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Abstract— The exchange Monte Carlo method was proposed
as an improved algorithm of Markov Chain Monte Carlo
method and its effectiveness has been shown in many fields. In
the exchange Monte Carlo method, the setting of temperatures
is important to make the algorithm efficient because this setting
controls the exchange ratio, with which the position exchange
between two sequences is accepted. However, the mathematical
foundation of exchange MC method has not yet been estab-
lished. In this paper, we rigorously prove the mathematical
relation between the symmetrized Kullback divergence and the
exchange ratio, by which the optimal setting of temperatures
is devised.

I. INTRODUCTION

The Markov Chain Monte Carlo (MCMC) method is well
known as an algorithm to generate the sample sequence
which converges to a target distribution. This algorithm is
widely used in many fields such as statistics, bioinformatics
and information science. However, it requires huge computa-
tional cost to generate the sample sequence, in particular, in
the case that the target distribution has high potential barriers
[6] and that the ground state of target distribution is not one
point but an analytic set [9].

Recently, various improvements of MCMC method have
been developed based on the idea of extended ensemble
methods, which are surveyed in [7]. These methods give
us a general strategy to overcome the problem of huge
computational cost. An exchange Monte Carlo (MC) method
is well known as one of the extended ensemble methods
[6]. This method is to generate the sample sequence from
a joint distribution, which consists of many distributions
with different temperatures. Its algorithm is based on two
steps of MCMC simulations. One is the conventional update
of MCMC simulation for each distribution. The other is
the exchange process between two sequences with a certain
probability. As for the exchange MC method, its effective-
ness has been shown in an optimization problem [5][10], a
protein-folding problem [11] and the Bayesian learning in
hierarchical learning machines [8].

When we design the exchange MC method, the setting of
temperature is very important [4]. The values of temperature
have close relation to the exchange ratio and its average,
with which the exchange between two sequence is accepted.
In order to make the exchange MC method efficient, the ex-
change ratio needs to be not low and not too high. Therefore,
the optimal setting of temperature enables us to design the
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efficient exchange MC method. The symmetrized Kullback
divergence between two distributions with different temper-
ature is used as a criterion for the setting of temperature
because this Kullback divergence has relation to the average
exchange ratio [7]. Based on this fact, the design method
for setting of temperature has been proposed. However, this
method needs some previous simulations. Moreover, the
mathematical relation between the symmetrized Kullback
divergence and the average exchange ratio has not been
clarified.

In this paper, we mathematically calculate the symmetrized
Kullback divergence and the average exchange ratio, and
clarify the relation between the symmetrized Kullback di-
vergence and the average exchange ratio.

This paper consists of six chapters. In Chapter II and III,
we explain the framework of exchange MC method and the
design of exchange MC method. In Chapter IV, the main
result of this paper is described. Discussion and Conclusion
are followed in Chapter V and VI.

II. EXCHANGE MONTE CARLO METHOD

Suppose that w ∈ Rd and our aim is to generate the sample
sequence from the following target probability distribution
with a energy function H(w) and a probability distribution
φ(w),

p(w) =
1

Z(n)
exp(−nH(w))φ(w),

where Z(n) is the normalization constant. The exchange MC
method treats a compound system which consists of non-
interacting K sample sequences of the system concerned.
The k-th sample sequence {wk} converges in law to the
random variable which is subject to the following probability
distribution

p(w|tk) =
1

Z(ntk)
exp(−ntkH(w))φ(w) (1 ≤ l ≤ L),

where t1 < t2 < · · · < tL. Given a set of the temperatures
{t} = {t1, · · · , tK}, the simultaneous distribution for finding
{w} = {w1, w2, · · · , wK} is expressed as a simple product
formula

p({w}) =
K∏

k=1

p(wk|tk). (1)

The exchange MC method is based on two types of updating
in constructing a Markov chain. One is conventional updates
of MCMC simulation such as Gibbs sampler and Metropolis
algorithm for each target distribution p(wk|tk). The other
is the position exchange between two sequences, that is,
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{wk, wk+1} → {wk+1, wk}. The transition probability u is
defined as

u = min(1, r),

r =
p(wk+1|tk)p(wk|tk+1)
p(wk|tk)p(wk+1|tk+1)

= exp(n(tk+1 − tk)(H(wk+1) − H(wk))). (2)

Hereafter, we call u exchange ratio. Under these updates,
the simultaneous distribution of Eq.(1) is invariant because
these updates satisfy the detailed balance condition for the
distribution of Eq.(1) [6].

Consequently, the following two steps are carried out
alternately:

1) Each sequence is generated simultaneously and inde-
pendently for a few iteration by conventional MCMC
method.

2) Two positions are exchanged with the exchange ratio
u.

The advantage of exchange MC method is to make the con-
vergence of sample sequence earlier comparing the conven-
tional MCMC method. A disadvantage of the conventional
MCMC method is that it requires huge computational cost to
generate sample sequence from the target distribution. The
reason is that the sample sequence is hard to converge in
law to the target distribution, in particular, in the case that
the target distribution has high potential barriers and that
the ground state of target distribution is not one point but
an analytic set. The exchange MC method can realize the
efficient sampling by preparing a simple distribution such
as a normal distribution, which is easy for sample sequence
to converge. In practical, we set the temperature of target
distribution as tK = 1, and that of simple distribution as
t1 = 0.

III. DESIGN OF EXCHANGE MONTE CARLO METHOD

When we design the exchange MC method, the setting
of temperature is very important to make the exchange MC
method efficient. As we can see in Eq.(2), temperature has
close relation to the exchange ratio. Therefore, temperature
is a very important parameter in adjusting the exchange ratio
and its average.

For the efficient exchange MC method, the set of tempera-
ture needs to optimize so that the average exchange ratio for
two adjacent distribution become not low and not too high.
In order to carry out the efficient exchange MC method, the
time for a sample to move from end to end (from t1 to tK)
in the space of temperature is good to be short. Therefore,
it is not efficient for the average exchange ratio to be low.
On the contrary, to make the average exchange ratio high,
the range of temperature has to be very small, that is, the
total number K of temperature has to be large. Therefore,
this setting is not also efficient because it needs huge cost to
generate the sample from each distribution. In practical, the
set of temperature is configured so that the average exchange
ratio becomes equal for all combinations of distributions.

As the criterion for setting of temperature, The following
symmetrized Kullback divergence I(tk, tk+1) is used [7],

I(tk, tk+1) =
∫

p(wk|tk) log
p(wk|tk)

p(wk|tk+1)
dwk

+
∫

p(wk+1|tk+1) log
p(wk+1|tk+1)
p(wk+1|tk)

dwk+1.

This function has the following property,

E[log r] = −I(tk, tk+1),

where E[log r] means the average of log r over the joint
distribution p(wk|tk) × p(wk+1|tk+1). Moreover, when the
free energy F (nt) is defined as follows,

F (nt) = − log
∫

exp(−ntH(w))φ(w)dw,

the following equation is satisfied in small range of temper-
ature,

I(tk, tk+1) =
∂2F

∂t2

∣∣∣
t=tk

(tk+1 − tk)2.

Hence, the set of temperature can be set so that the sym-
metrized Kullback divergence becomes constant by setting
the range of temperature in inverse proportion to

√
∂2F/∂t2.

However, the mathematic definition of average exchange
ratio J(tk, tk+1) is as follows,

J(tk, tk+1) = E[u]

=

∫ ∫
uP (wk|tk)P (wk+1|tk+1)dwkdwk+1,

whose property is not clarified. Therefore, the mathematical
relation between the symmetrized Kullback divergence and
the average exchange ratio has not been analytically clarified.

In this paper, we show the analytical results for the
symmetrized Kullback divergence and for the average ex-
change ratio in the low temperature limit, that is, n → ∞.
These results reveal the mathematical relation between the
symmetrized Kullback divergence and the average exchange
ratio, and can be used as the criterion for setting of temper-
ature.

IV. MAIN RESULT

In this section, we consider the exchange MC method
between the following two distributions,

p1(w) =
1

Z(nt)
exp(−ntH(w))φ(w)

p2(w) =
1

Z(n(t + ∆t))
exp(−n(t + ∆t)H(w))φ(w).

For these distributions, the symmetrized Kullback divergence
I and the average exchange ratio J are rewritten as follows,

I =
∫

p1(w1) log
p1(w1)
p2(w1)

dw1

+
∫

p2(w2) log
p2(w2)
p1(w2)

dw2

J =
∫ ∫

up1(w1)p2(w2)dw1dw2,
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where u is a function of w1 and w2 as Eq.(2).
In general, the distribution p1(w) and p2(w) are not

asymptotic to the normal distribution as n → ∞ because the
property that the hessian of energy function H(w) is positive
is not satisfied. We can assume H(w) ≥ 0 and H(w0) =
0(∃w0) without loss of generality. The zeta function of H(w)
and φ(w) is defined by

ζ(z) =
∫

H(w)zφ(w)dw,

where z is a one complex variable. ζ(z) is a holomorphic
function in the region of Re(z) > 0, and can be analytically
continued to the meromorphic function on the entire com-
plex plane, whose poles are all real, negative, and rational
numbers [3] [13]. We also define the rational number −λ as
the largest pole of zeta function ζ(z) and the natural number
m as its order.

Then, the following theorem about the symmetrized Kull-
back divergence can be obtained.

Theorem 1: The symmetrized Kullback divergence con-
verges to the following equation as n → ∞,

I = λ

(
∆t

t

)2
(

1 − ∆t

t
+ O

((
∆t

t

)2
))

.

(proof) The symmetrized Kullback divergence I is equal to,

I = n∆t

{∫
H(w)p1(w)dw −

∫
H(w)p2(w)dw

}
,

because of the following equations,

log
p1(w)

p2(w)
= log Z(n(t + ∆t)) − log Z(nt) + n∆tH(w),

log
p2(w)

p1(w)
= log Z(nt) − log Z(n(t + ∆t))) − n∆tH(w).

Therefore, by defining

K(p) = n∆t

∫
H(w)p(w)dw,

we obtain I = K(p1) − K(p2). Firstly, we analyze the
functional K(p1). The functional K(p1) is expressed by
using the Dirac delta function δ(s) as follows,

K(p1) = n∆t

∫
H(w)p1(w)dw

= n∆t

∫
H(w) exp(−ntH(w))φ(w)dw∫

exp(−ntH(w))φ(w)dw

= n∆t

∫ ∞
0

se−ntsds
∫

δ(s − H(w))φ(w)dw∫ ∞
0

e−ntsds
∫

δ(s − H(w))φ(w)dw
.

The integration for w in the above equation is well known
as the state density function V (s). This function has the
following asymptotic form for s → 0 [12][13],

V (s) =
∫ ∞

0

δ(s − H(w))φ(w)dw

∼= csλ−1(− log s)m−1, (3)

where the real number c is the function of H(w) and φ(w).
From this equation and by putting s′ = nts,

K(p1) = n∆t

∫ (
s′

nt

)λ

e−s′
(log nt − log s′)m−1 ds′

nt∫ (
s′

nt

)λ−1
e−s′(log nt − log s′)m−1 ds′

nt

=
∆t

t

∫
e−s′

s′λ
(
1 + O

(
1

log nt

))
ds′∫

e−s′s′λ−1
(
1 + O

(
1

log nt

))
ds′

=
∆t

t

Γ(λ + 1) + O
(

1
log nt

)
Γ(λ) + O

(
1

log nt

)
→ ∆t

t
λ,

where Γ(λ) is the gamma function. In the same way, the
functional K(p2) is given by

K(p2) = n∆t

∫
H(w)p2(w)dw

→ ∆t

t + ∆t
λ.

Consequently, the symmetrized Kullback divergence I for
n → ∞ is obtained as follows,

I = λ

(
∆t

t
− ∆t

t + ∆t

)
= λ

∆t2

t(t + ∆t)

= λ

(
∆t

t

)2
(

1 − ∆t

t
+ O

((
∆t

t

)2
))

,

which completes the theorem.(Q.E.D)

From Theorem 1, we can make the symmetrized Kullback
divergence for arbitrary temperature t constant by the temper-
ature setting that the value ∆t

t becomes constant, that is, the
set {tk} of temperature is set as geometrical progression. In
particular, if the value ∆t

t is small, the symmetrized Kullback
divergence can be made constant value a by setting ∆t as
follows,

∆t = t

√
a

λ
.

However, it is not clear that the average exchange ratio
becomes equal for arbitrary temperature t by the above
temperature setting. Moreover, the relation betweeen the
values of symmetrized Kullback divergence and of average
exchange ratio is not also clarified.

Next, we analyze the average exchange ratio.

Theorem 2: The average exchange ratio J converges to
the following equation as n → ∞,

J = 1 − |∆t|
t

Γ(λ + 1
2 )

√
πΓ(λ)

+ O

((
∆t

t

)2
)

.
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(proof)In the case that ∆t ≥ 0, the average exchange ratio
J is expressed by using the definition of exchange ratio u as
follows,

J =
∫ ∫

H(w1)<H(w2)

p1(w1)p2(w2)dw1dw2

+
∫ ∫

H(w1)≥H(w2)

rp1(w1)p2(w2)dw1dw2

= 2
∫ ∫

H(w1)<H(w2)

p1(w1)p2(w2)dw1dw2

= 2
∫ ∫

H(w1)<H(w2)

e−ntH(w1)φ(w1)
Z(nt)

×e−n(t+∆t)H(w2)φ(w2)
Z(n(t + ∆t))

dw1dw2.

In the case that ∆t < 0, J is given by

J = 2
∫ ∫

H(w1)>H(w2)

e−ntH(w1)φ(w1)
Z(nt)

×e−n(t+∆t)H(w2)φ(w2)
Z(n(t + ∆t))

dw1dw2.

Thus, we analyze in the case that ∆t ≥ 0. In the same way
as the analysis of Theorem 1, the following equation holds,

Z(nt) → c(log nt)m−1

(nt)λ
Γ(λ).

Hence, by defining

J∗ =
∫ ∫

H(w1)<H(w2)

e−ntH(w1)φ(w1)

×e−n(t+∆t)H(w2)φ(w2)dw1dw2,

we obtain

J = 2
J∗

Z(nt)Z(n(t + ∆t))
.

The function J∗ is expressed by using the Dirac delta
function,

J∗ =
∫ ∞

0

ds2

∫ s2

0

ds1e
−nts1e−n(t+∆t)s2

×
∫

δ(s1 − H(w1))φ(w1)dw1

×
∫

δ(s2 − H(w2))φ(w2)dw2

=
∫ ∞

0

ds2

∫ s2

0

ds1e
−nts1e−n(t+∆t)s2

×csλ−1
1 (− log s1)m−1csλ−1

2 (− log s2)m−1.

By putting s1 = s′1s2 and s′2 = nts2, it follows that,

J∗ =
∫ ∞

0

ds2

∫ 1

0

ds′1e
−nts′

1s2e−n(t+∆t)s2

×cs′λ−1
1 (− log s′1s2)m−1cs2λ−1

2 (− log s2)m−1

=
∫ ∞

0

ds′2
nt

∫ 1

0

ds′1e
−s′

1s′
2e−(1+∆t

t )s′
2

×cs′λ−1
1 (log nt − log s′1s

′
2)

m−1

×c

(
s′2
nt

)2λ−1

(log nt − log s′2)
m−1

→ c2(log nt)2(m−1)

(nt)2λ

{
O

((
∆t

t

)2
)

+
∫ ∞

0

ds′2

∫ 1

0

ds′1e
−(1+s′

1)s
′
2s′λ−1

1 s′2λ−1
2

−∆t

t

∫ ∞

0

ds′2

∫ 1

0

ds′1e
−(1+s′

1)s
′
2s′λ−1

1 s′2λ
2

}
.

In the above analysis, we use the Taylor expansion of
e−(1+∆t

t )s′
2 for s′2 = 0 as follows,

e−s′
2

(
1 − ∆t

t
s′2 + O

((
∆t

t

)2
))

.

Also by putting s′′2 = (1 + s′1)s
′
2,

J∗ =
c2(log nt)2(m−1)

(nt)2λ

{
O

((
∆t

t

)2
)

+
∫ ∞

0

e−s′′
2 (s′′2)2λ−1ds′′2

∫ 1

0

(s′1)
λ−1

(1 + s′1)2λ
ds′1

−∆t

t

∫ ∞

0

e−s′′
2 (s′′2)2λds′′2

∫ 1

0

(s′1)
λ−1

(1 + s′1)2λ+1
ds′1

}
By using the following equations,∫ 1

0

(s′1)
λ−1

(1 + s′1)2λ
ds =

Γ(λ)2

2Γ(2λ)∫ 1

0

(s′1)
λ−1

(1 + s′1)2λ+1
ds =

λΓ(λ)2

2Γ(2λ + 1)
+

1
2λ4λ

,

the function J∗ is given by

J∗ =
(c)2(log nt)2(m−1)

(nt)2λ

{
Γ(λ)2

2

−∆t

t

(
λΓ(λ)2

2
+

Γ(2λ)
4λ

)
+ O

((
∆t

t

)2
)}

.

Consequently, the average exchange ratio J is,

J = 2
J∗

Z(nt)Z(n(t + ∆t))

→
(

1 +
∆t

t

)λ

×

(
1 − ∆t

t

(
λ +

Γ(λ + 1
2 )

√
πΓ(λ)

)
+ O

((
∆t

t

)2
))

∼= 1 − ∆t

t

Γ(λ + 1
2 )

√
πΓ(λ)

+ O

((
∆t

t

)2
)

. (4)
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In the case that ∆t < 0, the function J can be calculated by
the same analysis as,

J ∼= 1 +
∆t

t

Γ(λ + 1
2 )

√
πΓ(λ)

+ O

((
∆t

t

)2
)

. (5)

From eq.(4) and (5), we prove this theorem. (Q.E.D)

From Theorem 2, the average exchange ratio becomes
constant for arbitrary temperature t by setting the value ∆t

t
constant, that is to say, It is clarified that the exchange
ratio becomes constant if we set the temperature in order
to make the symmetrized Kullback divergence constant. In
particular, in small ∆t

t , when the value of symmetrized
Kullback divergence is a, the value of average exchange ratio
is as follows,

J = 1 −
√

a

λ

Γ(λ + 1
2 )

√
πΓ(λ)

,

which depends on not only the value a but also λ. Moreover,
comparing these theorems, we can see the difference that the
average exchange ratio is expressed by the linear function of
∆t which has the maximum value 1 at ∆t = 0, while the
symmetrized Kullback divergence is the quadratic which has
the minimum value 0 at ∆t = 0.

V. DISCUSSION

In this paper, we analyzed the symmetrized Kullback
divergence and the average exchange ratio in the low temper-
ature limit, and clarified the mathematical relation between
two functions. As results, the following three properties are
clarified,

1) When the symmetrized Kullback divergence for arbi-
trary temperature t is constant, the average exchange
ratio is also constant.

2) Then, the set of temperature {tk} is set as geometrical
progression.

3) The symmetrized Kullback divergence and the average
exchange ratio has the difference between linear and
quadratic.

Let us discuss two points in association to this paper.

Firstly, we discuss the relation between the shape of target
distribution and the setting of temperature. As we can see in
Theorem 2, once the set of temperature {tk} is determined,
the value of average exchange ratio depends on the value
λ. The average exchange ratio becomes small for the distri-
bution with large value λ because the coefficient of linear
term for the average exchange ratio is the monotonically
increasing function for λ. In fact, when the function A(λ) is
defined by,

A(λ) =
Γ(λ + 1

2 )
√

πΓ(λ)
,

it is satisfied that,

dA(λ)
dλ

=
Γ(λ + 1

2 )
√

πΓ(λ)

(
ψ(λ +

1
2
) − ψ(λ)

)
> 0.

Therefore, for the target distribution with small value λ, the
exchange MC method can work more efficiently. On the
other hand, by comparing two distributions whose ground
state are one point and analytic set in the sample space, the
latter distribution is well known to have smaller value λ than
the former distribution [2][14]. Consequently, the exchange
MC method can work efficiently for the target distribution
with the energy function whose ground state is analytic set.
As an example of such distributions, the Bayesian posterior
distribution in hierarchical learning machines such as neural
networks and normal mixtures is well known, and this
theorem shows the availability of exchange MC method for
the Bayesian learning in hierarchical learning machines.

Secondly, we discuss the design of exchange MC method.
This theorem gives us the design method of optimal temper-
ature in order to make the average exchange ratio constant.
However, the optimum value of average exchange ratio is
not clarified, which leads to the design of optimal number
K of temperature. Moreover, since the exchange MC method
includes the algorithm of conventional MCMC method, the
design of conventional MCMC method should be considered
in the future.

VI. CONCLUSION

In this paper, we analytically calculated the symmetrized
Kullback divergence and the average of exchange ratio,
and clarified the relation between the symmetrized Kullback
divergence and the exchange ratio. As results, the following
properties are clarified,

1) When the symmetrized Kullback divergence for arbi-
trary temperature t is constant, the average exchange
ratio is also constant.

2) Then, the set of temperature {tk} is set as geometrical
progression.

3) The symmetrized Kullback divergence and the average
exchange ratio has the difference between linear and
quadratic.

As the future works, verifying the theoretical result obtained
by this study by some experiments, constructing the design
of exchange MC method, and applying these results to the
practical problems such as the Bayesian learning should be
addressed.
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