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Abstrac-Fuzzy tcchniqucs havc bccn originally imcntcd 
ap a mcthoddogy that transforms the knowkdgc of cxpcrts 
formulated in tcrms of natural languagc into a prccisc computcp 
implcmcntablc form. Thcrc arc many s u d u l  applications of 
this methodology to situations in which cxpcrt knowlcdgc &st, 
thc m t  wcll known is  an application to fwxy control. 
In somc cases, fmq methodology is a p p l i i  m n  whcn 

no cxpcrt knowladgc instcad of trying to approximate 
thc unknown control function by splincs, polynomials, or by 
any othcr traditional appmximation tcchniquc, rcscarchcrs try 
to approximate it by gumsing and tuning thc cxpcrt rulcs. 
Surprisingly, this approximation oftcn works Rnc. 

In this wc give a mathematical explanation for this 
phmommon, and show that approximation by using fu7g 
mcthodology i s  i n d d  (in somc rcawnablc snsc) thc M. 

Fuz7.y techniques have been originally invented as a method- 
ology that transforms the knowledge of experts forrnu- 
lated in terms of natural language into a precise computer- 
implementable form. There are many successful applications 
of this methodology to situations in which expert knowledge 
exist, the most well known is an application to fumy contml; 
see, e.g-, P I ,  PI, I 101. 

R. Universal appmximation resub 

A guarantee d success comes from the fact that fuzzy 
systems are rittiversal approximators in the sense that for every 
continuous function f (xl, . . . , xn) and for every E > 0, there 
exists a set of rules for which the corresponding input-output 
function is &-close to f ;  see, e.g., [ I], [3], [4], [6], 171, [9], 
[lo], [ I  I], [ I  21, [ I  31, [I41 and references therein. 

C. Fuzzy methodology is .sometimes .success$~I witholrt any 
expert knowledge 

In somc cascs, fux7.y mcthodology is applicd cvcn whcn 
no expert knowledge exists: instead of trying to approximate 
the unknown control function by splines, polynomials, or by 
any other traditional approximation technique, researchers try 
to approximate it by guessing and tuning the expert rules. 
Surprising1 y, this appmximation often works fine. 
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D. What we plan to do 

In this papr,  we give a mathematical explanation for this 
phenomenon, and we show that approximation by using fumy 
methodology is indeed (in some reasonable sense) the &st. 

Comment. Jn this paper, we build upon our preliminary results 
published in [8]. 

We have mentioned that one of the main applications d 
fu7.y methndnlogy is to intelligent control. 

In applications to autnmatic cnntml, the computer must 
constantly compute the current values d contml. The value of 
the control depends on the state of the controlled object (called 
plant in control theory). So, to get a high quality control, we 
must measure as many characteristics x I , . . . , xm of the current 
state as we can. The more characteristics we measure, the 
more numbers we have to process, so: the more computation 
steps we must perform. The results of these computations 
must be ready in no time, before we start the next mund of 
measurements. So, automatic control, especially highquality 
automatic control, is a ml-time computation problem with a 
serious time pressure. 

A natural way to increase the speed of the computations 
is to wrform computations in parallel on several processors. 
To make the computations really fast, we must divide the 
algorithm into paralleli7ahle steps, each of which requires a 
small amount of time. 

What are these steps? 

IV. ~ ~ E S C R  IPTION OF THE FASTEST POSSIRI.E 
CONTROI.-ORIRNT~D PARAI  .I.RI. COMPUTER 

A. The fewer variable., the faster 

As we have already mentioned, the main reason why control 
algorithms are computationally complicated is that we must 
procas many inputs. For example, mntmlling a car is easier 
than controlling a plane, because the plane (as a 3-D object) 
has more characteristics to take care of, more characteristics to 
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measure and hence, more characteristics to process. Control- 
ling a space shuttle, especially during the lifi-off and landing, 
is even a more complicated task, usually performed by several 
groups of people who conwol the mjec~ory, tempemrare, 
rolalion, elc. In short, he more n u m h  we need LO process, 
the more complicated the algorithm. Therefore, if we want 
to decompose our algorithm into fastest possible modules, we 
must make each mdule to process as few n u m b  as pmsible. 

R. Functions of one variable are not sq3cient 
Ideally, we should only use the modules that compute 

functions of one variable. However, if we only have functions 
of one variables (i.e., procedum with one input and one 
output), then, no matter how we combine them, we will always 
end up with functions of one variable. Since our ultimate 
goal is to compute the control function u = f (xl , . . . , xn) 
that depends on many variables XI, . . . , x, , we must therefote 
enable our processom to compute at least one function of two 
or more variables. 

What functions of two variables should we choose? 

C. Choosing j k t a i o ~  of EWO or mow variabIes 
h i d e  the computer, each function is represented as a 

sequence of hardware implemented operations. The fastest 
functions are those that are computed by a single hardware 
operation. The basic hardware supported operations are: arith- 
metic operations a + b, a - b, a - b, a/b, and rnin(a, b) 
and rrwx(a, t) . The lime q u i d  for each opadticm, ~rudel y 
speaking, corresponds to the number of bits operations that 
have to be performed: 

Division is done by successive multiplication, comparison 
and subtraction (basically, in the same way as we do it 
manlmll y), so, it is a much slowm operation than -. 
Mulliplicalim is implemmled as a sequence or additions 
(again, basically i n  the same manner as we do it manu- 
ally), so it is much slower than +. 
- and + are usually implemented in the same way. To 
add two n-bit binary numbers, we need n bit additions, 
and also potentially, pa bit additions for canics. Totally, 
we need about 2n bit operations. 
min of two la-bit binary numbers can be done in n binary 
operations: we compare the bits from the highest to the 
lowest, and as soon as they differ, the number that has 0 as 
opposed to 1 is the desired minimum: e.g., the minimum 
of 0.10101 and 0.10011 is 0.1001 1, because in the third 
bit, this number has 0 as opposed to 1 . . Similarly, mruc is an +bit operation. 

So, the fastest pmsible functions of two variables are min and 
max. Similarly fast is computing the minimum and maximum 
of several (more than two) real numbers. Therefore, we will 
chrrose these functions for our control-oriented computer. 

Summariing the above-given analysis, we can conclude 
that out mmputer will contain module of two type: 

modules that compute functions of one variable; 
r modules that compute rnin and max of two or several 

numbers. 

D. How to combine these modules? 
We want to combine these modules in such a way that the 

resulting computations are as fast as possible. The time that is 
required for an algorithm is crudely proportional to the number 
of sequential steps that it takes. We can describe this number 
of steps in clear geometric terms: 

at the beginning, the input numbers are processed by 
some processors; these processors form the jirst layer of 
computations; 
the results of this processing may then go into different 
processors, that form the second layer, 
the results of the second layer of processing go into the 
third layer, 
etc. 

In these terms, the fewer layers the computer has, the faster 
it is. 

So, we would like to combine the processors into the 
smallest possible number of layers. 

Now, we are ready for the formal definitions. 

V. DEFINITION AND THE MAIN RESUI.T 
Let us first give an inductive definition of what it means for 

a function to be computable by a k-layer computer. 

Definition. 
We say that a function f (XI, . . . , x,) is computable by 
a I-layer computer if either n = 1, or the function f 
coincides with min or with max 
Let k > 1 be an integec We say that a fitnction 
f (XI, . . . , x,) is computable by a (k + 1)-layer computer 
if one of the jollowing three statements is true: 

f = g(h(x1,. . . , x ~ ) ) ,  where g is a fiuocron of one 
variable, and h(x1, . . . , xn) is computable by a k- 
layer computer; 
f = min (gl(x1,. . . ,3n),. . . ,gm(xl,. . . ,~n))r 
where all functions gi am computed by a k-layer 
computer; 
f =max(gl(~l,...,~n),...,gm(~l,...,~n)), 
where all functions a a E  computed by a k-layer 
computer. 

Cmmc!~. A computer is  a finitsprecision machine, so, the 
results of the computations are never absolutely precise. Also, 
a computer is limited in the siw of its numbers. So, we 
can only compute a function approximately, and only on a 
limited range. Thmfore, when we say that we can compute an 
arbitrary function, we simply mean that for an arbitrary mnge 
T, for an arbitrary continuous function f : [-T, TIn + R, and 
for an arbitrary accuracy E > 0, we can compute a function 
that is &-close to f on the given range. In this sense, we will 
show that not every function can be computed on a Wayer 
computer, but that 3 layers are already sufficient. 

Proposition. ThErc exist rcal numbers T and E > 0, and a 
continwus function f : [-T, qn + R such that no function 
E-close to f on [-T,qn can be computed on a 2-layer 
conspute~: 
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Comment. To make the text more readable, we present both 
p f s  in the last d m .  However, we will make one comment 
here. The function that will be proved to be not computable on 
a Wayer computer is not exotic at all: it is f (XI, x2) = X I + X ~  

on the domain [-I, 112, and the Proposilion is irue Ibr E = 0.4. 

T b e o m  For every real nwnbers T and E > 0, and for every 
coprrrprrrnuous fuAmcnon f : [-T, TI" R them exists a fwaction 
?- rhar is &-close to f on [-T, TI" and that is computable on 
a 3-layer compurel: 

Comnt. In other words, f.nctions computed by a fiayer 
conapuier are universal a p p ~ o o r s .  

Relath to fuzzy cotutvl,As we will see from the proof, the 
approximating function f is of the type max(A1,. . . ,A,), 
where Aj = min(fjl(xl), . . . , fjn(xn). These functions W- 
respond the so-called fuuy c o m l  [Z], [3], [lo]: Tndeed, let 
us define 

and 

Let us now assume that ltw rules bast: that describes the expert 
recomrnendalions Tor conwol consisk or exaclly two rules: 

'if one of the conditions Cj is true, then ~6 = UII; 
"else, u = -U", 

where each condition Cj means that the following n conditions 
are satisfied: 

XI satisfies the property Cjl (described by a membership 
function pj 1 (XI)); 

satisfies the property Cj2 (described by a membership 
function ~jjz(xz)); 
... 
x, satisfies the proprty C;., (described by a membership 
function pj, (x,)). 

In logical terms, the condition C for ~6 = U has the form 

(c l l&.  . .&Cln) v . .  . v (Ckl&. . . &Ckn). 

If we use min for &, and max for V (these are the simplest 
choices in fumy control methodology), then the degree pc 
with which we believe in a condition C = Cl V . . . V Ck can 
be expressed as: 

PC = 

Correspondingly, the degree of belief in a condition for ~6 = 
- U is 1 - pc. According to fuzzy control methodology, we 
must use a d$uui$cation to determine the actual control, 
which in this case leads to the choice of 

Recause of our choice of pji, one can easily see 
that this expression coincides exactly with the function 

max(Al,..-,Arn), where Aj = min(fjl(~l),...,fjn(~n)- 
So, we get exactly the expressions that stem from the l i m y  
control methodology. 

Conclt~sion. Since our 3- layer expression describes the fastest 
possible computation tool, we can conclude that for confml 
pmblems, the w e s t  possible universal computation scheme 
cormsponds to using ficzzy methodology. 

This result explains why fwzy methodology is sometimes 
used (and used successfully) without any expert knowledge 
being present, as an extrapolation tool for the (unknown) 
function. 

Comment. We have considered digital parallel computers. If 
we use analog processors instead, then min and max stop 
being the simplest functions. Instead, the sum is the simplest: 
if we just join the two wires together, then the resulting 
current is equal to the sum of the two input currents. In this 
case, if we use a sum (and more general, linear combination) 
instead of min and max, 3-layer computers are also universal 
approximators; the cornpondin& cornputem correspond to 
n e d  mtworks [S]. 

VI. Dlscusslo~ 
Universal a p p m h t i o n  p m p m  - traditional just$cation 
of fuzzy c ~ l l c r s .  W we are looking for a general control 
methodology, i.e., a methodology thal enables us to implement 
(within a given accuracy) an arbitrary mnml strategy, then the 
functions corresponding to this methodology must be universal 
appximatm. 

From this viewpoint, the h m  fact t h ~  f u x q  contnollets 
are universal appmximatnrs is one nf the reasons why fumy 
controllers a e  indeed used in many practical situations. 

Several other types of controllers also have a universal ap 
p m M o n  properry. The universal approximation character 
of fwzy controllers does not imply, however, that fuzzy con- 
m l l m  ate the cml y possible clas of canaollws - indeed, there 
are many other universal approximators, e.g., polynomials, 
neural networks, etc. 

Hmm, if our only rquimmmt on the wnml methodology 
is that lhis methodology be general (universal), we can also 
use, e.g., (more aaditional) polynomial comllers or neural 
controllers. 

Empirical fact: fuay controllers ore ofien bette~: From the 
viewpoint of the universal approximation property, traditional 
or fumy controllers are as good as fwzy controllers. However, 
in many practical situations, fumy oontrollers perform better. 

F w  controllers not only lead to beiter control, they usually 
enable us to fmter compute the dtsiwd conml. In many 
practical situations, fumy controllm pMform bcttcr. Rcttcr 
in what sense? In different practical situations, we may have 
different requirements to a controller and thus, different criteria 
for gauging how good a conmller is. For example, we may 
want to look for a control which is smoother w which is more 
robust or which is more stable. 
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1n some practical situations, fuzzy controllers do have 
these advantages: e.g., in m y  cases, a fumy mttoller is 
more robust than the traditional one. However, in most case, 
f w q  controller is also computationally simpler and thus, its 
compulafions are much him. For example, Tor non-linear 
systems, computing a fwxy mml requires an explicit use of 
simple functions, while, e.g., to apply a more traditional non- 
lineat controller we may need to solve systems of equations. 

We provide a tkeoreiical explanation for this empirical phe- 
nomenofi ln this paper, we explain that fuzzy controllers are 
indeed, in some reasonable sense, fastet. This result explains 
the above empirical fact - that fuzzy controllers often enables 
us to compute control faster. 

TRew may be other clmses of fasr controllers. The fact that 
fuzzy controllers are among the fastest does not necessarily 
mean that the class of fwzy controllers is the only fastest 
class: there may he other non-fwzy controllers which are also 
computable by a 3-layer computers. 

In our proof of the theorem, we use 3-layer computers cor- 
responding to fuzzy conml, but there could be different proofs 
of the universal approximation property of 3-layer computers, 
proofs which would usc diffmnt typcs of con~~~llcrs. 

In other words, while we p v e  that fwzy controllers are 
a rcasonablc class. thcrc may bc othcr classes of controllers 
which am as teasonable (and as fast). 
For cxamplc, in our prod - similarly to most proofs that 

fuzzy systems are universal approximaton the construc- 
tion fwxy system is based on the values of the function 
f ( x l ,  . . . , xn) at diffefent tuples x ( ~ )  = ( x r  ) , . . . , xAk)). 
Fumy controllers provide a continuous transition between the 
corresponding values; however, instead, we can simply use the 
look-up table and assign, to each tuple x,  the value f ( ~ ( ~ 1 )  
at the nearest selected tuple d k ) .  This look-up table idea also 
leads to a computationally low lost - although the disconti- 
nuity of the resulting approximating piecewise function is, in 
many practical applications, a definite disadvantage. 

vn. PROOFS 

A. Proof of the Proposition 

0". Let us proof (by reduction to a contradiction) that if a 
function 7(xl ,?2) is 0.4-close to f ( X I ,  x2) = xl + xa on 
1- 1,1] 2, then f cannot be computed on a Z-layer computer. 
Indeed, s w  that it is. Then, according to the Definition, 
the function f (XI, xz) is of one of the following three forms: 

g ( h ( q ,  Q)), where h is  computable on a 1-layer com- 
putw; 
rnin(g1 ( X I ,  xz ) , . . . , gm ( X I ,  xz )) , where all the functions 
gi ate computable on a 1 -layer computer; 
rnxx(g1(x1,x2), . . . , g m ( x l , x 2 ) ) ,  whereall the functions 
g; are computable on a 1 -layer computer. 

Let us show case-by-case that all these three cases are impos- 
sible. 

l o .  In the first case, f ( x l ,  x z )  = g(h(x l ,  x z ) ) ,  where h is 
computable on a I-layer computer. Re definition, this means 
that h i s  either a function of one variable, or min, or max. 
Let us consider all these three sub-cases. 

1.l0.  If F(xl,x2) = g(h(x l ) ) ,  then the function depends 
only on X I .  In particular. 

f(0,  -1) = f ( 0 , l ) .  (1)  
- 

Rut since f is E-clnse tn f (x l  + x2)  = x1 + 22, we get 

and 

So, y(0, -1)  5 -0.6 < F(0, l ) ,  hence, y(0 ,  -1) # F(0, I) ,  
which contradicts to (I). So, this sub-case is impossible. 
Similarly, it is impossible to have h depending only on xa. 

1.2O. Let us consider the sub-case when 

? ( X I ,  5 2 )  - g(min(x1, 52)) .  

b this sub-case, - 
f (-1,  -1) = g(min(-1, -1) )  = g(-1) = 

g ( r 4 - 1 , l ) )  = ?(-I, 11, 

and 

Rut 

j ( -1 ,  -1)  5 f ( -1,  -1) + E = -2 + 0.4 = -1.6 

and 

j ( - 1 , l )  2 f ( - 1 , l )  - E = 0  - 0.4 = -0.4 > -1.6, 

so, the equality (2) is also impossible. 

1.3O. Let us now consider the sub-case 

fl(x1,xa) = s ( m a x ( x 1 , ~ 2 ) ) .  

In this sub-case, 

7 ( - 1 , 1 )  = g(max(-1 , l ) )  = g(1) = 

g ( m a x ( l , l ) )  = 7 ( 1 , 1 ) ,  

and 

Rut 
f ( - 1 , l )  5 f ( - 1 , l )  + 6 = O +  0.4 = 0.4, 

and 

F( i ,  1) 3 f ( i ,  1) - E = z - 0.4 = 1.6 > 0.4, 

so, the equality (3) is also impossible. 
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Since the maximum of the two numbers is 5 -1.6, we can 
conclude that each of them is 5 - 1.6, i .e., that hl (- 1) 5 
-1.6 and b ( -1 )  5 -1.6. For xl = 1 and x2 = -1, we have 

Since h2(-1) 5 -1.6, we conclude that T( l ,  -1) = hl (1). 
From 

fl(1,-1) 5 f(1,-1) + E  = 0.4, 

we can now conclude that h l ( l )  5 0.4. Similarly, one can 
p v e  that ha (1) 5 0.4. Hence, 

Rut 

which contradicts to (5). 
The conltdiction shows that the third case is also impossi- 

ble. 

4O. 1% all there cases, we have shown tfiat the assumption 
that f can be ccnyuted on a Zlayer computer leads to a 
conMction. So, f cannot be thus computed. Q.E.D. 

R. Ptvof of rhe Theomm 

Since the function f is continuous, there exists a 6 > 0 such 
that if I xi - yil 5 6, then 

Let us mark the grid points on the grid of si7e 6, i.e., all the 
points for which each coordinate X I ,  . . . , x, has the f m  qi . 6 
for integer qi (i.e., we mark the points with coordinates 0, f 6, 
f26, ..., fT). 

On each coordinate, we thus miark - 2T/6 points. So, 
totally, we mark e (2T/6)n grid points. Let us denote the 
total n u m b  of grid points by k, and the points them$elm 
by Pj = ( ~ ~ 1 , .  . . ,xjn), 1 5 j 5 k. 
Ry mj ,  l e ~  us denote  he minimum or $: 

For each grid point Pi, we will form pieoswise linear funo 
tims fji(xi) BS ~OIIOWS: 

if Ixi - xjil I 0.6 6, then 

if lxi - xjil 2 0.7.6. then 

if 0.6- 6 I 1xi - xjil I 0.7 - 6, then 

Let US S ~ O W  lhat f ~ r  these functions f j i ,  the function 

where 
4 = m i n ( f j l ( ~ l ) ,  .. . , fjn(xn)), 

is &-close to f .  
To prove that, we will prove the following two inequalities: 

For all X I , .  . . ,xn, - 
f (~ l , . . . , i n )  2 f(xl , . . . ,xn)-E. 

For all X I , .  . . ,xn, - 
f ($1, .  . . ,in) 5 f ( X I ,  . . . , xn) + E .  

Let us first p m e  the fitst inequality. Assume that we have 
a point (xl , .  . . ,x,). For every i = 1,. . . ,a, by qi, we will 
denote the integer that is the closest to xi/&. Then, 

I S  -9: -61 5 0.5.6. 

These values qi deternine a grid point Pi = (x j l , .  . . , xjn) 
with coordinates xji = qi . 6. For this j ,  and for every i, 

therefore, by definition of fji ,  we have fji(xi) = f (9). 
Hence, 

Aj = m ( f j i ( ~ i ) ,  . . . , f j m ( ~ m ) )  = 

min ( f (9 ) , .  . . , f  (9)) = f(9). 
Therefore, - 

f ( ~ 1 ,  ..,%) = max(A1,. . . ,Am) h Aj = f (Pj). 

Rut since Ixji - xil 5 0.5 . b < 6, by the choice of 6, 
we have If(x1, ..., xn) - f ( P j ) l  5 E. Therefore, f (P j )  2 
f ( X I , .  . . , xn) - 8, and hence, 

7(.1,...,xn) 2 f (P j )  2 f ( x l , . . . , ~ n ) - ~ .  

Let us now prove the second inequality. According to out 
definition of f j d l  the value of f j d  (xi)  is always in between mf 
and Pj, and this value is different from mf only for the grid 
points Pj for which Ixji - xil 5 0.7. 9. The value 

Aj = min(fj i(zi) ,  . . . , fjn(xn)) 

is thus different from m only if all the values fji(xi) are 
d i h t  from m, i.e., when Isj: - xil 5 0.7 6 fur all i. For 
this grid point, Ixji - 5 0.7 9 < 9; therefore, 

If(Pj) - fbl, .. . ,x*)l I E 

and hence, f ( P j )  5 f ( X I , .  . . , x,) + E.  Ry definition of f j i ,  

we have fji(xi) 5 f (Pj). Since this is true for all i, we have 

Aj = m ( f j l ( x l ) ,  , . , , fjn(xn)) 5 

f (Pj)  I f(x1,...,x,) + E .  

For all other grid points Pj, we have 

for a given (xl , . . . , x ~ ) .  Since mf has been defined as the 
minimum of f ,  we have 
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So, for all grid points, we have 

Aj If(xl,...,xn)+~, 

and therefote, - 
f ( z l , .  . . ,q) = m a x ( A 1 , .  . . , A,) 5 f (z l , .  . . , z , )  + s. 

The second inequality is also proven. 
So, both inequalities are true, and hence, j i s  &-close to f. 

Q.F-n. 

Fwq techniques have been originally invented as a method- 
ology that transforms the knowledge of experts (fonnu- 
lated in terms of natural language) into a precise computer- 
implementable form. There are many successful applications 
of this methodology to situations in which expert knowledge 
exist; the most well known (and most successful) are applica- 
tions to fuzzy ooml.  

In some cases, fuzzy methodology i s  applied wen when no 
expert knowledge exists. In such cases, instead of trying to 
approximate the unknown mml function by splines, poly- 
nomials: m hy any other traditirmal arpmximation technique, 
meamhers try to approximate it by guessing and tuning the 
expert rules. Surprisingly, this approximation often works fine. 

In this paper, we give a mathematical explanation for this 
empirical phenomenon. Specifically, we show that approxima- 
tion by using fwzy methodology i s  indeed the best (in some 
reasonable sense). 
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