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Abstract

This paper presents a framework to generate multi-shaped 
detectors   with valued negative selection algorithms (NSA). In 
particular, detectors can take the form of hyper-rectangles, hyper-
spheres and hyper-ellipses in the non-self space. These novel 
pattern detectors (in the complement space) are evolved using a 
genetic search (the structured genetic algorithm), which uses 
hierarchical genomic structures and a gene activation mechanism 
to encode multiple detector shapes. This genetic search (the 
Structured GA) allows in maintaining diverse shapes while 
contributing to the proliferation of best suited detector shapes in 
expressed phenotype.  The results showed that a significant 
coverage of the non-self space could be achieved with fewer 
detectors compared to other NSA approaches (using only single-
shaped detectors). The uniform representation scheme and the 
evolutionary mechanism used in this work can serve as a baseline 
for further extension to use several shapes, providing an efficient 
coverage of non-self space. 

Keywords 
Evolutionary Algorithms, Artificial immune systems, Negative 
selection, Monte Carlo estimation, Computational geometry. 

1. Introduction 

The negative selection algorithm (NSA) is the first 
immune-inspired change detection algorithm [2, 12], which 
originally used a binary representation to encode the 
self/non-self space. Subsequently, Gonzalez et al. [3] 
introduced a real-valued representation, called real-valued 
negative selection (RNS) algorithms to alleviate the scaling 
issues of binary encoding, while various schemes are being 
developed to speed up the detector generation process. 
However, different RNS algorithm is developed to generate 
one or the other geometric shaped detectors (such as hyper-
rectangles [1, 3], hyper-spheres [5] and hyper-ellipses [6]) 
for covering the non-self space. 

The work described in this paper focused on developing 
a framework for generating multi-shaped detectors with 
real-valued negative selection algorithm (RNS). These 

detectors are evolved using an evolutionary algorithm, 
called Structured GA, which can encode multiple shapes in 
its genomic structure. In addition, the matching rule for 
each specific detector is expressed by a membership 
function related to that detector shape, which is a function 

of distance measure (in nℜ ). 

1.1 Negative Selection Algorithm (NSA) 
The Negative Selection Algorithm (NSA), developed by 

Forrest et al. [12], is based on the principles of self/non-self 
discrimination in the immune system. It can be summarized 
as follows: 

Define self as a collection S of elements in a feature 
space X, a collection that needs to be monitored. For 
instance, if X corresponds to the space of states of a 
system represented by a list of features, S can represent 
the subset of states that are considered as normal for 
the system. 

Generate a set F of detectors, each of which fails to 
match any element in S. 

Monitor S for changes by continually matching the 
detectors in F against S. If any detector ever matches, 
then a change is known to have occurred, as the 
detectors are designed not to match any representative 
samples of S. 

In the original version of a NSA, elements in the shape 
space and detectors (matching rules) were represented 
using binary strings [2, 12], but subsequently, some 
variations of this algorithm using real-valued representation 
were developed [1, 3, 5].  In RNS representation, elements 
of the shape-space and detectors are defined in an n-
dimensional space ([0, 1]n) with Euclidean distance as
matching rules. The RNS algorithms take as input a set of 
self samples (represented by n-dimensional points) and try 
to generate a set of detectors covering the non-self space 
efficiently [1, 4-6].  
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1.2 Structured GAs 
A structured GA (st.GA) is a variation of genetic 

algorithm developed by Dasgupta [11] in early 1990s. A 
structured GA incorporates redundant genetic material, 
which is controlled by a well-defined gene activation 
mechanism. It utilizes multi-layered genomic structures for 
the chromosome. All genetic material (currently expressed 
and currently neutral) is encoded in a hierarchical 
chromosome. The activation mechanism enables and 
disables these encoded genes. This encoded redundancy 
has the potential in maintaining genetic diversity – 
identified as necessary for dealing with complex problems.  

    

Figure 1. Representation of a hierarchical chromosome with 
different gene sets in a St. GA. 

Figure 1 shows a multi-level genomic structure where the 
higher level control bits activate/deactivate set of lower 
level genes encoding different detector shapes. Therefore, 
whether a gene will be expressed phenotypically or not is 
regulated by high level genes.

1.3 Volume estimation using a Monte Carlo Method  
In this work, Monte Carlo methods are used for 

volume estimation, particularly, to estimate the coverage of 
a set of detectors. Also, this technique is be useful in 
probabilistically estimating the overlap among detectors 
with different shapes, which is otherwise cumbersome 
geometrically. The main aspects of the Monte Carlo 
method are summarized below (for a more comprehensive 
explanation see [8, 9]). 

Let X = [0, 1]n be the system state space and XA ⊆  a 
subset of X, whose volume needs to be computed. Also, a 
general assumption is that it is hard to compute the volume 
of A analytically. If x is drawn from a uniform distribution 
on X, then )( AxP ∈ = volume of A, denoted as V(A), 

because [ ]( ) 11,0 =nV . Then the problem of computing 

V(A) can be seen as the problem of estimating )( AxP ∈ .

Therefore, let U be a random variable uniformly 
distributed on X, denoted U ~ U(0, 1). Let U1, U2, …Un be 
a sequence of independent and identically distributed (iid)

U(0,1) random variables. Then, the sequence X1, X2, ..., XN

of random variables, generated as follows, are uniformly 
iid in [0,1]n, denoted Xi~ U([0,1]n).

  X1= (U1,… , Un) 

  X2 = (Un+1, .. .., U2n) 

   … 

  XN= (U(N-1)n+1, .. .., UnN) 

In order to estimate the volume of A, generate a sequence 
X1, X2, ..., XN, as defined above. Then, an estimation of the 
volume of A may be computed as  

( ) { }
N

AXi
AV i ∈

=
:ˆ  , where |·| denotes the number of 

points in a set. In other words, the volume of A is estimated 
as the fraction of points that lie in A. An estimate of the 

volume of A can also be expressed as ( )
N

Y
AV

N

i
i∑

== 1ˆ , with 

)( iAi XIY = , where IA(·) denotes the indicator function of 

set A. Y1, Y2, ..., YN is a sequence of independent Bernoulli 

random variables, with )1( =iYP  equal to 

∫ ∫ ==
A ni AVdxdxXP )(.......)( 1 . 

The main advantage of this method is that it is possible to 
calculate a confidence interval for the estimated volume 

)(ˆ AV  as follows. In order to estimate the volume with a 

confidence of (1-α), using the Chernoff bound, it can be 
shown that if  

)(

2
ln3

2 AV
N

ε
α ⎟
⎠
⎞

⎜
⎝
⎛

≥  then 

( ) αε ≤>− )()(ˆ)( AVAVAVP  . However, as the 

dimensionality increases V(A) approaches zero 
exponentially quickly, which will require a sample size 
exponentially large [13]. Nevertheless, in many practical 
applications, dimensionality is such that reasonably small 
sample sizes are sufficient. 

2. Framework for evolving negative detectors  

The approach developed in this work uses a real-valued 
representation to characterize the self/non-self space and 
evolves a set of detectors (rules) that can cover the (non- 
self) complementary space. Specifically, the self/non-self 

control 
bits 

GS1 
GS2 GSn 

g11 g12 …g1k 

… 
g21  g22…   g2m gn1 gn2…  gnr 

… 

…. 

Level 1 

Level 2 

Genes … 
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space corresponds to the unit hypercube [0, 1]n, and the 
detectors are hyper-shapes contained in this space, which 
can be interpreted as anomaly detection rules.  

Therefore, a detector is defined in an n-dimensional 
space as a geometrical shape, such as a hyper-sphere, a 
hyper-rectangle or a hyper-ellipse. The matching rule is 
expressed by a membership function associated to the 
detector, which is a function of the detector-sample 
distance (Euclidean or any other [3]). A set of self samples 
represented by n-dimensional points are given as inputs to 
the algorithm.  

In order to apply an evolutionary algorithm for detector 
generation, suitable representation for each detector shape 
is adopted and respective membership functions are 
defined. In particular, a structured GA with a two level 
representations (as shown in Figure 1) is used. The level 1 
gene either activates or deactivates genes at level 2 which 
encodes different detector shapes. This provides a 
generalized way of representing multi-shaped detectors.  

The goal of the NS algorithm is to evolve a set of 
detection rules to cover the non-self space. The iterative 
process will generate a set of detectors driven by two main 
goals: 

Minimize overlap with self, and 

Make the detectors as large as possible and keep them 
separate from each other, in order to maximize the 
non-self covering.  

A niching technique [3, 14] is used along with a st.GA to 
generate a set of detector shapes as illustrated in Figures 2 
and Figure 3. The purpose is to run the complete algorithm 
multiple times to generate different detectors to cover the 
entire non-self region. Each run involves the generation of 
a new detector shape, covering a portion of the non-self 
region while modifying its raw fitness as per the overlap 
with the previously selected detectors.  

Figure 2. General framework for detector generation. 

The input to the st.GA is a normalized data set of 
feature vectors S={x1, …, xm}, which correspond to normal 
samples. Each element xj in S is an n-dimensional vector xj

=(xj
1, x

j
2, …, xj

n). Also, a variability parameter (denoted by 
r) to the entire set of normal samples is considered. 
Accordingly, r represents the level of variability or 

allowable deviation in the normal (self) space. This follows 
the notion that the self sample is never complete, so adding 
the variation parameter provides an approximation of the 
self set, given the set of self samples. Figure 3 presents a 
pseudo-code for the evolutionary detector generation based 
on a st.GA.

Figure 3.  An Evolutionary approach for detector generation

2.1 Multi-shaped Detector representation 
As shown in Figure 4, each individual (chromosome) 

expresses a specific shape, namely, hyper-sphere, hyper-
rectangle and hyper-ellipse in the phenotypic space. 
Accordingly, hyper-sphere genes indicate the hyper-sphere 
n-dimensional center and radius.  

Figure 4. Example of an encoded chromosome having high level 
control and low level parameters for three different hyper-shapes; 
hyper-spheres, hyper-rectangles and hyper-ellipses.

Similarly, hyper-rectangle genes hold information of the 
two points that specify the minimum and maximum 
coordinates in each dimension, analogous to the lower-left 

403

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



4

and upper-right corners of a rectangle in two dimensions. 
On the other hand, hyper-ellipse genes contain its n-
dimensional center, n semi-axes lengths and a square 
matrix of size n×n that specifies the orientation of the 
hyper-ellipse. This detector representation allows having 
variable-sized detectors which can cover the non-self 
space. 

2.1.1 Hyper-spherical Detectors 

A hyper-spherical detector is denoted by d = (c, R), 
where c = (c1, c2, .., cn) is its center, an n-multi-dimensional 
point, and R specifies the radius of the hyper-sphere. 

Thus, an n-dimensional feature vector x=(x1, x2, …, xn) 
belongs to the hyper-sphere (matches the detector) if 
dist(c,x)< R, for some particular distance measure dist(·). 

In general, the volume of a hyper-sphere [15, 16] is 

given as 1

!!
)2()2/(

)(
n

R
RV

nk

n

π= . The calculation of the 

volume inside the boundaries of the unit hypercube is a 
difficult problem in the case of edge hyper-spheres [17]. 
Also, the estimation of overlapped volume of detectors is a 
challenging problem, specially, when different hyper-shape 
detectors are used. Therefore, a Monte Carlo technique is 
used to estimate the volume. 

2.1.2 Hyper-rectangular Detectors 

A hyper-rectangular detector d is defined by two n-
dimensional points low and high, i.e., d = (low, high), low
= (low1, low2, …, lown) and high = (high1, high2, …, highn), 
which specify the lower and upper corners of the hyper-
rectangle, i.e., [lowi, highi] specify the range of the i-th 
coordinate in the hyper-rectangle [1,3]. Thereby, an n-
dimensional feature vector x= (x1, x2, …, xn)  will lie in the 
hyper-rectangle if  xi∈[lowi, highi] for each i=1,2,…, n. 
Also, the volume of the subspace represented by a detector 

d is computed as ( )ii

n

i
lowhigh −Π

=1
. 

2.1.3 Hyper-ellipse Detectors 
A hyper-ellipse detector is represented in a general 

form, considering orientation of the semi-axes in any 
direction [6]: 

( ) ( )ωω −− xAx T  = 1 

                                                                
1 As per the definition of the Gamma Function in terms of factorials (the 

notation being k! = 1x2x3x … xk), the coefficient of Rn  in the above is: 
πk/k! with k=n/2 when n is even, or 2nπkk!/n! with k=(n-1)/2 when n is 
odd

where TVVA Λ= and ω  is the center of the hyper-
ellipse, Λ=(λi,j) is an  n×n diagonal matrix such 

that 2,
1

i
ii l

=λ , whose entries are eigenvalues associated 

with the eigenvectors in V; il is the length of i -th semi-

axis; V is an n×n matrix whose columns are orthonormal 
eigenvectors of A. Any n-dimensional point x satisfying the 
equation above lies on the surface of the hyper-ellipse; 

In addition, x is inside the hyper-ellipse if 

( ) ( ) 1<−− ωω xATx . In 2-dimensions, the general 

equation above could be easily represented as:
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( )Tx ω− × V × Λ   × TV × ( )ω−x = 1 

where θ  is the orientation angle of the hyper-ellipse. 

2.2 Fitness Evaluation 

The fitness calculation is to evaluate the quality of an 
individual in a population. Based on their fitness, 
individuals may be selected as part of the next generation. 
Here, the fitness evaluation is guided by two main 
objectives: to cover as large non-self space as possible, 
while not covering any self point, and the overlap among 
the detectors should be kept at minimum. Accordingly, 
detectors with large volume should be favored over smaller 
ones. 

Also, a membership function associated to each detector 
that establishes whether a point lies inside a shape (or not), 
is used to compute a detector’s fitness. This function will 
depend on the detector’s shape, and is defined based on a 
distance measure (Euclidean, Minkowski, Mahalanobis or 
any other). Minkowski distance of order n is defined as the 
distance between two points x and y, which is defined as 

( )
nn

ixiyxydist
1

, ⎟
⎠
⎞

⎜
⎝
⎛ −Σ= . 

Let D be a set of detectors; each d in D is a subset of N. 
In this work, it is assumed that D will provide a better 
coverage of N  if the volume of D is as large as possible, 
while minimizing the overlap of detectors on D with S. 
Thus, the goal of the evolutionary search may be expressed 
in a more formal way as 

⎟⎟⎟⎟
⎠⎠⎠⎠
⎞⎞⎞⎞

⎜⎜⎜⎜
⎝⎝⎝⎝
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∈∈∈∈
U

Dd
dvolmax      and 
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Sdvol

Dd
Umin .

Accordingly, proper reward and penalty functions are 
defined within the detector fitness function. A detector is 
rewarded for the total space covered, while it will be 
penalized if it overlaps with other detectors that were found 
in the previous runs of the GA, and it will also be penalized 
for all the self points that it covers. Then, the fitness 
function is defined as 

fitness(D) = effective- coverage(D) – C(m)×m,  

where m is the number of self points that lie in D,  C(m) is 
a factor that is computed taking into account the number of 
self points that the detector D overlaps.  

The effective coverage is computed as the proportion 
of the non-self set that the detector covers and is not yet 
covered by other detectors. On the other hand, C(m) is 
defined in such a ways that a detector suffers a stronger 
penalization as its overlap with self sample set increases. 
Thus, C(m) is defined as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

S

m
mC

ln
tanh)(

, if m>0, and C(m)=0 if 

m is equal to 0. Therefore, C(m) gets higher as the number 
of self points increases. 

Estimating Detector Overlap: In order to evaluate the 
overlap between detectors, a Monte Carlo technique is 
used. Given two detectors D and E, a sequence of N
random points uniformly distributed on [0,1]n is generated. 
Then, a test is performed on these points to check whether 
they belong to D and E simultaneously. The proportion of 
points that pass this test will give an estimate of the overlap 
between detectors D and E. Therefore, the effective-
coverage of a detector D is estimated as

effective-coverage(D) ( ) β−= DV̂ , where β is an 

estimate of the net overlap of D with the other detectors, 

computed via the Monte Carlo Method, where ( )DV̂  gives 

an estimate of the volume of D. 

Checking Self Overlap: In order to detect the overlap of a 
detector with a self-sample, its overlap with a hyper-sphere 
of radius r around the self point is considered. In the case 
of a hyper-rectangle shaped detector, this is determined by 
checking if the circumscribed hypercube around the self 
hyper-sphere intersects the detector. For a hyper-sphere 
shaped detector with center c and radius R, there is an 
overlap with a self point x, if the distance between c and x
is less than (R+r). 

Figure 5 describes how to check whether a hyper-ellipse 
detector overlaps a self sample, for a defined self variation 
threshold r. In the figure, P2 is the self sample. If P2 does 
not lie in the hyper-ellipse then the algorithm checks 
whether P3 lies inside the hyper-ellipse, as depicted below. 
P1 is the hyper-ellipse’s center

and ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−=

12

12
23 PP

PP
PP r , where ⋅  denotes the norm of 

a vector.

Figure 5. Determining the overlap of a hyper-ellipse detector 
with the self set. 

Shapiro’s work [6] mentions several measures of 
convergence checks. One suggested convergence check is 
to determine if the user defined coverage value has been 
reached. Another way to check convergence is by checking 
the change in the standard deviation of the population 
fitness, which is decreased by certain percentage at a 
predefined rate [3,4,6].  

At the end of this post-processing of the detector list, 
the net coverage (Cov) of the non-self space has been 
estimated. If Cov has reached a desired value specified by 
the terminating condition, the algorithm stops and the 
current detector set is returned.  

Thus, an evolutionary search is used to evolve ‘good’ 
detectors that cover the non-self space (Figures 8-11). The 
fitness of a detector rule is determined by the number of 
self samples it covers, its hyper-volume and the overlap 
with other rules (detectors). Therefore, the goal is to find a 
set of solutions that collectively cover the entire non-self 
space, rather than a single solution. Accordingly, a 
penalization factor is computed for each detector based on 
the number of self samples that it overlaps. 

3. Experimentation 

Experiments are conducted to compare the performance 
of multi-shaped detectors with single shaped detectors 
generated with RNSs using some synthetic data. These 
experiments intend to answer the following questions: does 
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the designed evolutionary framework successfully generate 
a hyper-shaped detector set? Is this new approach 
comparable to other existing RNS approaches in terms of 
detection rate and coverage? What is the role of parameters 
in controlling the evolution process? To address these 
questions, some synthetic data sets are used; these datasets 
form a star-shaped and multi-cluster in a unit square as 
shown in Figures 6 and Figure 7. The entire self set in each 
case consists of 1000 points, and assumed as the normal (or 
self) data sets.  

The training data consists of 50% of the entire self set. 
The test data consists of 1000 points of which 50% is taken 
from the self data not in training data and the remaining 
50% is randomly generated in the complement space. 

Figure 6. Multi shaped 
detectors, ~ 97.5% coverage, 
0.01 Self Threshold  

Figure 7. Multi shaped 
detectors, ~ 94% coverage, 
0.01 Self Threshold 

Figure 8. Multi shaped 
detectors, ~ 98.75% coverage, 
0.05 Self Threshold 

Figure 9. Multi shaped 
detectors, ~ 97.9% coverage, 
0.05 Self Threshold 

3.1 Experimental Setting 
As mentioned before, the genetic algorithm evolves a 

single detector in one complete run, and a sequential 
niching scheme is involved. This work made use of the 
reproduction of candidate detectors with n-point crossover 
and tournament selection. Also, a Monte Carlo technique is 

employed to perform overlap and coverage estimation after 
each run and penalize/discard incompetent detectors. 

Statistics of 30 independent trials were collected during 
the detector generation process for each data set. The 
average and standard deviation of the coverage in this case 
are recorded.  

The following parameters were used in the experiments: 

maximum iterations per run=100; convergence check 
between runs=5; convergence threshold=0.05, self 
threshold=0.01-0.07; Population size=40; selection 
strategy=tournament with size 2; Crossover rate: 0.4 – 0.6; 
general mutation rate: 0.03 – 0.05; orientation mutation 
rate: {0.1, 0.2}; matrix swap mutation rate=0.5, and 
control code mutation rate= 0.2. 

In the Monte Carlo implementation, in order to achieve 
a 95% (0.95) confidence level (i.e. α equal to 0.05) and a 
standard error ε equal to 0.01, at least 50,000 sample points 
need to be generated. Also to check the convergence of the 
algorithm, an evaluation is done using the Monte Carlo 
estimation technique every 10 runs (i.e., λc =10) 

In addition, the following parameters were used in the 
evolutionary search. 

sequential niching: maxattempts = 5 
elitism rate = 0.05, cull rate=0.01, Δ = 0.1.  

3.2 Results and Analysis 
Figures 6 and 7 show the area actually covered by the 

evolved detector set (of different shapes and sizes) that 
reached 97% coverage and 94% respectively for a self 
threshold of 0.01. We observed that varying self threshold 
values provide different coverage detector coverage, for 
example, non-self coverage is increased to ~98% when a 
self threshold of 0.05 is used (Figures 8 and 9). It is also 
observed that a smaller self radius would result in a high 
detection rate but high false alarm as well (as observed in 
[5]), while a larger self radius would result in low detection 
rate and low false alarm rate. Thus the self radius has a 
pronounced effect on detection rates and alarm rates. 

Figure 10 and Figure 11 show comparative results of 
running different single-shaped RNS methods and the 
proposed mixed-shaped approach on synthetic datasets. 
These figures show ROC curves [10] indicating the 
performance of the above-mentioned approaches for two 
synthetic datasets. In particular, graphs show the trade-off 
between detection rate and false alarm rate (commonly 
used to measure the accuracy of classifiers). In both cases, 
mixed shape detectors produced high detection rates even 
for small false alarm rates as compared to other single 
shaped detectors.  

The variation of the number of detectors with the 
change in self threshold indicates that the mixed shaped 
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detectors have an overall good performance in terms of the 
detector number, while the hyper-ellipse detectors are 
slightly better in some cases. 

However, Figures 12 and 13 show that the coverage 
attained by mixed shape detectors are comparatively better 
and faster as compared to single shaped detectors, except 
hyper-ellipses.  Thus, the mixed shape detectors on an 
average cover the non self space better and thereby have a 
higher detector to coverage ratio as compared to other 
single shaped detector algorithms. The rate of change of 
coverage with respect to the sequential GA run for different 
algorithms is shown in Figures 12 and 13. In all cases, the 
mixed shape detectors have a better coverage rate and also 
the maximum coverage at the end of their respective 
evolutionary runs. However, in some cases the hyper-
ellipse detectors also have better increase in coverage rates 
but still unable to attain the total maximum coverage as 
compared to the mixed one. These figures also show that 
the deviations in results are slightly higher for mixed 
shaped detectors and hyper-sphere shaped detectors 
although these are within maximum limits of ± 0.11 of the 
range.  

4. Conclusions  

A general framework to evolve multi-shaped anomaly 
detectors is proposed, and studied. It combines the 
potential of several detector shapes, namely hyper-ellipses, 
hyper-spheres and hyper-rectangles and a structured 
genetic algorithm to generate multiple detector shapes. 
Monte Carlo (MC) estimation technique is integrated in the 
negative selection algorithm (NSA) to ensure enough 
coverage of non-self space by an evolving detector set. 
This makes the negative selection more reliable while 
eliminating the need for detector adjustment. The MC 
detector volume estimation technique may also be applied 

to any type of detectors and detection mechanism as long 
as a membership function of a sample point for each 
detector shape is defined. 

Hyper-shapes generated using an evolutionary approach 
are a considerable improvement over other geometrical 
shapes previously investigated [3, 5, 6]. Their accuracy is 
comparable to hyper-ellipses [6], and better than hyper-
rectangles [1] and hyper-spheres [5]. In the paper by Ji and 
Dasgupta [5], the authors concluded that detector set 
generated by V-detector is more reliable because the 
expected coverage (instead of arbitrary detector number) 
can be achieved by the RNS algorithm. The current work 
took advantage of using variable-sized detectors with 
variable geometrical shapes to better cover holes, while 
small number of V-detectors reduces space requirement 
and access time. 

The use of variable shape and size detectors can help to 
address the high dimension problems (Curse of 
Dimensionality) in real-valued space (as reported in [17]) 
along with the choice of different distance measures in this 
work. Moreover, we only used two synthetic datasets for 
our experiments, but further study should include different 
distribution of self data.  

It is to be noted that the current work focused on 
developing a unified framework for generating multi-
shaped detectors in real-valued negative selection 
algorithm (RNS). Preliminary studies showed that the 
multi-shaped detectors can provide better coverage 
compared to any single-shaped detectors. However, other 
issues related to negative selection algorithms, and its 
comparison with existing anomaly detection methods is 
beyond the scope of this work but will be investigated in 
the future. 
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Figure 10. Comparing all shape strategies for Star dataset Figure 11. Comparing all shape strategies: Multi-Cluster

ROC- Multi Cluster dataset
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Figure 12. Rate of change of Coverage with the Runs for self-
threshold 0.01 in Star shaped self 
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Figure 13. Rate of change of Coverage with the Runs for self-
threshold 0.01 in Multi-Cluster shaped self.
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