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Abstract— In this paper, we focused on the problem of “trash 
collection”, in which multiple agents collect all trash as quickly as 
possible. The goal of the present research is for multiple agents to 
learn to accomplish a task by interacting with the environment 
and acquiring cooperative behavior rules. We construct the 
learning agent using Q-learning, which is a representative 
technique of reinforcement learning. Q-learning is designed to 
find a policy that maximizes the learning for all states. The 
decision policy is represented by a function. The goal is for 
multiple agents to learn to accomplish a task by interacting 
with the environment and other agents. The action value 
function is shared among agents. The effectiveness of the 
learning is verified experimentally.

Index Terms—Action value function, Cooperative behavior, 
Q-learning, Multi-agent systems. 

I. INTRODUCTION

ulti-agent systems are systems in which several 
interacting, intelligent agents pursue some set of goals or 

perform some set of tasks [1] In multi-agents systems, each 
agent must behave independently according to its state and 
environment, and, if necessary, must cooperate with other 
agents in order to perform a given task. Multi-agent systems 
have greater robustness and flexibility than conventional 
centralized management systems. However, it is difficult to 
predict in advance the actions of the agents and to assign action 
rules to multi-agent systems, because the interaction between 
agents is complicated.  
  Numerous studies regarding autonomous agents in the 
multi-agent systems have been conducted. Nolfi and Foreano 
[2] simulated a pursuit system with two agents (predator and 
prey) in real environments. They evolved both agents 
reciprocally using a genetic algorithm. Jim and Lee [3] evolved 
the autonomous agents with a genetic algorithm. Zhou [4] used 
both a fuzzy controller and a genetic algorithm. The fuzzy 
function displayed the position of the agent, and the genetic 
algorithm was used for learning. Fujita and Matsuo [5] learned 
the autonomous agent using reinforcement learning. The 
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reinforcement learning method involves developing an agent’s 
behavior by means of the interrelationship with the 
environment and resulting reinforcement signals. The 
reinforcement learning method can guarantee learning and 
adaptability without precise pre-knowledge about the 
environment. 

We used a genetic algorithm to acquire the rules for an agent. 
Individual coding methods are performed (i.e., rule definition), 
and the learning efficiency is evaluated [6]. 

In the present paper, we focused on the problem of “trash 
collection”, in which multiple agents collect all trash as quickly 
as possible. The goal of the present research is for multiple 
agents to learn to accomplish a task by interacting with the 
environment and acquiring cooperative behavior rules. We 
construct the learning agent using Q-learning, which is a 
representative technique of reinforcement learning. Q-learning 
is a method of allowing an agent to learn from a delayed system 
of rewards and punishments. Q-learning is designed to find a 
policy that maximizes the learning for all states. The decision 
policy is represented by a function. The goal is for multiple 
agents to learn to accomplish a task by interacting with the 
environment and other agents. The action value function is 
shared among agents. The effectiveness of the learning is 
verified experimentally. 

II. COOPERATIVE ACTION OF MULTI-AGENT

A. Multi-agent Systems 
Multi-agent systems are the systems in which several 

interacting, autonomous agents pursue some set of goals or 
perform some set of tasks. A key pattern of interaction in 
multi-agent systems is goal- and task- oriented coordination, 
both in cooperative an in competitive situations. In the case of 
cooperation several agents try to combine their efforts to 
accomplish as a group what the individuals cannot, and in the 
case of competition several agents try to get what only some of 
them can have.

In [7] the following major characteristics of multi-agent 
systems are identified: 

 --each agent has just incomplete information and is 
restricted in its capabilities; 

 --system control is distributed; 
 --data is decentralized; and 

--system control is distributed; 
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B. Cooperative Action of Agents 
When multiple autonomous agents exist, the environment 

changes from static to dynamic, compared to the case of an 
individual agent. An agent engaged in cooperative action 
decides its actions by referring to not only its own information 
and purpose, but to those of other agents as well. 

Multi-agent systems enable problems to be solved more 
efficiently. In addition, multi-agent systems can solve problems 
that may be impossible for individual agents to solve, because 
multi-agents have one common aim and can adjust to their 
environment and perform cooperative actions. However, 
multi-agents are not always advantageous. For example, if 
multiple agents in the same environment act independently, 
then the situation that each agent has to deal with becomes 
more complex because each agent has to consider the other 
agents movements before performing an action. If an agent tries 
to perform an autonomously decided action, the agent may not 
be able to perform the action as planned because of 
disturbances caused by the other agents. Changes to the 
environment caused by the actions of other agents may make 
understanding the environment difficult for the agents. 

C. Establishment of the Problems Environment 
The present study considers the “trash collection” problem, 

in which trash is placed on a field of fixed size and agents must 
collect the trash as fast as possible.

As in Figure 1, the field is divided into N × N lattice. Agents 
are denoted by  symbols, and trash is denoted by the 
symbols.  

In the trash collection problem, the actions of agents are 
defined as follows: 
1) The action of an agent is determined once per unit time. 
2) An agent can move to an adjoining lattice, where 

up-and-down and right-and-left are connected per unit time. 
3) An agent collects the trash when the agent has the same 

position as the trash. 

III. COOPERATIVE BEHAVIOR ACQUISITION USING
Q-LEARNING

A. Agent and Environment 
The agent decides the action based on the condition of the 

perceived environment, and some changes in the environment 

are caused by the action. Therefore, the agent and the 
environment are related through their interactions. 

An accessible environment is one in which the agent can 
obtain complete, accurate, and up-to-date information about the 
state of the environment. Most moderately complex 
environments are inaccessible. The more accessible the 
environment, the simpler it is to build an agent to operate in that 
environment [1]. When an environment is inaccessible, the 
information that can be perceived from the environment is 
limited and inaccurate, which involves a delay. 

When there is only one agent, the environment is static. 
However, when another agent exists, the environment is not 
always static because the condition of the environment may be 
changed by other agent. 

B. Composition of Agents 
In this section, the composition and function of each agent 

are described. The structure of an agent is shown in Figure 2. 
The figure shows the individual components of an agent, and 
the transmission of information is expressed by the arrows. 
First, the agent perceives the condition of the environment in 
the detector. Next, the rule is compared with the condition that 
was perceived by the acting decider, and the action is decided. 
Finally, the action is carried out in the effector. 

The detector of the agent cannot always perceive the 
condition of the environment completely, which is similar to 
limits on human visual acuity. Therefore, an agent can perceive 
only a part of the condition, or state, of the environment.  

 The entire environment and the environment that an agent 
can perceive are shown in Figure 3 and Figure 4, respectively. 
Figure 3 shows the agents and their respective perceived 
environments within the entire environment. In Figure 3, the 
agents are indicated by yellow circles labeled by numbers. The 
frame that encloses each agent is the range that the agents can 
perceive, and this range is limited. Figure 4 shows the 
environments perceived by each agent. The X symbol 
represents the agents, and the numbers represent the other 
agents.

The conditions (position) of all of the agents are included in 
the entire environment, as shown in Figure 3. Agent 1 and 

Fig. 1.  An example of the problem environment. The field is denoted by 
lattice. Agents are denoted by  symbols, and trash is denoted by the 
symbols.  
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Fig. 2.  Structure of an agent. It shows the individual components of an agent, 
and the transmission of information is expressed by the arrows. 

information
vision

information
acting

425

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



148 3

Agent 2 perceive different environments. However, even 
though each agent is uniquely located in the environment, 
Agent 3 and Agent 4 perceive the environment to be the same. 
This problem is called the imperfect perception problem and 
becomes one of the important problems in agent design. 
Increasing the visual field range of the agent is considered to be 
one solution to this problem.  

The behavior of each agent is governed by rules. A rule is a 
condition-action rule of form. The condition part of the rule 
represents the condition of the environment that the defector 
perceives. The action part of the rule indicates the action of the 
agent. When the number of patterns of the condition of an 
environment that the defector perceives increases, the number 
of rules increases. An example of condition-action rules is 
shown in Table 1. 

TABLE I
EXAMPLE OF RULES

Condition of environment action

200000000000X000000010020 up

002000010000X000000020000 down

000000000000X000000002000 left

002000000000X000000001000 right

000000000000X000002000000 down

The effector decides the action by the rule. For example, if 
the condition of the environment was perceived as 
“000000000000X000002000000”, the action “down” is 
chosen by the agent from the rules in Table 1. 

C. Q-learning 
A prominent algorithm in reinforcement learning is the 

Q-learning algorithm. In a finite Markov decision process 
(MDP) environment, the goal is to find the optimal policy in 
each state visited in order to maximize the value of a 
performance metric, e.g., long-run discounted reward using 
Q-learning. 

In Q-learning, which can be implemented in simulators or 
in real time, the algorithm iterations are the Q-factors. Let Q(s,
a) denote the Q-factor for state s and action a. Let rt+1 denote 
the immediate reward earned in going from state st to state st+1,
and let denote the discounting factor. When the system 
transitions from state st to state st+1 and at denotes the action 
chosen in state st, then the Q-factor for state st and action at is
updated as follows: 

a
tttttttt asQasQrasQasQ ,,max,, 11

   (1)

where 10 , which denotes a step-size parameter in the 
iteration, must satisfy some standard stochastic-approximation 
conditions, and all other Q-factors are kept unchanged. 
Theoretically, the algorithm is allowed to run for infinitely 
many iterations until the Q-factors converge.  

D. Architectural Design of Agent Systems  
The agent simulation system is made using the Java 

language. This system can simulate the actions of “trash 
collection” agents on a 15 × 15 field. The system consists of the 
main window on the left and the log window on the right. In the 
main window, actions and the number of steps of the agent, 
among other items, are displayed. The check box is set to be 
ON, when confirmation of the action of the agent is desired. In 
the log window, information on the action of the agent is 
displayed. It is possible to preserve displayed information in a 
text file. In addition, the graph can be opened in Excel. 

E. Action Acquisition by Q-learning  
The action-value function in which the agent acts is 

renewed. When an agent picks up a piece of trash, the reward 
that affects the renewal of the action value is assigned to the 
agent. In addition, the field is initialized when all of the trash on 
the field has been picked up. However, the action-value 
function and the agent learning number of steps are not 
initialized. It is repeated for the specified number of learning 
steps.

The flow of the trash collection agent learning is as follows. 
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Fig. 4.  Environment perceived by each agent.
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Fig. 3.  Entire environment. The agents are indicated by yellow circles labeled 
by numbers. The frame that encloses each agent is the range that the agents 
can perceive.

Fig. 4.  Environment perceived by each agent. The X symbol represents the 
agents, and the numbers represent the other agents.
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F. Action Decide 
The trash collection carries out the action based on the 

action-value function. The action rule of a trash collection 
agent is as shown in Table 2. The action part is replaced by the 
action-value function. 

up down left right
A Q(A, up) Q(A, down) Q(A, left) Q(A, right)
B Q(B, up) Q(B, down) Q(B, left) Q(B, right)

Z Q(Z, up) Q(Z, down) Q(Z, left) Q(Z, right)

state
action-value function

……

The action of the agent is decided based on the value of the 
action-value function for movement in each direction. For 
example, the action is decided by the values Q(B, up), Q(B,
down), Q(B, left) and Q(B, right) when the state of the 
environment is B. As a method for deciding the action from 
these four values, there are two techniques, are as follows: 

(1) -greedy policies 
In -greedy policies, most of time the agents choose an action 

that has a maximal estimated action value, but when the 
probability is  the agents instead make their selection 
randomly. That is, all non-greedy actions are given the minimal 
probability of selection, and the remaining bulk of the 
probability is given to the greedy action. 

Although -greedy action selection is an effective and 
popular means of balancing exploration and exploitation in 
reinforcement learning, one drawback is that during 

exploration the agents choose equally among all action. This 
means that the likelihood of choosing the worst action is as high 
as that of choosing the next-to-best action.  

(2) Softmax policies 
Softmax policies vary the action probabilities as a graded 

function of the estimated value. The greedy action is still given 
the highest selection probability, but all of the other actions are 
ranked and weighted according to their value estimates. 

IV. EXPERIMENT RESULTS AND DISCUSSION

Using the proposed system, an experiment on the learning of 
the agent was carried out. The size of the field was 15×15. 
There were 10 pieces of trash and five agents. An agent moves 
to the one square of relative position - up, down, right, and left - 
in one step. In addition, each agent has the ability to perceive 
the condition of 2 squares of the surrounding environment. The 
task requires the trash to be picked up. A reward is given when 
an agent picks up a piece of trash. Also, the action-value 
function Q is shared between agents.

A. Action Selection Policies Comparison 
The effect of -greedy policies and softmax policies on the 

learning of the agent is shown in Figure 5. The task completion 
step decreases with the increase of the learning step when 
-greedy policies are used. Conversely, the task completion 

step increases, when the softmax policies are used. This is 
because the action value for each direction is equalized with the 
increase of the learning step, and the difference in the 
probability of movement in each direction decreased when the 
softmax policies were used. 
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B. Effects of Step-size Parameter
The effects of the step-size parameter on Q-factor update 

were examined. The step-size parameter indicates the degree 
that is renewed when the learning-value function is updated. 
The step-size parameter is a small positive fraction that 
influences the rate of learning. The step-size range is from 0.1 
to 1. The learning results for step sizes of = 0.1, 0.4 and 0.7 are 
shown in Figures 6 and 7. 

Initialize Q(s, a) arbitrarily 
  Initialize state of field 
 (Arrange initial position of agents and trash) 

Loop (until decided step) 
{

Decide randomly action a, then act 

IF (pick up a trash) 
r=M (M is any positive number)  

ELSE 
r=0 (don’t pick up) 

Acquire present state s 
Acquire next state s’
Acquire max Q(s’, a’) in the next state

Renew Q-factor
asQrasQasQ ,max,1,

    IF (All trash on the field is picked up) 
 Initialize state of field 
}

TABLE II
STATE AND ACTION-VALUE OF THE ENVIRONMENT

-greedy policies 

Softmax policies

Fig. 5.  Comparison of policies. The task completion step decreases with the 
increase of the learning step when -greedy policies are used. Conversely, 
the task completion step increases, when the softmax policies are used. 
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In Figure 6, when the step size, , is 0.4, there are smaller 
task completion steps than when  is 0.1. However, in Figure 7, 
the learning has not been stabilized significantly by the time the 
step size reaches 0.7. Therefore, skillful learning is not possible 
when the step size too is set to be too large.  
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V. CONCLUSION

In the present study, we attempted to acquire a cooperative 
action rule for agents through the use of Q-learning. We used 
the Q-learning based on the fact that the action-value is high 
when agents act cooperatively, and each agent acts 
cooperatively by learning to finish trash collection as fast as 
possible without any indication. 

The task completion step decreased with the increase of the 
learning step when -greedy policies were used. Conversely, 
the task completion step increased with the increase of the 
learning step when softmax policies were used. This is because 
the action value for each direction is equalized with the increase 
of the learning step, and the difference in the probability of 
movement in each direction decreased when the softmax 
policies were used. 

In present study, the number of states is very large because 
all of the environments in which the agents appear during 
learning are used. In future research, we intend to improve the 
representation methods of the action rule in order to solve this 
problem. 
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Fig. 6.  Step-size parameter indicates the degree. The step-size parameter is 
a small positive fraction that influences the rate of learning. The learning 
results for step sizes of  = 0.1 and 0.4. 

Fig. 7.  Step-size parameter indicates the degree. The step-size parameter is 
a small positive fraction that influences the rate of learning. The learning 
results for step sizes of  = 0.4 and 0.7. 
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