It was firstly
proposed in [18][20] that this theorem is essential to statistical
learning theory. This theorem claims that the function � � � �����!�
can be made as the direct product of � n �
� ^ �+*,*,*,�"� � , which is
said to be normal crossing. The manifold � is not orientable in
general. The analytic function 	 � � ����� may not be invertible
at � such that � � � �����1� � E

, however, invertible at � such that� � � �����1��¢� E
. For a given function � ��	:� , both the manifold� and analytic map 	 � � ����� can be algorithmically found

by using recursive blowing-ups or toric modification.

Let us define the empirical and average Kullback informa-
tions respectively by� � ��	:� � &-

�l � m�n AsB0C ./��� � � � � ������#�b� �)�1�
	�� �����	:� � 8@8 ./�����1./����� ���£AsB0C ./����� ���������� ���"	:� � � � �)*
For simplicity, we assume in this paper that there exists a
parameter 	6� such that ./����� ��� � ������� ���
	6��� , in other words,
the true distribution is contained in the learning machine. Even
if the true is not contained in a learning machine, singularities
strongly affect learning process [22][23]. If there exists a
parameter 	6� such that ����	6��� � E

, then ����	�� satisfies the
assumptions of resolution theorem, hence we can apply the
resolution theorem to ����	:� . It is immediately shown that there
exist both a manifold � and an analytic function �¤�/�?� �

such that ��� � �����1� � ¥ ����� ^¥ ����� � � h �n9�+�#� � h �� *
By using this fact, the empirical Kullback information can be
written as � � � � �����!� � - ¥ ����� ^ t�¦ - ¥ �����¨§ � ������� (2)

where § � ����� � &¦ -
�l � m�n�© ��� � �
� � �
���7*

Here the function © �����
� �
��� is defined by© �����
� �
��� � &¥ ����� Z ��� � �����1�U[�A,B3C ./����� ���������� ��� � �����1� _ *
We propose that the equation (2) is the standard representation
of the likelihood function of a singular learning machine.

Remark. The function © �����
� �
��� can be written as© �����
� � � � n ��	��1� if ����	���¢� E
. However, it is ill-defined as

the function of 	 at ����	:� � E
in general. On the other hand,

we can prove © �����"�)�"��� is an analytic function of � even when��� � �����1� � E
. The fact that © �����
� �
��� is well-defined function

of � can be proved by the normal crossing property of
¥ ����� .

The random process § � ����� is an empirical process, which
satisfies FªG � § � �����#� ^ I � (k� if ��� � �����!� � E ��*
Moreover, § � ����� weakly converges to the tight gaussian pro-
cess §������ when - tends to infinity. Here the gaussian process§������ is uniquely identified by its average and covarianceFHG §������ I � E �¬«­�����FHG §���� n �¨§���� ^ � I � FªG © �P®��!¯°�
� n � © �P®��!¯°�
� ^ � I �¬«­� n �"� ^ �7*
Then the empirical Kullback information can be written as[24],� � � � �����!� � Z ¦ - ¥ ������t §������( _ ^ [ &± � §������+� ^ (3)

on the manifold � .

B. Example

Let us study a learning machine������� ���"	:� � &¦ (3{ V�X/Y Z [ &( ���²[ f/³ ��i�����[v����� ^ _ �
where

³ ����� � �<tv� ^ and 	 � � f �
i\�
��� . We define the set of
parameters by� � 
 	<�\� f � z & �g� i3� z & �\� �3� z & �/*
Assume that the true distribution is./����� ���1./����� � ������� ��� E � E � E �u./�������
where ./����� is the standard normal distribution (average 0,
variance 1). Then the Kullback information is����	�� � &( Z � f iUt���� ^ tµ´ f ^ i
¶ _ *
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Note that ����	�� � E
defines an algebraic variety,f i � � � E *

The function ����	�� is not normal crossing, however, we can
make it normal crossing by the recursive blowing-ups. Let us
introduce four sets� n � 
 	<�\� f � z � �3�·���� ^ � 
 	<�\� f � D � �3�¸�g� f i3� z � f iUtµ�3�·�����¹ � 
 	<�\� f � D � �3�¸�g� f iutv�0� z � f i ^ �·�/�� ¶ � 
 	<�\� f � D � �3�¸�g� f i ^ � z � f i�t��3� z � f i3�·��*
It follows that � �~º � � � . Let � � ( % �»& �
( �
´ � ± ) be sets
contained in � ¹

, � � � 
 � f �"�
i
�1�
�
���b��*
A function � � � � � � ����% ��& �"()�"´)� ± � is defined on each � �
such thatf � f)n � n � i � i n � � � � n �f � f ^ �¼i � i ^ � ^ �¼� � f ^ � & [�i ^ �!� ^ �f � f ¹ � i � i ¹ � � � f ¹ i ¹ ��i ¹ � ¹ [ & ���f � f ¶ �¼i � i ¶ � ¶ �¼� � f ¶ i ¶ � ¶ ��� ¶ [ & ��*
Then � � can be understood as a local coordinate whose union
defines a manifold � �½º � � � , where two points � � � � �
and � K � � K are identified as a one point in � if and only if� � ��� � � � � K ��� K � . In each coordinate, the Kullback information
is given by(0��� � �����1� � � ^ n 
 � f)n i n t & � ^ tµ´ f ^ n ib¶ n ���� f ^^ � ^^ � & t�´3i
¶^ � ^^ ���� f ^¹ i
¶¹ ��� ^¹ tµ´3�7�� f ^¶ i ^¶ �
¶¶ � & t�´0i ^¶ ��*
It is easy to see that the empirical process § � ����� is well-defined
in each coordinate.

IV. MAXIMUM LIKELIHOOD AND MAXIMUM A
POSTERIORI

In the maximum likelihood method and the maximum a
posteriori method, the loss functionN ��	�� � [ �l � m�n AsB0Cu�����#�+� �)�1�
	��¾[ f � A,B3C°¿R��	:�
is minimized, where ¿°��	�� is some a priori probabilty distri-
bution on � and


gf � D?E � is a real sequence. The parameters
that minimize

N ��	�� with
f �H� E

and
f ����&

are respectively
called the maximum likelihood estimator and the maximum a
posteriori estimator. Sometimes the other estimators are used
with the other conditions on

f �
. Let 4	 be the parameter that

minimizes
N ��	:� . Then the average training error FÁÀ ��-u� and

the average generalization error F6Â ��-u� are respectively defined
by FÁÀ ��-u� � FªG � � ��4	�� I �F Â ��-u� � FªG ���­4	6� I �

where FHG I
shows the expectation value over all sets of

training samples. Even in singular learning machines, it was
proven in [24] that, if � is contained in a compact set, the
symmetry of two errors hold,F À ��-u� � [HÃ- tvÄ/� &- �7�F Â ��-u� � Ã - t�Ä/� &- ���
where Ã is a constant. In regular statistical models, it is well
known that Ã � � a ( . However, in singular learning machines,Ã is not equal to � a ( . In general, Ã   � a ( .

Let us assume that, in each local coordinate, at least one of� n �#*s*,*,� � � is an odd number. When

lim
��Å<Æ f � ��Ç �

then Ã � &± FHG © �\4��� ^ I *
The estimator 4� is defined by4� �

arg
qsr£ÈÉ/Ê3Ë Ì�Í [ §������ ^± t Ç ¿R� � �����1� _ �

where � � is the set of parameters which satisfy ��� � �����1� � E
.

Therefore, if
f �H� E

, thenÃ � &± FHG p1Î YÉ/Ê3Ë Ì §������ ^ I *
If lim

� f ���9Ï
and A q,Ð � f � a ¦ - � E

, thenÃ � &± FªG p1Î YÉ/Ê3Ë Ì�Ì §������ ^ I �
where � �
� is the set of parameters which maximize ¿°� � �����!�
in � � .
Remark. If � is not a compact set, MLE often does not
exist. Even if MLE exists, the generalization error becomes
larger than Ã a - . The MLE in singular a singular learning
machine has a quite stronger over-fitting property than that of a
regular statistical models. The maximum likelihood method is
more inappropriate for singular learning machines than regular
statistical models. On the other hand, as we show in the
following section, the average generalization error of Bayes
estimation is far smaller than that of the maximum likelihood
method in singular learning machines.

V. BAYES ESTIMATION

A. Theoretical Results

In Bayes learning, the free energy or the marginal likelihood
is given byÑ � �<� � � [�A,B3C 8 �Ò� m�n �����#�+� �)�1�
	��U¿R��	�� � 	<�
where ¿R��	:� is an a priori distribution on � . It is easy to
show the average generalization error of Bayes is equal to the
increase of the marginal likelihoodFHG >:I � FHG Ñ � ����Ó n � I [ FHG Ñ � �<� � I [v- e �
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where
e

is the entropy of the true distribution,e � [ 8@8 ./�����1./����� ���/A,B3C°./����� ��� � � � � *
The zeta function of a learning machine [20] is important in
Bayes theory,Ô ��Õ3� � 8 ����	:�$Ö\¿°��	�� � 	�*���×²Ø3��Õ3�Á  E �7*
The function

Ô ��Õ0� , which is a holomorphic function in×ÙØ0��Õ0�R  E
, can be analytically continued to the meromorphic

function on the entire complex plane. The analytic continu-
ation is ensured by again the resolution theorem [4] or the
existence of b-function [11]. It is also proved that the poles
of the zeta function are all real and negative integers,E  �[�Ú n  ?[�Ú ^  9[�Ú ¹   �+�#� *
Let Û n

be the order of the largest pole �$[�Ú n � . Then it was
proved that the free energy has the asymptotic expansion
[18][20]Ñ � ��� � � - e � t�Ú n A,B3C`-H[?� Û n [ & �£AsB0CUAsB0C°-;tv×;� ��� ���
where

e �
is the empirical entropy of the true distributione ��� [ &-

�l � m�n A,B3C°./���#�b� �)�����
which does not depend on the learning machine, and ×=� � � �
is a random variable which weakly converges to the random
variable represented by the random process §������ . By using
this result, we obtain that, if the Bayes generalization error
has asymptotic expansion, then it isFHG >:I � Ú n- tvÄ/� &- �7*
If the learning machine is regular, Ú n � � a ( and Û n �O&

. If
it is singular and ¿R��	:�6  E

at some singularity of the Fisher
information matrix, then Ú n6Ü � a ( and Û n D &

. Note that the
Jeffreys’ prior defined by¿R��	:�`T�Ý c V�d J ��	��7�
is equal to zero at the singularity of the Fisher information
matrix. If the Jeffreys’ prior is employed, then Ú n D � a ( [19].

By using the resolution theorem again, the largest pole and
its order can be exactly obtained. The largest pole �$[�Ú n � ofÔ ��Õ3� �98 ��� � �����!� Ö � ��� �����+� ¿R� � �����1� � �
is given by Ú n � Ð�q,rK �3K6t &( � K � (4)

and its order Û n
is equal to the number of Þ which attains the

minimum in equation (4).
Complete resolution of singularities was given in a layered

neural network [2] and a reduced rank regression [3]. If a

learning machine given by equation (1) is trained so as to
learn the true distribution

f)n � f ^ � �+�#� � E
, thenÚ n � G ¦ � I ^ t G ¦ � I t �± G ¦ � I tµ( �

where G ¦ � I
is the largest integer that is not larger than ¦ � .

It is still an open problem to find the complete resolution
of some learning machines. However, if a partial resolution
of singularities is found, then the upper bound of Ú n is
simultaneously obtained. Partial resolutions were found in
general three-layer perceptrons [21], gaussian mixtures [25],
Boltzmann machines[26], and hidden Markov models[27].

B. Variational Bayes

In the variational Bayes (VB) learning, the a posteriori
distribution ����	=� � � � is approximated by the VB posterior
distribution ß ��	�� � ß n ��	 n � ß ^ ��	 ^ � �#�+� ß � ��	 � ��*
The probability distributions

ß n ��	 n ��� �#�+� � ß � ��	 � � are deter-
mined by minimization of the Kullback information8 ß ��	��£AsB0C ß ��	������	;� � � � � 	<*
In singular learning machines, the posterior distribution does
not converge to any normal distribution, resulting that the
VB estimation is different from the true Bayes a posteriori
distribution even if the number of training samples goes to
infinity. The VB free energy defined byÑ�à�á � � � � � Ñ � � � ��t 8 ß ��	��/A,B3C ß ��	������	;� �<� � � 	
has the different asymptotic form than the true Bayes marginal
likelihood. The asymptotic forms of the VB free energy were
clarified in normal mixtures [15], in general mixtures mod-
els [16], hidden Markov models [9], stochastic context-free
grammars [10], and Boltzmann machines [14]. Unfortunately,
in VB learning, the average generalization error is not equal to
the increase of the free energy, hence the generalization error
of VB learning is still an open problem. It is shown that the
behavior of the VB generalization error is quite different from
the VB free energy in reduced rank regression [13].

C. Markov Chain Monte Calro

In singular learning machines, the true Bayes a posteriori
distribution has a quite complex form in the neighborhood
of singularities. It is often difficult for both the Markov
chain Monte Carlo and VB to approximate such probability
distribution. Recently, it was shown that an improved method,
the exchange Monte Carlo, is appropriate for constructing the a
posteriori distribution in singular learning machines, resulting
in the smaller generalization errors [12]. The theoretical values
of the free energy gives a good index which measures precise-
ness of the approximation of the a posteriori distributions.
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VI. CONCLUSION

A lot of learning machines used in practical applications are
singular, to which the conventional statistical learning theory
can not be applied.

This paper introduces the standard form of the likelihood
function in singular learning machines, by which the asymp-
totic behaviors of the training and generalization errors are
clarified.

Nowadays, new training algorithms such as the Variational
Bayes and the exchange Monte Calro method are being
developed. Based on the theoretical results of singular learning
machines, we can develop new information tools which mea-
sures the speed and preciseness of new training algorithms.
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