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Abstract—Artificial immune systems have taken much of their
inspiration from theoretical models of immune processes, in
particular the process of clonal selection in populations of B
cells and T cells. Here we focus on a generic dynamical model
for the interaction of cytokines with immune cells, which we refer
to as an artificial cytokine network (ACN).

1. INTRODUCTION

Mathematical models form a vital part of theorctical im-
munology. Mathcmatics is cssential for making quantitative
statcments about the response of the immune system to
antigens. Nonlinear dynamical systems [14], [15], and espe-
cially systems of nonlincar differential cquations [9], appcar
throughout the physical scicnees, and they have also been
uscd successfully in population biology and ccology to de-
seribe the growth and spread of plant and animal populations
[12]. The use of nonlinear differential cquations has further
been exploited to model the interactions of populations of
lymphocytes with virus or antigen populations [13], [16], and
dynamical systems have been used in many other theoretical
models in immunology.

The cmerging ficld of artificial immunc systems has been
inspired by mathcmatical models of immune interactions, and
in particular network models of lymphocyte populations (scc
for example [16] and referenees). Jerne introduced the notion
of an idiotypic network of immunc ceclls that arc able to
recognize onc another as well as antigen, while Farmer ct
al. suggested that the adaptive responses of immunc networks
might provide uscful paradigms for machinc lcarning. Sub-
scquently, immunc nctwork algorithms [2] were basced on
the idea of replacing nonlinear differential cquations with
analogous discrete or iterative schemes, together with the
inclusion of stochastic cffects duc to mutations. Many other
artificial immunc system algorithms, such as CLONALG (duc
to de Castro and von Zubcen [3]), IMMALG and optIA (duc
to Nicosia and Cutcllo [6], [7]), were bascd on simplificd
mcchanisms for clonal sclection. In the mean time, Jerne’s
idiotypic nctwork theory had alrcady been discredited by some
immunologists. However, the biological implausibility of a
theoretical model does not necessarily preclude its usefulness
in a computational context.

We belicve that mathematical analysis, and cspecially the
theory of dynamical systems, has a wholc host of uscful tools
to offer to practitioners of bio-inspired computing. By trans-
lating abstract processes into precise mathematical models, it
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should beccome much casicr to decide cxactly what the natural
immunc system has in common with an artificial immunc
system (AIS). Mathcmatical models of immunological pro-
cesses can be adapted to AIS in order to provide objective
measures of their performanee, and further to work out how
they can best be controlled. In a recent review of theoretical
techniques [1], we gave a simple model for the dynamics of
an artificial immune response, and indicated how this could
be analysed using idcas from optimal control thcory [17]. AIS
algorithms based on clonal sclection result in algorithms that
arc stochastic rather than deterministic, usually deseribed in
terms of populations of “cells” that cvolve between different
states according to probabilistic rules. In that case, thcy have
many propertics in common with genctic algorithms and other
kinds of cvolutionary algorithms. Thus it makes scnsc to
model them in terms of Markov chains: cxact Markov chain
models of certain AIS optimization algorithms have begun to
be developed fairly recently [4], [S]. These models allow onc
to prove convergence, but more detailed analysis is required
to derive more useful propertics such as rates of convergence;
the mcthods developed in [11] should be helpful in this regard.

The development of AIS has been inspired by abstract
models of immunological processes. In this article, we aim to
providc further inspiration for computcr scicntists by outlining
a ncw model for the intcraction of signalling molecules
(cytokines) with immunc cells. In turn, this cytokine nctwork
model could also provide insights for biology.

II. CYTOKINE NETWORKS

The allocation of computational rcsources to the proccsscs
of an artificial immunc responsc is critical to AIS performance.
The urgency of the job load, the tasks at hand, the specific cffi-
cacies of the available response mechanisms, the likelihood of
discovering more cfficacious responses (c.g. a higher-affinity
reeeptor), as well as demands on CPU time by proccsscs
outside the AIS: these are all factors that determine how much
should be allocated to the available AIS and developing better
responscs.

The natural immune system regulates this allocation by
means of a system of various immunc cells that mutally
influcnee cach other’s activitics via hormone-like interecllular
messenger molccules called cytokines. Cytokines stimulate
proliferation of various immune cells, with different immune
cell types responding to different cytokines. Such immunc
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cells include the effector cells (those which carry out the
response) as well as the cells that produce cytokines them-
sclves. Indeed, immune eclls often have a dual role, producing
cytokines in addition to an cffector function. The activitics
modulated by the cytokines produced by onc cell include
the production and sccretion of cytokines by other immunc
cells. These interactions form a lymphoid endocrine system
called the cytokine network. Each cell type in this nctwork is
characterised by its own subsct of the cytokines that it can
secrete, as well as its own subsct of cytokine receptors that
govern its activity. The cytokine network integrates stimuli
from a varicty of sources (c.g. distressed cells, cffector cells,
naive responsc-precursor cells), and the cytokines produced
by the network regulate the development and growth of the
responding immune cells.

From a computational point of vicw, the cytokine network
has an input of information about the state (cxtent and scverity)
of the discasc, the state (cxtent and efficacy) of the ongoing
responscs, and an output that governs proliferation of selected
cffector cclls as well as the organization of new responscs (c.g.
antigen presentation, germinal centre reaction). Both input
and output arc encoded by the concentrations of the various
cytokines. From a modclling point of view, thc complexity of
cytokine networks poscs considerable challenges. Morcover,
the cytokine network operates both locally and more globally,
and is thus intermediatc between a paracrine system and an
cndocrine system. However, in what follows we ignore all such
spatial aspeets for the sake of simplicity.

Bcelow we give a mathematical specification of the cytokine
network which cmphasizes it as a computational paradigm.
To highlight this aspect, we refer to it as an artificial cytokine
network (ACN). The ACN is onc cxample of a computational
system inspircd by biological para-/endocrine systems. As
will become clear, the ACN has much in common with the
associative memory modcels studicd by ncural network theory
[10]. This is not very surprising since the ACN is likewisc a
systemn that matches a veetor representing a given situation to a
vector representing a (hopefully suitable) response. However,
there are a few interesting points of contrast. The analogues
of “synaptic weights” in the ACN arc non-changing. Howcver,
the ACN is in somc scnsc a superposition of a number of
associative memory structurcs, with the relative contributions
of these structures changing on a sccond, slower time scalc.

III. ARTIFICIAL CYTOKINE NETWORK

For our model of the cytokine nctwork, we consider an
interecllular medium in which n distinct chemical specics
of cytokines diffuse and arc well mixed. We can then de-
finc cytokine concentrations uq,...,u,. The cytokines arc
produced by cytokine-producing cells, of which there are m
types. Cytokine production by a ccll of any onc of these types
depends on external stimuli sq,...,s, (i.c. signals arising
outside of the cytokine network) as well as the cytokines
themselves. The density of cell type £ in the medium is denoted

as v¢. We thus have the following kinetics:

m

Qg = 3 ek, Un, 81,00, 8000 — vpttg,  (3.1)
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where
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the function ¢ > 0 cxpresses the cffect of the eytokines
and cxternal stimuli on the production of cytokine k& by a
ccll of type 4; v, > 0 is the ratc of degradation of the kth
cytokine; ¢, > 0 cxpresses the cffect of the cytokines and
external stimuli on the proliferation rate of a cell of type ¢;
and gy > 0 is thc death ratc of cells of type £. There is
often a scparation of time scales between the dynamics of the
cytokines, cquation (3.1), and the dynamics of the cytokine-
producing cells, cquation (3.2). The system as a wholc is a
functional, mapping the cxternal stimuli into a cytokine profile,

§1(8), ..., 80(8) P ur(t),. .., un(t)

where the latter dircets the immune responsc.

When the stimuli evolve slowly (i.c. much slower than the
typical timescale 1/ given by the inverse decay rates of the
cells), and when there is just one cell type (m = 1), this
mapping is quasi-static, in the sensc that the stimuli at time ¢
uniquely determine the cytokine profile at that moment in time
(up to transient behaviour). In that case, the cytokine network
then behaves essentially like a look-up table. However, when
m > 2, this look-up table will itself cvolve over time,
depending on the history of the stimuli. Morcover, certain
rapid changes in the stimuli may precipitate sudden transitions
to a different look-up table.

To illustrate these points more concretely, consider the
following spccification:

¢€k(u17 ceesUnyStye. e, S'r') = EﬁkS(Z:Lzl Wegiti — éﬂv)
(3.3)
with

,
5 defl -
Oor = Oop — E WekjSj

Jj=1

(34)

where 8, > 0 represents the stimulation threshold of cell
type £ as regards production of eytokine &, and %, > O rep-
resents the maximum cell-specific scerction rate of cytokine k
by a ccll of type £. The function S is monotonically increasing,
with S(z) € [0,1] for all z € R, with lim,_, ., S(z) = 0 and
lim, 400 S(z) = 1; an cxample is S(z) = 1/(1+exp{—=z}).
The parameters wgy; and Wy, which may be negative, zero,
or positive, characterize how the production of cytokine & by
cell type £ is affccted by stimulation by cytokine ¢ or cxternal
stimulus 7.

To gain an insight into the dynamics of this modcl, consider
first the casc m = 1 (just one cell type), v1(¢) = T (timescale
separation) and with the élk fixed for all cytokines k. Also,

390



Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

let us take S to be the Heaviside step function, i.c.

S(z) = 0, x <0,
= 1, x> 0;

(3.5)
(3.6)

the quantities 8y, behave as “crisp’ thresholds for this choice.
Let (@s,...,%,) be a (quasi-) stationary point which solves
i, = 0 for all &k - in that casc wc approximate that v
is a constant, which does not change appreciably over the

response timescale of the cytokines. There are ar most 2" such

stationary points, since there arc n different sigmoid functions
Y1 for k = 1,...,n, and cach of these can take cither the

valuc zcro or the positive value 1, at the stcady statc, but

only provided that this is compatible with the corresponding
threshold for the sigmoid. We consider the region around this
stationary point bounded by the hyperplancs that arc the locus
of o1 | Weritt; = f; stationary points do not generically lic
on such a hyperplanc. This rcgion is the basin of attraction
of the asymptotically stable point (@, ..., ), since we have
cither S =1 or S = 0 throughout this region for all k.

When S is a smooth sigmoid function (such as S(z) =
1/(1 4 e~*)), the situation becomes more complicated. How-
cver, we will in general be able to define regions around the
stationary points in which 22:1 (u;v)2 satisfics the propertics
of a Lyapunov function (scc chapter 10 in [9]). The weight
paramcters, that characterize cell types, are fixed in this model.
Thus “lecarning” in the classical ncural nctwork scnsc only
takes place over the much slower cvolutionary timescale on
which novel cell types arisc.

IV. NUMERICAL RESULTS

In this scction wc present some preliminary numcrical
results for the dynamics of the system (3.2). We concentrate on

the special casc when there arc only two cytokines (n = 2) and

one cell type (m = 1). The external stimuli are also combined

into a single quantity s; = s(¢). In that casc, the system can

be rewritten in the form

= 1(ur,u2,8)v —v1ul,
s = Yo(ur,us,s)v —raus, 4.1
U= (Pur,u2,8) — p)v.

We assume that ), 7 = 1,2 arc given by sigmoid functions
(denoted S) as before, and so take

b=, 80> Wiku —6)),

k=12

J=1%

in fact we fix S(z) = 1/(1 + exp{—=z}). Since there is the
freedom to rescale u; and wug, we can set ¥y = 1 = 1),
without loss of gencrality. We further supposc that the stimulus

s cncourages the proliferation of cells, as docs the presence of

the cytokine corresponding to us, while the cytokine measured
by u; instcad tends to decreasce the overall growth rate of cells
(which can lead to rapid cell death). The latter assumptions
suggest that (as a first approximation) a suitable form for the
function ¢ should be

d(ug,uz,8) = susexp(—yuq), v > 0.

Fig. 1. Solutions of the system (4.1) for constant stimulus s = 1.5, starting
from initial values u1 = 15.5, us = 30.5, v = 30.5.

For all the numcrical results presented here, we have taken
parameter values as follows:
vi=1 w»m=2 p=10, =01
Also, we have fixed constant threshold values él =6, 9~2 =11,
and the interaction matrix (that determines the regions where

the sigmoid functions arc closc to 0 or 1) is taken as

Wi Wis _ -1 1
1% YQ 1 W YQ 2 - 1 0 :

To begin with, in Figure 1 we have plotted the case where
the stimulus is constant (s = 1.5), and thc cytokinc and
ccll densitics arc started at initial values closc to a quasi-
stationary statc, which can be calculated by approximating S
by a Heaviside function. To be more precise, we solve the
cquations u; = 1y = U = 0 to get the steady states for
this simplified choice of .S, and these serve as suitable initial
data. The topmost curve with the initial wiggle is v, while
the adjacent curve is us, and u; is at thc bottom. A gradual
decay is initially obscrved, but as the time incrcases further
there is a sudden rapid drop (corresponding to a threshold
being crossed), and thereafter all three quantitics decay rapidly
to zcro. (This ultimatc decay is not shown in the Figure,
however.) Thus in this case the constant stimulus mcans that
the quasi-stationary state does not persist.

In Figurc 2 we have plotted the casc where the stimulus
is constant, and thc cytokine and cell densitics arc started at
initial values close to a different quasi-stationary state (whose
approximate valuc is found in the same way as before). The
initially topmost curve for v goes through an inflection point,
whilc us is cventually the slowest to deeay: in this casc rapid
(cxponential) decay towards zero of all three quantitics scts
in almost immediatcly. Once again the point (0,0,0) is an
attracting fixed point. Thus in this case once more the constant
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Fig. 2. Solutions of the system (4.1) for constant stimulus s = 1.5, starting
from initial values u; = 6.5, ug = 12.5, v = 12.5.

stimulus means that the (approximate) quasi-stationary statc
docs not persist.

In order to get a different sort of behaviour (for this choice
of network functions and topology) we have solved the same
system but with two different stimuli applicd at different times.
To begin with, we take the choice

s(t) = 6 H(0.2 — t) H(t) + 700 H(0.9 — t) H(t — 0.7)

where H denotes the Heaviside function, corresponding to a
weak stimulus between ¢t = 0 and ¢ = 0.2, followed by a much
stronger onc between ¢ = 0.7 and ¢ = 0.9. The surprising
cffect is that thc weaker initial stimulus produces a much
stronger output in terms of the proliferation of the cytokine-
producing cclls, as can be seen from the topmost curve (the
profile of v) in Figurc 3. This is not so surprising given that
wc have a nonlincar system i.c. the outputs arc not dircetly
proportional to the inputs.

To scec the cffect of history on the system, we apply the
samc two stimuli but now with larger intervals between them,
for we take the choice

s(t) = 6 H(0.2 — t) H(t) + 700 H(1.1 — ¢) H(t — 0.9)

so that now the much stronger stimulus is applicd between
t = 0.9 and ¢ = 1.1. This time the the stronger sccond
stimulus produces a stronger responsc than the first, although
not proportionately so, in terms of the incrcased concentration
of cytokine-producing cells, i.c. the topmost curve (the profile
of v) in Figurc 4. The cytokine responses can be obscrved
from the lower curves.

V. CONCLUSIONS

Even with only two cytokines and onc type of cell, the
ACN modecl defined by (3.2) shows a rich varicty of dif-
ferent behaviours. For autonomous ODE models with three
dependent variables, it is known that there is alrcady the
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Fig. 3. Solutions of the system (4.1) for two different stimuli applied berween
times t = 0,0.2 and between fimes t = 0.7,0.9 respectively. starting from
initial values w1 = 6.5, us = 12.5, v = 12.5. All profiles are shown rogether
here, with the cytokine profiles at the bottom.
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Fig. 4. Solutions of the system (4.1) for two different stimuli applied between
times t = 0,0.2 and between times t = 0.9,1.1 respectively. starting from
initial values u1 = 6.5, ua = 12.5, v = 12.5. All profiles are shown fogether
here, with the cytokine profiles at the bottom.

potential for chaotic bchaviour (as in the famous Lorenz
system), with strange attractors, so if we increasce the number
of variables then there are even more possibilitics. A great deal
of further analysis (both cxact and numerical) will be nceded
to understand how best to choosce the parameters and specify
the interactions (i.c. how to fix the topology of the network).
Ideally, to cxploit this network for computation, some way to
control the responsc of the system would be required (perhaps
using the optimal control idcas outlined in [1]). Nevertheless,
we hope to gain a better understanding of this model in future,
and compare it with existing models of cytokine networks. One
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fruitful direction is to make a comparison with differential
cquation models for ncural networks such as in [8], which
suggest that it is possible to usc a training phase for the ACN,
in order to adjust paramcters in the interaction matrix for the
cytokines to suitable values.
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