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Abstract-Artificial immune svstenis have taken much of their should become much easier to decide exactlv what the natural 
inspiration from theoretical models of immune processes, in immune systeln has in colnlnon with an artificial ilnInune 
particular the process of in populations system (AIS), MatheInatical models of ilnlnunological pro. 
cells and T cells. Here we focus on a generic dynamical model 
for the interaction of cytokines ,I,ith immune cells, which refer CCSSCS can bc adapted to AIS in order to provide objcctivc 
to as an artificial cytokine network (ACNI. mcasurcs of thcir performance, and further to work out how 

they can best be controllcd. In a rcccnt rcvicw of thcorctical 
I.  INTRODUCTION techniques [I], we gave a simple rnodel for the dynamics of 

Mathernatical models form a vital part of theoretical iin- 
munology. Mathematics is essential for rnaking quantitative 
statcmcnts about the rcsponsc of the immunc systcm to 
antigens. Nonlincar dynamical systcms [I 41, [I 51, and cspc- 
cially systems of nonlinear differential equations [9], appear 
throughout the physical sciences, and they have also been 
used successfully in population biology and ecology to de- 
scribe the growth and spread of plant and animal populations 
[12]. The usc of nonlincar diffcrcntial cquations has furthcr 
bccn cxploitcd to modcl thc intcractions of populations of 
lymphocytes with virus or antigen populations [13], [16], and 
dynamical systems have been used in many other theoretical 
models in immunology. 

Thc cmcrging ficld of artificial immunc systems has bccn 
inspired by mathcmatical modcls of immunc interactions, and 
in particular nctwork modcls of lymphocyte populations (scc 
for example [16] and references). Jerne introduced the notion 
of an idioipic ~ e h t ' o r k  of immune cells that are able to 
recognize one another as well as antigen, while Farmer et 
al. suggcstcd that thc adaptive rcsponscs of immunc nct\vorks 
might provide uscful paradigms for machine lcarning. Sub- 
scqucntly, immunc nctwork algorithms [2] wcrc bascd on 
the idea of replacing nonlinear differential equations with 
analogous discrete or iterative schernes, together with the 
inclusion of stochastic effects due to mutations. Many othcr 
artificial immunc systcm algorithms, such as CLONALG (due 
to dc Castro and von Zubcn [3]), IMMALG and optIA iduc 
to Nicosia and Cutcllo [6], [7]), wcrc bascd on simplified 
tncchanisms for clonal sclcction. In the mcan timc, Jcrnc's 
idiotypic nctwork thcory had already bccn discredited by some 
immunologists. However, the biological implausibility of a 
theoretical rnodel does not necessarily preclude its usefulness 
in a computational context. 

Wc bclicvc that mathcmatical analysis, and cspccially the 
thcory of dynamical systems, has a whole host of uscful tools 
to offer to practitioners of bio-inspircd computing. By trans- 
lating abstract processes into precise mathernatical models, it 

an artificial immune response, and indicated how this could 
be analysed using ideas from optimal control theory [17]. AIS 
algorithms bascd on clonal sclcction result in algorithms that 
arc stochastic rather than dctcrministic, usually dcscribcd in 
tcrms of populations of "cclls" that cvolvc bctwccn diffcrcnt 
states according to probabilistic rules. In that case, they have 
many properties in common with genetic algorithms and other 
kinds of evolutionary algorithms. Thus it rnakes sense to 
modcl thcm in tcrms of Markov chains: cxact Markov chain 
modcls of ccrtain AIS optimization algorithms have begun to 
be developed fairly recently [4], [S]. These models allow one 
to prove convergence, but more detailed analysis is required 
to derive more useful properties such as rates of convergence; 
the methods dcvclopcd in [I 11 should bc helpful in this regard. 

The developrnent of AIS has been inspired by abstract 
models of immunological processes. In this article, we aim to 
provide furthcr inspiration for computer scientists by outlining 
a ncw modcl for thc interaction of signalling molcculcs 
(cytokincs) with immunc cclls. In turn, this cytokinc nctwork 
model could also provide insights for biology. 

The allocation of computational rcsourccs to thc proccsscs 
of an artificial imrnunc rcsponsc is critical to AIS pcrformancc. 
The urgcncy of thc job load, the tasks at hand, the spccific cffi- 
cacies of the available response mechanisms, the likelihood of 
discovering more efficacious responses (e.g. a higher-affinity 
receptor), as well as demands on CPU timc by proccsscs 
outside the AIS: these are all factors that determine how much 
should be allocated to the available AIS and developing better 
rcsponscs. 

The natural imrnune system regulates this allocation by 
means of a system of various immune cells that mutally 
influcncc cach othcr's activities via hormone-likc intcrccllular 
mcsscngcr molcculcs callcd cytokincs. Cytokincs stimulate 
proliferation of various immunc cclls, with diffcrcnt immunc 
cell types responding to different cytokines. Such imrnune 
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cclls includc thc cffcctor cclls (thosc which carry out thc 
response) as well as the cells that produce cytokines them- 
selves. Indeed, irninune cells often have a dual role, producing 
cytokines in addition to an effector function. The activities 
modulated by thc cytokincs produced by onc ccll includc 
thc production and sccrction of cytokincs by othcr immunc 
cclls. Thcsc intcractions form a lymphoid cndocrinc systcm 
called the cytokine network. Each cell type in this network is 
characterised by its own subset of the cytokines that it can 
sccrctc, as wcll as its own subsct of cytokinc rcccptors that 
govcrn its activity. Thc cytokinc nctwork intcgratcs stimuli 
from a varicty of sourccs (c.g. distrcsscd cclls, cffcctor cclls, 
naive response-precursor cells), and the cytokines produced 
by the network regulate the development and growth of the 
responding irninune cells. 

Frorn a computational point of view, the cytokine network 
has an input of information about thc statc (cxtcnt and scvcrity) 
of thc discasc, the statc (cxtcnt and efficacy) of thc ongoing 
rcsponscs, and an output that govcrns prolifcration of sclcctcd 
effector cells as well as the organization of new responses (e.g. 
antigen presentation, gerrninal centre reaction). Both input 
and output are encoded by the concentrations of the various 
cytokincs. From a modclling point of vicw, thc cornplcxity of 
cytokinc nctworks poses considcrablc challcngcs. Morcovcr, 
thc cytokinc network opcratcs both locally and morc globally, 
and is thus intermediate between a paracrine system and an 
endocrine system. However, in what follows me ignore all such 
spatial aspects for the sake of simplicity. 

Below we give a rnathernatical specification of the cytokine 
nctwork which cmphasizcs it as a computational paradigm. 
To highlight this aspcct, wc rcfcr to it as an artificial cytokine 
network (ACN). The ACN is one exarnple of a computational 
system inspired by biological para-/endocrine systems. As 
will become clear, the ACN has much in corninon with the 
associativc mcmory modcls studicd by ncural nctwork thcory 
[lo]. This is not very surprising sincc thc ACN is likcwisc a 
systcm that matchcs a vcctor rcprcscnting a givcn situation to a 
vector representing a (hopef~illy suitable) response. However, 
there are a few interesting points of contrast. The analogues 
of "synaptic weights" in the ACN are non-changing. However, 
thc ACN is in somc scnsc a supci-position of a nutnbcr of 
associativc mcmory structurcs, with thc relative contributions 
of thcsc structurcs changing on a sccond, slowcr timc scalc. 

111. ARTIFICIAL CYTOKINE NETIVORK 

For our rnodcl of thc cytokinc nctwork, wc considcr an 
intcrccllular medium in which n distinct chcmical spccics 
of cytokines diffuse and are well mixed. We can then de- 
fine cytokine conceiltrations ' u l , .  . . . u,,. The cytokines are 
produced by cytokine-producing cells, of which there are 771 

typcs. Cytokinc production by a ccll of any onc of thcsc typcs 
dcpcnds on cxtcrnal stimuli s l ;  . . . , s,, (LC. signals arising 
outsidc of thc cytokinc nctwork) as wcll as thc cytokincs 
themselves. The density of cell type I in the medium is denoted 

as I?(. Wc thus havc the following kinctics: 

where 

the function ~ ' { k  > 0 expresses the effect of the cytokines 
and external stimuli on the production of cytokine k by a 
cell of type 1; uk > 0 is the rate of degradation of the kth 
cytokinc; c j l  > 0 cxprcsscs thc cffcct of thc cytokincs and 
cxtcrnal stimuli on thc prolifcration ratc of a ccll of typc (; 
and > 0 is the death rate of cells of type 1. There is 
often a separation of tirne scales between the dynamics of the 
cytokines, equation (3.1), and the dynamics of the cytokine- 
producing cclls, cquation (3.2). Thc systcm as a wholc is a 
functional, mapping thc cxtcrnal stimuli into a cytokinc profile, 

sl ( t )  . . . . . S ,  ( t )  ct U I  ( t )  . . . . . ur1 ( t )  

where the latter directs the immune response. 
Whcn thc stimuli cvolvc sloarly (i.c. much slowcr than thc 

typical timcscalc l / p c  givcn by thc invcrsc dccay ratcs of thc 
cclls), and whcn thcrc is just onc ccll typc ( m  = l ) ,  this 
mapping is quasi-static, in the sense that the stimuli at time t  
uniquely deterrnine the cytokine profile at that moment in time 
(up to transient behaviour). In that case, the cytokine network 
thcn bchavcs csscntially like a look-up tablc. Howcvcr, whcn 
r n  2 2, this look-up tablc will itsclf cvolvc over timc, 
dcpcnding on thc Izistoly of the stimuli. Morcovcr, ccrtain 
rapid changes in the stimuli may precipitate sudden trailsitions 
to a different look-up table. 

To illustrate these points more concretely, consider the 
following specification: 

with 
)1 

- det 
Hik = H T ~  - 1 1PikJsg 

whcrc HI,: > 0 rcprcrcnts thc ~tlr?zulation tlzre~hold of ccll 
typc I as rcgaidr production of cqtokinc k ,  and v(, > 0 rep- 
rcscnts thc maxlmum ccll-rpcclhc sccrctlon ratc of cytok~nc k 
by a ccll of tqpc C. Thc functlon S  is monotonicallq incrcarlng, 
with S ( r )  E [ O , l ]  for all x E W, with lim,,-, S ( r )  = 0 and 
1in1,,+, S ( x )  = 1; an cxamplc is S( .X)  = l / ( l  +~YII{ -x ) ) .  
The parameters ~ L ( L ,  and tZ,k,, whlch maq be negative, zero, 
ol posltne, chalacter~ze how the ploductlon of cytolune k bq 
ccll tqpc 1 1s affcctcd by stimulation by cqtokinc z or cvtclnal 
stimulus 3 .  

To gain an Insight Into thc dynamics of this modcl, considcr 
first thc carc m = 1  Qurt onc ccll t)pc), ~ l ( t )  = F (t~mcscalc 
separation) and wlth the Jlk fixed for all cytolunes k Also, 
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Ict us takc S to bc thc Hcavisidc stcp function, 1.c. 

the quantities ilk behave as 'crisp' thresholds for this choice. 
Let (ul . .  . . u,,) be a (quasi-) stationary point which solves 

= 0 for all k - in that casc wc approximatc that c 
is a constant, which docs not changc apprcciably ovcr thc 
rcsponsc timcscalc of thc cytokincs. Thcrc arc at nzost 2" such 
stationary points, since there are n different sigmoid functions 
t S l k  for k = 1;. . . 7 1 ,  and each of these can take either the 
value zero or the positive value Flk at the steady state, but 
only providcd that this is compatiblc with thc corrcsponding 
thrcshold for thc sigmoid. Wc considcr thc rcgion around this 
stationary point bounded by the hyperplanes that are the locus 
of x/kl ~..(k.iui = H i A . ;  stationary points do not generically lie 
on such a hyperplane. This region is the basin of attraction 
of thc asymptotically stablc point (a1, . . . , a,), sincc wc havc 
cithcr S = 1 or S = 0 throughout this rcgion for all k .  

When S is a smooth sigrnoid function (such as S ( s )  = 
1 / ( 1  + ep")), thc situation bccomcs morc complicated. How- 
c~lcr, wc will in gcncral bc ablc to dcfinc rcgions around the 
stationary points in which x;=, (ilk)') satisfics the propcrtics 
of a Lyapunov function (see chapter 10 in [9]). The weight 
parameters, that characterize cell types, are fixed in this model. 
Thus "learning" in the classical neural network sense only 
takcs placc ovcr thc much slowcr evolutionary timcscalc on 
which novcl ccll typcs arisc. 

IV. NUMERICAL RESULTS 

In this scction wc prcscnt somc prcliminary numcrical 
rcsults for the dynamics of thc systcrn (3.2). Wc conccntratc on 
thc spccial casc whcn thcrc arc only two cytokincs (n  = 2) and 
one cell type (nl = 1) .  The external stimuli are also combined 
into a single quantity sl = s ( t ) .  In that case, the system can 
bc rcwrittcn in the form 

We assume that rs, ,  j = 1 . 2  are given by sigmold functions 
(dcnotcd S) as bcforc, and so takc 

m fact we fix S ( x )  = 1 / ( 1  + exp{-x)). Slnce there 1s the 
- 

freedom to rescale u l  and u2, we can set Fl = 1 = L ,  

without loss of gcncrahty. N7c furthcr suppose that the stimulus 
s cncouragcs thc prolifcration of cclls, as docs thc prcscncc of 
thc cytokinc corrcspondlng to 1 ~ 1 ,  wh~lc  thc cytokinc mcasurcd 
by ul Instead tends to decrease the okerall growth rate of cells 
(uhlch can lead to lapld cell death). The latter assurnptlons 
suggest that (as a filst approximation) a sultable form for the 
functlon o should bc 

Fig. 1. Solltriorzs of rile sJsreii1 (4.1) for c o r ~ s f a i ~ f  sririrrtlrts s = 1.3, stai.rirzg 
j5oiii irzifial \,alltes ul  = 13.5, u r  = 30.3, !. = 30.3. 

For all the numerical results presented here, we have taken 
paramctcr \~alucs as follows: 

Also, wc havc tixcd constant thrcshold valucs dl = 6, $2 = 11, 
and thc intcraction matrix (that dctcrmincs thc rcgions whcrc 
the sigmoid functions are close to 0 or 1)  is taken as 

To begin with, in Figure 1 we have plotted the case where 
thc stimulus is constant (s = 1 3 ,  and the cytokinc and 
ccll dcnsitics arc startcd at initial valucs closc to a quasi- 
stationary statc, which can bc calculatcd by approximating S 
by a Heaviside function. To be more precise, we solve the 
equations til = iL2 = i' = 0 to get the steady states for 
this simplified choice of S, and these serve as suitable initial 
data. Thc topmost curvc with thc initial wigglc is v, while 
thc adjaccnt curvc is n.2, and nl is at thc bottom. A gradual 
dccay is initially obscrvcd, but as thc timc incrcascs furthcr 
there is a sudden rapid drop (corresponding to a threshold 
being crossed), and thereafter all three quantities decay rapidly 
to zcro. (This ultimatc dccay is not shown in thc Figurc, 
howcvcr.) Thus in this casc thc constant stimulus means that 
the quasi-stationary state does not persist. 

In Figurc 2 \vc havc plottcd thc casc whcrc thc stimulus 
is constant, and thc cytokinc and ccll dcnsitics arc startcd at 
initial values close to a different quasi-stationary state (whose 
approximate value is found in the same way as before). The 
initially topmost curve for r: goes through an inflection point, 
while 1 ~ 2  is cvcntually thc slowcst to dccay: in this casc rapid 
(cxponcntial) dccay towards zcro of all thrcc quantities scts 
in almost immcdiatcly. Oncc again thc point (0.0; 0) is an 
attracting fixed point. Thus in this case once more the constant 
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Fig. 2. Sol~ctioi~s of tlze sJsteii1 (4.1) for corrstant sriiiiulits s = 1.3, stai.rii~g 
fi.0111 iirifial ~>alues ul = 6.5, u2 = 12.3, 7, = 12.3. 

stimulus means that the (approximatc) quasi-stationary statc 
does not persist. 

In order to get a different sort of behakiour (for this choice 
of network functions and topology) wc havc solvcd the samc 
systcm but with two diffcrcnt stimuli applicd at diffcrcnt times. 
To begin with, we take the choice 

whcrc H dcnotcs thc Hcavisidc function, corresponding to a 
wcak stimulus bctwccn t = 0 and t = 0.2, followcd by a much 
stronger one between t = 0.7 and t = 0.9. The surprising 
effect is that the weaker initial stiinulus produces a rnuch 
stronger output in terms of the proliferation of the cytokine- 
producing cclls, as can bc sccn from the topmost curvc (the 
profilc of 1 1 )  in Figure 3. This is not so surprising given that 
wc havc a nonlinear systcm i.c. the outputs arc not dircctly 
proportional to the inputs. 

To scc thc cffcct of history on the system, wc apply the 
samc two stimuli but now with larger intervals bctwccn them, 
for wc takc the choicc 

so that now thc much strongcr stin~ulus is applicd bctwccn 
t = 0.9 and t = 1.1. This timc thc thc strongcr sccond 
stirnulus produces a stronger response than the first, although 
not proportionately so, in terms of thc incrcascd conccntration 
of cytokinc-producing cclls, i.c. the topmost curvc (thc profilc 
of 2') in Figure 4. The cytokine responses can be observed 
frorn the lower curves. 

Even with only two cytokincs and onc typc of cell, the 
ACN modcl dcfincd by (3.2) shows a rich variety of dif- 
fcrcnt bchaviours. For autonomous ODE modcls with thrcc 
dependent variables, it is known that there is already the 

Fig. 3. Sollctiorrs of tlze sxsteiil (4.1) for two differei~f sti~iz~tli applied 11et1~ eel1 
tinres t = O .  0.2 arlrl Dem.eerr filizes t = 0.7. 0.9 respecfii.ely. starfi i~g fi.oiir 
ii~itirrl volrtes ul = 6.5, ur = 12.3, 7 ,  = 12.3. Allprofiles ai.e s l z o ~ ~ i ~  fogeflrer 
hei.e, wit11 rlre cyrokiiie pi.ojiles (it flre bottonr. 

Fig. 4. Sollctiorrs of tlze sxsteiil (4.1) for two differei~f sti~iz~tli applied 11et1~ eel1 
tinres t = O .  0.2 arlrl Dem.eerr filizes t = 0.9. 1.1 respecfii.ely. starfi i~g fi.oiir 
ii~itirrl volrtes ul = 6.5, ur = 12.3, 7 ,  = 12.3. Allprofiles ai.e s l z o ~ ~ i ~  fogeflrer 
I~ei.e, 11-it11 tile c~rokiire yi.ofile~ at tile Dortoiiz. 

potcntial for chaotic bchaviour (as in thc famous Lorcnz 
systcm), with strangc attractors, so if \VC incrcasc the number 
of variables thcn thcrc arc cvcn morc possibilities. A great dcal 
of further analysis (both exact and numerical) will bc nccdcd 
to understand how best to choose the parameters and specify 
the interactions (i.e. how to fix the topology of the network). 
Ideally, to exploit this network for computation, some way to 
control thc response of thc systcm would bc rcquircd (pcrhaps 
using thc optimal control ideas outlined in [I] ) .  Ncvci-thclcss, 
wc hope to gain a bcttcr understanding of this modcl in future, 
and compare it with existing models of cytokine networks. One 
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fruitful dircction is to makc a comparison mith diffcrcntial 
equation rnodels for neural networks such as in [8], which 
suggest that it is possible to use a training phase for the ACN, 
in order to adjust parameters in the interaction matrix for the 
cytokincs to suitablc valucs. 
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