
Abstract—On the basis of statistical mechanics of the Q-Ising 
model, we formulate the problem of inverse-halftoning  using the 
maximizer of the posterior marginal (MPM) estimate for halftone 
images obtained by the threshold mask method. Then, we estimate 
the performance of the method in terms of the mean square error 
and the histogram of the gray-level using the Markov-chain Monte 
Carlo simulation. The simulation for a set of snapshots of the 
Q-Ising model reveals the results that the MPM estimate works 
effectively for the problem of inverse-halftoning, if we 
appropriately set the parameters of the model prior expressed by 
the Boltzmann factor of the Q-Ising model. We then clarify that 
the model prior shifts the gray-level images from both sides to the 
middle range of the gray-level in the procedure of 
inverse-halftoning. Also, these properties are confirmed by the 
MCMC method even for real-world images.  

Index Terms—inverse-halftoning, the Bayes inference, 
statistical mechanics, Monte Carlo simulation 

I. INTRODUCTION

recent years, a lot of researchers have been working on 
problems of information sciences related to image analysis 

and the Markov-random fields [1]. In recent development of 
information sciences, an analogy between statistical mechanics 
and information processing based on the Bayes inference [2,3] 
has been clarified. Based on the analogy, various techniques in 
statistical mechanics have been applied to problems of 
information sciences, such as the mean-field theory and the 
replica theory. In the problem of image restoration, Geman and 
Geman [4] have formulated the problem of image restoration 
using the Markov-random field model which is closely related 
to statistical mechanics of spin systems. Then, Sourlas [5] has 
formulated the problem of error-correcting codes for the  
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Sourlas’ codes based on statistical mechanics of spin glasses. 
Next, based on statistical mechanics of the Ising model, 
Nishimori and Wong [6,7] constructed a unified framework of 
image restoration and error-correcting codes and they evaluated 
the performance of the MPM estimate using the replica theory. 
Following the strategy, statistical-mechanical techniques, such 
as the replica theory and the mean-field theory, have been used 
for various problems, such as the low-density parity-checking 
codes [7] and the mobile communication [8].  

In the field of printing, it is well known that a lot of techniques 
in information processing play important roles to create printed 
matter with high quality. Especially, a technique of halftoning 
[9,10] has been developed to convert a multi-level image into a 
bi-level one. For this purpose, various techniques have been 
proposed, such as the threshold mask method and the 
clustered-dot ordered dither method. Also, a technique of 
inverse-halftoning [11] is important to reconstruct an original 
multi-level image from a bi-level one. For this purpose, various 
filters have been applied for inverse-halftoning, such as the 
conventional low-pass filter and its variants. In recent years, in 
order to improve the performance of inverse-halftoning, the 
MAP estimate based on Bayes inference has been applied to the 
problem. 
    In the present study, on the basis of the maximizer of the 
posterior marginal (MPM) estimate which corresponds to 
statistical mechanics of the Q-Ising model, we formulate the 
problem of inverse-halftoning for halftone images generated by 
the threshold mask method using a uniform threshold and the 
Bayer’s and screw arrays. We try this approach in the hope that 
the MPM estimate is expected to achieve better performance 
than the conventional methods, because we can selectively 
choice the model. Then, in order to clarify the mechanism of the 
method for the problem of inverse-halftoning, we evaluate the 
mean square error and the histogram of the gray-level using the 
Markov-chain Monte Carlo simulation both for a standard 
image “girl” and a set of snapshots of the Q-Ising model. This 
approach derives the results that the Boltzmann factor of the 
Q-Ising model play a role to shift images from both sides to the 
middle range of the gray-level and therefore that the MPM 
estimate works effectively for images located in the middle 
range of the gray-level, such as the set of snapshots of the 
Q-Ising model. Then we also show that the MPM estimate 
works more effectively for a halftone image generated by the  
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threshold mask method using the Bayer’s array than that using 
the screw array. 
    The content of the present paper is as follows. We first show 
our formulation for the problem of inverse-halftoning for a 
halftone image generated by the threshold mask method based 
on statistical mechanics of the Q-Ising model. Then we show the 
performance of the MPM estimate using the Markov-chain 
Monte Carlo simulation for a standard image and a set of the 
snapshots of the Q-Ising model. Finally, we summarize our 
study.  

II. GENERAL FORMULATION

Here we construct a statistical-mechanical formulation for the 
problem of inverse-halftoning for a halftone image which is 
generated by the threshold mask method using a uniform 
threshold and the Bayer’s and screw arrays.  

First, we consider a gray-scale image { x,y}, where x,y =
0,…,Q-1, x, y = 1,…,L. In this study, we treat two kinds of 
original images which are shown as follows. One is a set of 
original gray-level images (Fig.2(a)) generated by a true prior 
expressed by the Boltzmann factor of the Q-state Ising spin 
system:  
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The other is a standard image given in Fig. 2(b). Next, we  
construct halftone images  { x,y} ( x,y=0, 255, x, y = 1, , L) by 
comparison of each pixel value of the original image with a 
corresponding threshold of the masks, such as the Bayer’s and 
screw arrays shown in Fig. 2 (c) and (d). That is, the halftone 
image is obtained with the conditional probability as  

( ) ( ) ( ) ( ), , , , ,255 | = - , 0 | = 1- 255 |x y x y x y x y x yP M P P (2)
where {Mx,y} corresponds to the Bayer’s and screw arrays. The 
obtained halftone images are shown in Fig. 2 (e), (f), (g) and (h).  
    Next, we reconstruct a gray-level image using the MPM 
estimate based on statistical mechanics of the Q-Ising model 
Here this model is constructed by a set of Q-state Ising spins 
{zx,y} ( zx,y= 0,…, Q-1, x, y = 1,…, L ) located on the square 
lattice. We carry out inverse-halftoning so as to maximize the 
posterior marginal probability as 
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using the Q-Ising model {zx,y} (zx,y=0.…,Q-1, x,y=1,…,L) The 
posterior probability is estimated based on the Bayes formula:  

( ) ( ) ( ){ }|{ } = { } { }|{ }P z J P z P J z (4)
using the models of the true prior and the noise probability. In 
this study, we assume the model prior expressed by the 
Boltzmann factor of the Q-Ising model: 
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This model prior is expected to enhance smooth structures,   
which is shown in natural images. Then, we assume the model of  
the noise probability: 
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so as to stabilize a image which is constructed by  
1
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where coefficients {ai,j} are determined respective of the choice 
of the conventional filters. In this study, we use the halftone 
image obtained using the uniform threshold, the Bayer’s array 
and the screw array. 
    Next, in order to estimate the performance of our method for 
a standard image, we evaluate the mean square error as  
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where x, y and ,
ˆ

x yz are the pixel values of the original gray-level 
and reconstructed images. On the other hand, if we estimate the 
performance of gray-level images generated by the true prior 
P({ }) , we evaluate the mean square error which is averaged 
over the true prior as  
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III. PERFORMANCE

In order to estimate the performance of the MPM estimate for 
the problem of inverse-halftoning, we carry out the 
Markov-chain Monte Carlo simulation both for a standard 
image “girl” and a set of images generated with the probability 
expressed by the Boltzmann factor of the Q-Ising model in the 
following way.  

Here, we use a 256-level standard image “girl” with 100 ×100
pixels and a set of 16-level images with 100 100 pixels, which 
are generated with the prior probability distribution expressed 
by the Boltzmann factor of the 16-state Ising model on the 
square lattice. Here, parameters of the prior are set as hs=1, Ts=1.
Next, we convert the gray-level image into a bi-level one due to 
the threshold mask method using several kinds of masks, such as 
a uniform threshold, the 4×4 Bayer’s and screw arrays. In this 
method, the halftone image is generated by comparing each 
pixel value of the original image with a corresponding threshold 
to the pixel. 

Fig. 1 Problems of halftoning and inverse-halftoning
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(a)                                   (b) 

(c)                                  (d) 

(e)                                   (f) 

(g)                                  (h) 

(i)                                    (j) 

(k)                                   (l) 

Next we reconstruct a gray-level image so as to maximize the 
marginal posterior probability using the 100×100 Q-state Ising 
spin system which is located on the square lattice. When we 
estimate the performance of our method, we evaluate the mean 
square error and the gray-level distribution averaged over the 
original gray-level images generated by the assumed prior. 

          (a) 

(b) 

    Under the above conditions, we estimate the performance of 
the MPM estimate for a set of gray-level images generated by 
the true prior expressed by the Boltzmann factor of the Q-Ising 
model. First, in order to clarify optimal performance of our 
method, we evaluate how the mean square error depends on the 
parameters. Figure3 shows the J-dependence of the mean square  

Fig.2  (a) a 16-level image generated by the Boltzmann factor of 
the Q-Ising model with Q=16, h=1, Ts=1, (b) a 100×100 standard 
image “girl” with 256 gray-levels, (c)the Bayer’s array, (d) the 
screw mask, (e)a halftone image of (a) generated by the threshold 
mask method using the Bayer’s array, (f)a halftone image of (b) 
generated by the threshold mask method using a uniform 
threshold with M=80, (g)a halftone image of (b) generated by the 
threshold mask method using the Bayer’s array, (h) A halftone 
image of Fig. 2 (b) using the screw array, (i) a gray-level image 
reconstructed from (e) by the MPM estimate, (j)a gray-level 
image reconstructed from (f) by the MPM estimate, (k)a 
gray-level image reconstructed from (f), (l)a gray-level image 
reconstructed from (f) by the MPM estimate.  

Fig. 3 The mean square error as a function of J obtained by the 
MPM estimate using halftone images converted from a set of 
gray-level images generated by the Boltzmann factor of the Q-Ising 
model when hs=1, Ts=1, h=1, T=1.

Fig.4 The histogram of the gray-level both of an original 
gray-level image generated by a ture prior expressed by the 
Boltzmann factor of the Q-Ising model and that of the 
reconstructed image by the MPM estimate (a) hs=1, Ts=1,
h=1, T=0.1, J=0.1, (b) hs=1, Ts=1, h=1, T=0.1, J=6.0.
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error which is averaged over a set of the snapshots of the 
Q-Ising model. This result means that the halftone images is 
obtained when J=0, and that the performance is monotonously 
improved with the increase in the parameter J and then that the 
optimal performance is obtained at a finite value of the 
parameter J. Then, the optimal performance is obtained in J>3.
parameter J, although it is not clearly seen that the optimal 
performance is obtained in the large J limit due to the statistical 
uncertainty. This result also indicates that the MPM estimate 
realizes inverse-halftoning more precisely for halftone images 
obtained using the Bayer’s array than that using the screw array.  

Next, as are shown in Fig. 4 (a) and (b), we investigate the 
gray-level distribution of the gray-level images which are 
snapshots of the Q-Ising model. As is shown in Fig. 4(a), the 
reconstruct image is located around the both sides (Q=0 and 
Q=15) of the gray-level, if the parameter J takes smaller value 
than the optimal one. On the other hand, as is shown in Fig. 4, 
the reconstructed image is located in the middle range of the 
gray-level, if the parameter J takes a larger value than the 
optimal one. These results suggest that the Boltzmann factor of 
the Q-Ising model is available to shift images from both sides to 
the middle range of the gray-level.  

Next, we investigate the performance of the MPM estimate 
for several kinds of halftone images generated from a standard 
image “girl” by the threshold mask method using the Bayer’s 
and screw arrays. Here we evaluate how the mean square error 
depends on the parameter J. We obtain the result in Fig. 5 that 
the optimal performance is obtained by the MPM estimate, if we 
set the appropriate finite value of the parameter J. However, if 
we set larger J value than the optimal one, the MPM estimate 
realizes inverse-halftoning with less precision due to the 
over-smoothing by the model prior.  
    Next, we investigate the performance of the MPM estimate in 
terms of the histogram of the gray-level for a 256-level standard 
image “girl” whose histogram is given in Fig. 6(a). The 
histograms obtained by the MPM estimate are shown in Figs. 6 
(b), (c) and (d). These results indicate that the MPM estimate 
reconstructs the gray-level distribution which has a similar 
structure with the original image given in Fig.6(a), if we set the 
parameter J appropriately. However, as is shown in Fig. 6(b),  

(a) 

(b) 

(c) 

(d) 

the reconstructed image is distributed all over the range of the 
gray-level, if the parameter J is smaller than the optimal one. 
Then the reconstructed image in Fig. 7 has a property of the  

Fig. 6 (a) The histogram of a 256-level standard image “girl” given 
in Fig.2(b), (b)the histogram of the gray-level image obtained by the 
MPM estimate with h=1, J=1 from the halftone image in Fig.2(g), 
(c) the histogram of the gray-level image obtained by the MPM 
estimate with h=1, J=6.0 from the halftone image in Fig. 2(g), (d) 
the histogram of the gray-level image obtained by the MPM 
estimate with h=1, J=20.0 from the halftone image in Fig. 2(g). 

Fig. 5 The mean square error as a function of the parameter J
obtained by the MPM estimate for a halftone image 
generated by a standard image “girl” using the Bayer’s 
threshold mask method. 
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(a)                                  (b) 

(c) (d)  

(a)                                  (b) 

(c)                                  (d)

halftone image which is shown in Fig. 2(b). Then, as is shown in 
Fig. 6(d), the reconstructed image is distributed in the 
intermediate region of the gray-level, if the parameter J is larger 
than the optimal one. Further, as is shown in Fig. 7(d), we can 
see that the reconstructed image is over-smoothed due to the 
model prior expressed by the Boltzmann factor of the Q-Ising 
model. 

IV. SUMMARY AND DISCUSSION 

In the previous chapters, on the basis of statistical mechanics 
of the Q-Ising model corresponding to the MPM estimate in the 
field of information sciences, we formulate the problem of 
inverse-halftoning for halftone images generated by the 
threshold mask method using the uniform threshold, the Bayer’s 
mask and the screw mask. Then, we estimate the performance of 
the MPM estimate in terms of the mean square error and the 
histogram of the gray-level using the Markov-chain Monte 
Carlo simulation both for the standard image “girl” and the set 
of original images which are generated by the assumed true 
prior expressed by the Boltzmann factor of the Q-Ising model. 
From the performance estimation in terms of the mean square 
error, we obtain the result that the model prior expressed by the 

Boltzmann factor of the Q-Ising model works effectively to 
reconstruct the gray-level image from the halftone image 
obtained by the threshold mask method. Then, from the 
performance estimation in terms of the histogram of the 
gray-level, we clarify that our method works more effectively 
for a gray-level image which is located in the intermediate range 
of the gray-level than for a standard natural image.  
    As a future problem, we would like to construct the 
formulation for the problems of inverse-halftoning using the 
probabilistic information processing based on statistical 
mechanics of the spin system.  
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Fig.7 Gray-level images obtained by the MPM estimate for a halftone 
image generated using the Bayer’s array when h=1, T=0.1. (a) J=0, (b)
J=1, (c)J=5, (d) J=8.

Fig. 8 Gray-level  images obtained by the MPM estimate for a halftone 
image generated using the screw array when h=1, T=0.1. (a) J=0, (b)
J=1, (c) J=5, (d) J=8.
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