
148 1

Abstract— In this paper, we focused on the problem of “trash
collection”, in which multiple agents collect all trash as quickly as
possible. The goal of the present research is for multiple agents to
learn to accomplish a task by interacting with the environment
and acquiring cooperative behavior rules. We construct the
learning agent using Q-learning, which is a representative
technique of reinforcement learning. Q-learning is designed to
find a policy that maximizes the learning for all states. The
decision policy is represented by a function. The goal is for
multiple agents to learn to accomplish a task by interacting
with the environment and other agents. The action value
function is shared among agents. The effectiveness of the
learning is verified experimentally.

Index Terms—Action value function, Cooperative behavior,
Q-learning, Multi-agent systems.

I. INTRODUCTION

ulti-agent systems are systems in which several
interacting, intelligent agents pursue some set of goals or

perform some set of tasks [1] In multi-agents systems, each
agent must behave independently according to its state and
environment, and, if necessary, must cooperate with other
agents in order to perform a given task. Multi-agent systems
have greater robustness and flexibility than conventional
centralized management systems. However, it is difficult to
predict in advance the actions of the agents and to assign action
rules to multi-agent systems, because the interaction between
agents is complicated.
 Numerous studies regarding autonomous agents in the
multi-agent systems have been conducted. Nolfi and Foreano
[2] simulated a pursuit system with two agents (predator and
prey) in real environments. They evolved both agents
reciprocally using a genetic algorithm. Jim and Lee [3] evolved
the autonomous agents with a genetic algorithm. Zhou [4] used
both a fuzzy controller and a genetic algorithm. The fuzzy
function displayed the position of the agent, and the genetic
algorithm was used for learning. Fujita and Matsuo [5] learned
the autonomous agent using reinforcement learning. The

M. C. Xie is with the Department of Electrical and Computer Engineering,
Wakayama National College of Technology, Nada-Cho, Gobo City,
Wakayama-Ken, 644-0023, Japan (phone: 738-29-8377, fax: 738-29-8399,
e-mail: xie@wakayama-nct.ac.jp)

A. Tachibana was with Mechatronics Engineering Course, Wakayama
National College of Technology. He is now with Hitachi Advanced Digital, Inc.
Yoshida-Cho, Totsuka-Ku, Yokohama City, Kanagawa-Ken, 244-0817, Japan
(e-mail: a-tachibana@hitachi-ad.co.jp).

reinforcement learning method involves developing an agent’s
behavior by means of the interrelationship with the
environment and resulting reinforcement signals. The
reinforcement learning method can guarantee learning and
adaptability without precise pre-knowledge about the
environment.

We used a genetic algorithm to acquire the rules for an agent.
Individual coding methods are performed (i.e., rule definition),
and the learning efficiency is evaluated [6].

In the present paper, we focused on the problem of “trash
collection”, in which multiple agents collect all trash as quickly
as possible. The goal of the present research is for multiple
agents to learn to accomplish a task by interacting with the
environment and acquiring cooperative behavior rules. We
construct the learning agent using Q-learning, which is a
representative technique of reinforcement learning. Q-learning
is a method of allowing an agent to learn from a delayed system
of rewards and punishments. Q-learning is designed to find a
policy that maximizes the learning for all states. The decision
policy is represented by a function. The goal is for multiple
agents to learn to accomplish a task by interacting with the
environment and other agents. The action value function is
shared among agents. The effectiveness of the learning is
verified experimentally.

II. COOPERATIVE ACTION OF MULTI-AGENT

A. Multi-agent Systems
Multi-agent systems are the systems in which several

interacting, autonomous agents pursue some set of goals or
perform some set of tasks. A key pattern of interaction in
multi-agent systems is goal- and task- oriented coordination,
both in cooperative an in competitive situations. In the case of
cooperation several agents try to combine their efforts to
accomplish as a group what the individuals cannot, and in the
case of competition several agents try to get what only some of
them can have.

In [7] the following major characteristics of multi-agent
systems are identified:

 --each agent has just incomplete information and is
restricted in its capabilities;

 --system control is distributed;
 --data is decentralized; and

--system control is distributed;

Cooperative Behavior Acquisition for
Multi-agent Systems by Q-learning

M. C. Xie, and A. Tachibana

M

424

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

148 2

B. Cooperative Action of Agents
When multiple autonomous agents exist, the environment

changes from static to dynamic, compared to the case of an
individual agent. An agent engaged in cooperative action
decides its actions by referring to not only its own information
and purpose, but to those of other agents as well.

Multi-agent systems enable problems to be solved more
efficiently. In addition, multi-agent systems can solve problems
that may be impossible for individual agents to solve, because
multi-agents have one common aim and can adjust to their
environment and perform cooperative actions. However,
multi-agents are not always advantageous. For example, if
multiple agents in the same environment act independently,
then the situation that each agent has to deal with becomes
more complex because each agent has to consider the other
agents movements before performing an action. If an agent tries
to perform an autonomously decided action, the agent may not
be able to perform the action as planned because of
disturbances caused by the other agents. Changes to the
environment caused by the actions of other agents may make
understanding the environment difficult for the agents.

C. Establishment of the Problems Environment
The present study considers the “trash collection” problem,

in which trash is placed on a field of fixed size and agents must
collect the trash as fast as possible.

As in Figure 1, the field is divided into N × N lattice. Agents
are denoted by symbols, and trash is denoted by the
symbols.

In the trash collection problem, the actions of agents are
defined as follows:
1) The action of an agent is determined once per unit time.
2) An agent can move to an adjoining lattice, where

up-and-down and right-and-left are connected per unit time.
3) An agent collects the trash when the agent has the same

position as the trash.

III. COOPERATIVE BEHAVIOR ACQUISITION USING
Q-LEARNING

A. Agent and Environment
The agent decides the action based on the condition of the

perceived environment, and some changes in the environment

are caused by the action. Therefore, the agent and the
environment are related through their interactions.

An accessible environment is one in which the agent can
obtain complete, accurate, and up-to-date information about the
state of the environment. Most moderately complex
environments are inaccessible. The more accessible the
environment, the simpler it is to build an agent to operate in that
environment [1]. When an environment is inaccessible, the
information that can be perceived from the environment is
limited and inaccurate, which involves a delay.

When there is only one agent, the environment is static.
However, when another agent exists, the environment is not
always static because the condition of the environment may be
changed by other agent.

B. Composition of Agents
In this section, the composition and function of each agent

are described. The structure of an agent is shown in Figure 2.
The figure shows the individual components of an agent, and
the transmission of information is expressed by the arrows.
First, the agent perceives the condition of the environment in
the detector. Next, the rule is compared with the condition that
was perceived by the acting decider, and the action is decided.
Finally, the action is carried out in the effector.

The detector of the agent cannot always perceive the
condition of the environment completely, which is similar to
limits on human visual acuity. Therefore, an agent can perceive
only a part of the condition, or state, of the environment.

 The entire environment and the environment that an agent
can perceive are shown in Figure 3 and Figure 4, respectively.
Figure 3 shows the agents and their respective perceived
environments within the entire environment. In Figure 3, the
agents are indicated by yellow circles labeled by numbers. The
frame that encloses each agent is the range that the agents can
perceive, and this range is limited. Figure 4 shows the
environments perceived by each agent. The X symbol
represents the agents, and the numbers represent the other
agents.

The conditions (position) of all of the agents are included in
the entire environment, as shown in Figure 3. Agent 1 and

Fig. 1. An example of the problem environment. The field is denoted by
lattice. Agents are denoted by symbols, and trash is denoted by the
symbols.

defector effectorcompare

acting decider

rules set

rule

Fig. 2. Structure of an agent. It shows the individual components of an agent,
and the transmission of information is expressed by the arrows.

information
vision

information
acting

425

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

148 3

Agent 2 perceive different environments. However, even
though each agent is uniquely located in the environment,
Agent 3 and Agent 4 perceive the environment to be the same.
This problem is called the imperfect perception problem and
becomes one of the important problems in agent design.
Increasing the visual field range of the agent is considered to be
one solution to this problem.

The behavior of each agent is governed by rules. A rule is a
condition-action rule of form. The condition part of the rule
represents the condition of the environment that the defector
perceives. The action part of the rule indicates the action of the
agent. When the number of patterns of the condition of an
environment that the defector perceives increases, the number
of rules increases. An example of condition-action rules is
shown in Table 1.

TABLE I
EXAMPLE OF RULES

Condition of environment action

200000000000X000000010020 up

002000010000X000000020000 down

000000000000X000000002000 left

002000000000X000000001000 right

000000000000X000002000000 down

The effector decides the action by the rule. For example, if
the condition of the environment was perceived as
“000000000000X000002000000”, the action “down” is
chosen by the agent from the rules in Table 1.

C. Q-learning
A prominent algorithm in reinforcement learning is the

Q-learning algorithm. In a finite Markov decision process
(MDP) environment, the goal is to find the optimal policy in
each state visited in order to maximize the value of a
performance metric, e.g., long-run discounted reward using
Q-learning.

In Q-learning, which can be implemented in simulators or
in real time, the algorithm iterations are the Q-factors. Let Q(s,
a) denote the Q-factor for state s and action a. Let rt+1 denote
the immediate reward earned in going from state st to state st+1,
and let denote the discounting factor. When the system
transitions from state st to state st+1 and at denotes the action
chosen in state st, then the Q-factor for state st and action at is
updated as follows:

a
tttttttt asQasQrasQasQ ,,max,, 11

 (1)

where 10 , which denotes a step-size parameter in the
iteration, must satisfy some standard stochastic-approximation
conditions, and all other Q-factors are kept unchanged.
Theoretically, the algorithm is allowed to run for infinitely
many iterations until the Q-factors converge.

D. Architectural Design of Agent Systems
The agent simulation system is made using the Java

language. This system can simulate the actions of “trash
collection” agents on a 15 × 15 field. The system consists of the
main window on the left and the log window on the right. In the
main window, actions and the number of steps of the agent,
among other items, are displayed. The check box is set to be
ON, when confirmation of the action of the agent is desired. In
the log window, information on the action of the agent is
displayed. It is possible to preserve displayed information in a
text file. In addition, the graph can be opened in Excel.

E. Action Acquisition by Q-learning
The action-value function in which the agent acts is

renewed. When an agent picks up a piece of trash, the reward
that affects the renewal of the action value is assigned to the
agent. In addition, the field is initialized when all of the trash on
the field has been picked up. However, the action-value
function and the agent learning number of steps are not
initialized. It is repeated for the specified number of learning
steps.

The flow of the trash collection agent learning is as follows.

 1

 X

agent 2

 X

agent 3

 X

agent 4

Fig. 4. Environment perceived by each agent.

 X

2

agent 1

Fig. 3. Entire environment. The agents are indicated by yellow circles labeled
by numbers. The frame that encloses each agent is the range that the agents
can perceive.

Fig. 4. Environment perceived by each agent. The X symbol represents the
agents, and the numbers represent the other agents.

426

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

148 4

F. Action Decide
The trash collection carries out the action based on the

action-value function. The action rule of a trash collection
agent is as shown in Table 2. The action part is replaced by the
action-value function.

up down left right
A Q(A, up) Q(A, down) Q(A, left) Q(A, right)
B Q(B, up) Q(B, down) Q(B, left) Q(B, right)

Z Q(Z, up) Q(Z, down) Q(Z, left) Q(Z, right)

state
action-value function

……

The action of the agent is decided based on the value of the
action-value function for movement in each direction. For
example, the action is decided by the values Q(B, up), Q(B,
down), Q(B, left) and Q(B, right) when the state of the
environment is B. As a method for deciding the action from
these four values, there are two techniques, are as follows:

(1) -greedy policies
In -greedy policies, most of time the agents choose an action

that has a maximal estimated action value, but when the
probability is the agents instead make their selection
randomly. That is, all non-greedy actions are given the minimal
probability of selection, and the remaining bulk of the
probability is given to the greedy action.

Although -greedy action selection is an effective and
popular means of balancing exploration and exploitation in
reinforcement learning, one drawback is that during

exploration the agents choose equally among all action. This
means that the likelihood of choosing the worst action is as high
as that of choosing the next-to-best action.

(2) Softmax policies
Softmax policies vary the action probabilities as a graded

function of the estimated value. The greedy action is still given
the highest selection probability, but all of the other actions are
ranked and weighted according to their value estimates.

IV. EXPERIMENT RESULTS AND DISCUSSION

Using the proposed system, an experiment on the learning of
the agent was carried out. The size of the field was 15×15.
There were 10 pieces of trash and five agents. An agent moves
to the one square of relative position - up, down, right, and left -
in one step. In addition, each agent has the ability to perceive
the condition of 2 squares of the surrounding environment. The
task requires the trash to be picked up. A reward is given when
an agent picks up a piece of trash. Also, the action-value
function Q is shared between agents.

A. Action Selection Policies Comparison
The effect of -greedy policies and softmax policies on the

learning of the agent is shown in Figure 5. The task completion
step decreases with the increase of the learning step when
-greedy policies are used. Conversely, the task completion

step increases, when the softmax policies are used. This is
because the action value for each direction is equalized with the
increase of the learning step, and the difference in the
probability of movement in each direction decreased when the
softmax policies were used.

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000

Number of learning steps

N
um

be
r o

f t
as

k
co

m
pl

et
io

n
ste

ps

B. Effects of Step-size Parameter
The effects of the step-size parameter on Q-factor update

were examined. The step-size parameter indicates the degree
that is renewed when the learning-value function is updated.
The step-size parameter is a small positive fraction that
influences the rate of learning. The step-size range is from 0.1
to 1. The learning results for step sizes of = 0.1, 0.4 and 0.7 are
shown in Figures 6 and 7.

Initialize Q(s, a) arbitrarily
 Initialize state of field
 (Arrange initial position of agents and trash)

Loop (until decided step)
{

Decide randomly action a, then act

IF (pick up a trash)
r=M (M is any positive number)

ELSE
r=0 (don’t pick up)

Acquire present state s
Acquire next state s’
Acquire max Q(s’, a’) in the next state

Renew Q-factor
asQrasQasQ ,max,1,

 IF (All trash on the field is picked up)
 Initialize state of field
}

TABLE II
STATE AND ACTION-VALUE OF THE ENVIRONMENT

-greedy policies

Softmax policies

Fig. 5. Comparison of policies. The task completion step decreases with the
increase of the learning step when -greedy policies are used. Conversely,
the task completion step increases, when the softmax policies are used.

427

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

148 5

In Figure 6, when the step size, , is 0.4, there are smaller
task completion steps than when is 0.1. However, in Figure 7,
the learning has not been stabilized significantly by the time the
step size reaches 0.7. Therefore, skillful learning is not possible
when the step size too is set to be too large.

0

100

200

300

400

500

600

0 2000 4000 6000 8000 10000

Number of learning steps

N
um

be
r o

f t
as

k
co

m
pl

et
io

n
ste

ps

0.4

0.1

0

100

200

300

400

500

600

0 2000 4000 6000 8000 10000

Number of learning steps

N
um

be
r o

f t
as

k
co

m
pl

et
io

n
ste

ps

0.7

0.4

V. CONCLUSION

In the present study, we attempted to acquire a cooperative
action rule for agents through the use of Q-learning. We used
the Q-learning based on the fact that the action-value is high
when agents act cooperatively, and each agent acts
cooperatively by learning to finish trash collection as fast as
possible without any indication.

The task completion step decreased with the increase of the
learning step when -greedy policies were used. Conversely,
the task completion step increased with the increase of the
learning step when softmax policies were used. This is because
the action value for each direction is equalized with the increase
of the learning step, and the difference in the probability of
movement in each direction decreased when the softmax
policies were used.

In present study, the number of states is very large because
all of the environments in which the agents appear during
learning are used. In future research, we intend to improve the
representation methods of the action rule in order to solve this
problem.

REFERENCES

[1] Michael Wooldridge: Intelligent Agent, Multiagent Systems, edited by
Gernard Weiss, 2000

[2] S. Nolfi and D. Floreano, Co-evolving predator and prey robots: do ‘arm
races‘ arise in artificial evolution? Artificial Life 4 (4), 1998, pp.311-335

[3] K. C. Jim and C. Lee, Talkin helps: evolving communicating robots for
the predator- prey pursuit problem, Artificial Life, No. 6, 2000,
pp.237-254.

[4] Changjiu Zhou, Robot learning with GA-based fuzzy reinforcement
learning agents, Information Science, Vol. 145, 2002, pp.45-68.

[5] K. Fujita and H. Matsuo, Multi-agent Reinforcement Learning with the
Partly High-dimensional State Space, The transactions of the institute of
electronics, information and communication engineers, Vol. J88-D-I No.
4, 2005, pp.864-872.

[6] M. C. Xie, “Cooperative Behavior Rule Acquisition for Multi-agent
Systems Using a Genetic Algorithm”, Proceedings of the IASTED
International Conference on Advances in Computer Science and
Technology, 2006, pp.124-128.

[7] N. R. Jennings, K. Sycara, and M. Wooldridge, A roadmap of agent
research and development, Autonomous Agent and Multi-Agent Systems,
1998, pp.7-38.

Fig. 6. Step-size parameter indicates the degree. The step-size parameter is
a small positive fraction that influences the rate of learning. The learning
results for step sizes of = 0.1 and 0.4.

Fig. 7. Step-size parameter indicates the degree. The step-size parameter is
a small positive fraction that influences the rate of learning. The learning
results for step sizes of = 0.4 and 0.7.

428

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

