1-4244-0703-6/07/$20.00 ©2007 IEEE

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Fuzzy Aggregation Techniques in Situations
Without Experts: Towards A New Justification

Hung T. Nguyen
Department of Mathematical Sciences
New Mexico State University
Las Cruces, New Mexico, 88003, USA
Email: hunguyen@nmsu.edu

Abstract—Fuzzy techniques have been originally invented
as a methodology that transforms the knowledge of experts
formulated in terms of natural language into a precise computer-
implementable form. There are many successful applications of
this methodology to situations in which expert knowledge exist,
the most well known is an application to fuzzy control.

In some cases, fuzzy methodology is applied even when
no expert knowledge cxists: instcad of trying to approximate
the unknown control function by splines, polynomials, or by
any other traditional approximation technique, researchers try
to approximate it by gucssing and tuning the expert rules.
Surprisingly, this approximation often works finc.

In this paper, we give a mathematical explanation for this
phenomenon, and show that approximation by using fuzzy
methodology is indeed (in some reasonable sense) the best.

I. INTRODUCTION
A. Fuzzy techniques: a brief reminder

Fuzzy techniques have been originally invented as a method-
ology that transforms the knowledge of experts formu-
lated in terms of natural language into a precise computer-
implementable form. There are many successful applications
of this methodology to situations in which expert knowledge
exist, the most well known is an application to fuzzy control;
see, e.g., [2], [3], [10].

B. Universal approximation results

A guarantee of success comes from the fact that fuzzy
systems are universal approximarors in the sense that for every
continuous function f(zq,...,x,) and for every £ > 0, there
exists a set of rules for which the corresponding input-output
function is e-close to f; see, e.g., [1], [3], [4]. [6]. [7]. [9],
[10]. [11], [12], [13]. [14] and references therein.

C. Fuzzy methodology is sometimes successful withour any
expert knowledge

In some cases, fuzzy methodology is applied even when
no expert knowledge exists: instead of trying to approximate
the unknown control function hy splines, polynomials. or hy
any other traditional approximation technique, researchers try
to approximate it by guessing and tuning the expert rules.
Surprisingly, this approximation often works fine.

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, Texas 79968. USA
Email: vladik @utep.edu

D. What we plan to do

In this paper, we give a mathematical explanation for this
phenomenon, and we show that approximation by using fuzzy
methodology is indeed (in some reasonable sense) the best.

Comment. In this paper. we build upon our preliminary results
published in [8].

IT. IN MANY PRACTICAL APPLICATIONS, DATA
PROCESSING SPEED [S IMPORTANT

We have mentioned that one of the main applications of
fuzzy methodology is to intelligent control.

In applications to automatic control, the computer must
constantly compute the current values of control. The value of
the control depends on the state of the controlled object (called
plant in control theory). So, to get a high quality control, we
must measure as many characteristics x4, .. ., x, of the current
state as we can. The more characteristics we measure, the
more numbers we have to process, so, the more computation
steps we must perform. The results of these computations
must be ready in no time, before we start the next round of
measurements. So, automatic control, especially high-quality
automatic control, is a real-time computation problem with a
serious time pressure.

IMT. PARALLEL. COMPUTING IS AN ANSWER

A natural way to increase the speed of the computations
is to perform computations in parallel on several processors.
To make the computations really fast, we must divide the
algorithm into parallelizable steps, each of which requires a
small amount of time.

What are these steps?

IV. DESCRIPTION OF THE FASTEST POSSIBLE
CONTROIL-ORIENTED PARALLEL COMPUTER

A. The fewer variables, the faster

As we have already mentioned, the main reason why control
algorithms are computationally complicated is that we must
process many inputs. For example, controlling a car is easier
than controlling a plane. because the plane (as a 3-D object)
has more characteristics to take care of, more characteristics to

440

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

measure and hence, more characteristics to process. Control-
ling a space shuttle, especially during the lift-off and landing,
is even a more complicated task, usually performed by several
groups of people who control the trajectory, temperature,
rotation, etc. In short, the more numbers we need to process,
the more complicated the algorithm. Therefore, if we want
to decompose our algorithm into fastest possible modules, we
must make each module to process as few numbers as possible.

B. Functions of one variable are not sufficient

Ideally, we should only use the modules that compute
functions of one variable. However, if we only have functions
of one variables (i.e.. procedures with one input and one
output), then, no matter how we combine them, we will always
end up with functions of one variable. Since our ultimate
goal is to compute the control function v = f(zy,...,2,)
that depends on many variables x4, ..., x,, we must therefore
enable our processors to compute at least one function of two
or more variables.

What functions of two variables should we choose?

C. Choosing functions of two or more variables

Inside the computer, each function is represented as a
sequence of hardware implemented operations. The fastest
functions are those that are computed by a single hardware
operation. The basic hardware supported operations are: arith-
metic operations a + b, @ — b, @ - b, a/b, and min(a,b)
and max{a, b). The time required for each operation, crudely
speaking, corresponds to the number of bits operations that
have to be performed:

« Division is done by successive multiplication, comparison
and subtraction (basically, in the same way as we do it
manually), so, it is a much slower operation than —.

« Multiplication is implemented as a sequence of additions
(again, basically in the same manner as we do it manu-
ally), so it is much slower than +.

e — and + are usually implemented in the same way. To
add two n-bit binary numbers, we need n bit additions,
and also potentially, » bit additions for carries. Totally,
we need about 2n bit operations.

« min of two n-hit binary numbers can be done in » binary
operations: we compare the bits from the highest to the
lowest, and as soon as they differ, the number that has 0 as
opposed to 1 is the desired minimum: e.g., the minimum
of 0.10101 and 0.10011 is 0.10011, because in the third
bit, this number has 0 as opposed to I.

« Similarly, max is an n-bit operation.

So, the fastest possible functions of two variables are min and
max. Similarly fast is computing the minimum and maximum
of several (more than two) real numbers. Therefore, we will
choose these functions for our control-oriented computer.

Summarizing the above-given analysis, we can conclude
that our computer will contain modules of two type:

« modules that compute functions of one variable;

« modules that compute min and max of two or several

numbers.

D. How to combine these modules?

We want to combine these modules in such a way that the
resulting computations are as fast as possible. The time that is
required for an algorithm is crudely proportional to the number
of sequential steps that it takes. We can describe this number
of steps in clear geometric terms:

« at the beginning, the input numbers are processed by
some processors: these processors form the first layer of
computations;

« the results of this processing may then go into different
processors, that form the second layer;

« the results of the second layer of processing go into the
third layer,

s glc.

In these terms. the fewer layers the computer has, the faster
it is.

So, we would like to combine the processors into the
smallest possible number of layers.

Now, we are ready for the formal definitions.

V. DEFINITION AND THE MAIN RESUILT

Let us first give an inductive definition of what it means for
a function to be computable by a k-layer computer.

Definition.

o We say that a function f(x,...,z,) is computable by
a l-layer computer if either n = 1, or the function [
coincides with min or with max.

e Let k = 1 be an integer. We say that a function
Sz, ..., 2,) is computable by a (k+ 1)-layer computer
if one of the following three statements is true:

o [=glhlzy,...,2,)), where g is a function of one
variable, and h{xy,...,x,) is computable by a k-
layer compurter;

o f=min(gy(zy,.. il (B 500 T)N
where all functions g; are computed by a k-layer
compurer;

EEECTS PR

- f max(gl(;t,‘l, PR 5% IO : Y {3 TR 3‘1"7:)):
where all functions g; are computed by a k-layver
computer.

Comment. A computer is a finite-precision machine, so, the
results of the computations are never ahsolutely precise. Also,
a computer is limited in the size of its numbers. So, we
can only compute a function approximately. and only on a
limited range. Therefore, when we say that we can compute an
arbitrary function, we simply mean that for an arbitrary range
T, for an arbitrary continuous function f : [-1,7T]" — R, and
for an arbitrary accuracy £ > 0, we can compute a function
that is e-close to f on the given range. In this sense, we will
show that not every function can bhe computed on a 2-layer
computer, but that 3 layers are already sufficient.

Proposition. There exist real numbers T and £ > 0, and a
continwous function f : [=T,T|" — R such that no function
e-close to [on [=T,T|" can be computed on a 2-layer
computer.

441

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Comment. To make the text more readable, we present both
proofs in the last section. However, we will make one comment
here. The function that will be proved to he not computable on
a 2-layer computer is not exotic at all: itis f(z,z0) = x; 2
on the domain [—1, 1]%, and the Proposition is true for £ = 0.4.

Theorem. For every real numbers T and = > 0, and for every
continuous function f : [=T,T|" — R, there exists a function
f that is e-close 1o [on [=T,T|" and that is computable on
a 3-layer computer.

Comment. In other words, functions computed by a 3-layer
computer are universal approximators.

Relation to fuzzy r.‘(m.fmf.’_As we will see from the proof, the
approximating function f is of the type max(A,,.... A,,),
where A; = min(fj1(z1),..., fjn(xs). These functions cor-
respond the so-called fuzzy control [2], [3]. [10]: Indeed, let
us define

U=

-

max 22l i0s
id.zi] '1‘,'1']”}?(i)

an
e Sii(zi) — (=U)

U—(-uy -
Let us now assume that the rules base that describes the expert
recommendations for control consists of exactly two rules:

o “if one of the conditions C; is true, then u = U™;

e “else, u = —U",
where each condition C; means that the following n conditions
are satisfied:

pyilxi) =

e 1 satisfies the property C;; (described by a membership
function g1 (1))

e - satisfies the property Cj» (described by a membership
function prja(as));

o

e 1z, satisfies the property C;,, (described by a membership
function jn(q)).

In logical terms, the condition C for u = U has the form

(011&...&019«;} . V(CM&.. .&C-r}“;).

If we use min for &, and max for V (these are the simplest
choices in fuzzy control methodology), then the degree pc
with which we believe in a condition C = C, V...V C} can
be expressed as:

He =

max[min(pag (z1), ..oy pan)y oo min(pg, .oy fiin)]

Correspondingly, the degree of belief in a condition for u =
—U is 1 — pe. According to fuzzy control methodology, we
must use a defuzzification to determine the actual control,
which in this case leads to the choice of
o U po+(=U) (1= pc)

po + (1= pe)
Because of our choice of gy, one can easily see
that this expression coincides exactly with the function

So, we get exactly the expressions that stem from the fuzzy
control methodology.

Conclusion. Since our 3-layer expression describes the fastest
possible computation tool, we can conclude that for control
problems, the fastest possible universal computation scheme
corresponds to using fuzzy methodology.

This result explains why fuzzy methodology is sometimes
used (and used successfully) without any expert knowledge
heing present, as an extrapolation tool for the (unknown)
function.

Comment. We have considered digital parallel computers. If
we use analog processors instead, then min and max stop
being the simplest functions. Instead, the sum is the simplest:
if we just join the two wires together, then the resulting
current is equal to the sum of the two input currents. In this
case, if we use a sum (and more general, linear combination)
instead of min and max, 3-layer computers are also universal
approximators; the corresponding computers correspond to
neural nerworks |5].

VI. DISCUSSION

Universal approximation property — traditional justification
of fuzzy controllers. If we are looking for a general control
methodology, i.e.. a methodology that enables us to implement
(within a given accuracy) an arbitrary control strategy, then the
functions corresponding to this methodology must be universal
approximators,

From this viewpoint, the known fact that fuzzy controllers
are universal approximators is one of the reasons why fuzzy
controllers are indeed used in many practical situations.

Several other types of controllers also have a universal ap-
proximation property. The universal approximation character
of fuzzy controllers does not imply, however, that fuzzy con-
trollers are the only possible class of controllers — indeed, there
are many other universal approximators, e.g., polynomials,
neural networks, etc.

Hence, if our only requirement on the control methodology
is that this methodology he general (universal), we can also
use. e.g.. (more traditional) polynomial controllers or neural
controllers.

Empirical fact: fuzzy controllers are often better. From the
viewpoint of the universal approximation property. traditional
or fuzzy controllers are as good as fuzzy controllers. However,
in many practical situations, fuzzy controllers perform better.

Fuzzy controllers not only lead to better control, they usually
enable us to faster compute the desired control. ITn many
practical situations, fuzzy controllers perform better. Better
in what sense? In different practical situations, we may have
different requirements to a controller and thus, different criteria
for gauging how good a controller is. For example, we may
want to look for a control which is smoother or which is more
robust or which is more stable.

442

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

In some practical situations, fuzzy controllers do have
these advantages: e.g.. in many cases, a fuzzy controller is
more robust than the traditional one. However, in most case,
fuzzy controller is also computationally simpler and thus, its
computations are much faster. For example, for non-linear
systems, computing a fuzzy control requires an explicit use of
simple functions. while, e.g.. to apply a more traditional non-
linear controller we may need to solve systems of equations.

We provide a theoretical explanation for this empirical phe-
nomenon. In this paper, we explain that fuzzy controllers are
indeed, in some reasonable sense, faster. This result explains
the above empirical fact - that fuzzy controllers often enables
us to compute control faster.

There may be other classes of fast controllers. The fact that
fuzzy controllers are among the fastest does not necessarily
mean that the class of fuzzy controllers is the only fastest
class: there may be other non-fuzzy controllers which are also
computable by a 3-layer computers.

In our proof of the theorem, we use 3-layer computers cor-
responding to fuzzy control, but there could be different proofs
of the universal approximation property of 3-layer computers,
proofs which would use different types of controllers.

In other words, while we prove that fuzzy controllers are
a reasonable class, there may be other classes of controllers
which are as reasonable (and as fast).

For example, in our proof — similarly to most proofs that
fuzzy systems are universal approximators — the construc-
tion fuzzy system is based on the values of the function
flzy,...,x,) at different tuples =) {.-rgk), s _,.-rgf")).
Fuzzy controllers provide a continuous transition between the
corresponding values; however, instead, we can simply use the
look-up table and assign, to each tuple z, the value f(z(*))
at the nearest selected tuple =(®). This look-up table idea also
leads to a computationally low lost — although the disconti-
nuity of the resulting approximating piece-wise function is, in
many practical applications, a definite disadvantage.

VII. PROOFS

A. Proof of the Proposition

0°. Let us proof (by reduction to a contradiction) that if a
function f(xy,22) is 0.4—close to f(xy,22) = 1 + 22 on
[=1,1]%, then f cannot be computed on a 2-layer computer.
Indeed, suppose that it is. Then, according to the Definition,
the function f(xy,x2) is of one of the following three forms:

o g(h(xy,x,)), where h is computable on a I-layer com-
puter;

o min(gi{zy,22),..., gm(x1,22)), where all the functions
g; are computable on a 1-layer computer;

o max{gi(ry,xa),...,gm(x1, x2)). where all the functions
gi are computable on a 1-layer computer.

Let us show case-by-case that all these three cases are impos-
sible.

1°. In the first case, f(x1,22) = g(h(x1,22)), where h is
computable on a |-layer computer. Be definition, this means
that h is either a function of one variable, or min, or max.
Let us consider all these three sub-cases.

1.1°.1F f(i{:l,;{fg) g(h(x1)). then the function j’ depends
only on zy. In particular,

J(0,=1) = f(0,1). (1)
But since f is e-close to f{xy + x2) = 1 + 29, we get

f(0,—1) < f(0,—1) + &= —1+ 0.4 = —0.6,

and

F(0,1) > f(0,1) —c=1—0.4> 0.6 > —0.6.

So. f(0,—1) < —0.6 < f(0,1), hence, f(0,—1) # F(0,1),
which contradicts to (1). So, this sub-case is impossible.
Similarly, it is impossible to have h depending only on x».

1.2°, Let us consider the sub-case when

flay, @) = g(min(xy, 22)).

In this sub-case,

f(=1,=1) = g(min(—1,—1)) = g(—1)
g(min(—1,1)) = f(-1,1),
and B ~
f(=1,=1) = f(=1,1). (2)
But
f=1,-1) S f(=1,=1) + £ = =24 04 = —16,
and

f(=1,1) > f(-1,1) —e=0—0.4 = —0.4 > —1.6,
so, the equality (2) is also impossible.

1.3°. Let us now consider the sub-case

f(@1,22) = g(max(zy, 25)).
In this sub-case,
F(=1,1) = g(max(—1,1)) = g(1)
g(max(1,1)) = f(1,1),
and B N
f(-1,1)=f(1,1). (3)

But B

f-L,1) < f(-1,1) +e=0+0.4= 04,
and

fLD > f(L1)—e=2—-04=16> 04,

so, the equality (3) is also impossible.

443

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

29, In the second case,

flar, xo)

where all the functions g; are computable on a I-layer
computer. For this case, the impossibility follows from the
following sequence of steps:

min(gy (z1,Z2); .-, Gm(T1, T2))s

2.1°. If one of the functions g; is of the type min(zy,z2),
then we can rewrite

n]in(.qla-“sgi lnl'llil'l(xl':a:’_’}egill_‘"‘!g‘m)
as
; 1 2
nnn(glv“!g‘é—hgg)sgf)_\gi+le-"_‘gl'n}$

where ¢'(xq,24) = x; is a function that is clearly com-
putable on a I-layer computer. After we make such transfor-
mations, we get an expression for f that only contains max
and functions of one variable.

2.2° Let us show that this expression cannot contain max,
Indeed. if it does, then

f(z1,22)

In particular, _,F(], 1) < max(1,1)

f(],l) zf(l,l)—s:
The contradiction shows that max cannot be one of the
functions g;.

min(. .., max(z,x2)) < max(xzy,).
1. But we must have

2-04=16>1.

2.3°. So, each function g; depends only on one variable. If all
of them depend on one and the same variable, say, x;, then
the entire function f depends only on one variable, and we
have already proved (in the proof of the first case) that it is
impossible. So, some functions g; depend on 2, and some of
the functions g; depend on x5. Let us denote by hy(x) the
minimum of all functions g; that depend on x;, and by ha(x2),
the minimum of all the functions g; that depend on 3. Then,
we can represent [as f(xq,x2) = min(hy (1), ho(z2)).

2.4°. To get a contradiction, let us first take 7 = 1 and 29 =
1. Then.

f(1,1) = min(hy1 (1), k2(1)) =2 f(1,1)—e=2-0.4 = 1.6.

Since the minimum of the two numbers is > 1.6, we can
conclude that each of them is > 1.6, i.e., that hy(1) > 1.6

and ho(1) > 1.6. For 1 — 1 and 22 — —1. we have

F(1,=1) = min(h1 (1), h2(=1)) < f(1,—1) + £ = 0.4.

Since hi(1) = 1.6, we conclude that f{l,—l) = hao(—1).
From

f(L=1) 2 f(1,-1) —e = =04, (4)

we can now conclude that fip(—1) > —0.4. Similarly, one can
prove that ky(—1) > —0.4. Hence,

F(=1,-1) = min(hy (1), ho(~1)) > -0.4.
But
Ffl=1,-1) < f(=1,=1) + ¢

2404 =-16<-04:

a contradiction with (4).
The contradiction shows that the second case is also impos-
sible.

3°. In the third case.
f('l‘l‘lf'_f)

where all the functions g; are computable on a 1-layer com-
puter. For this case, the impossibility (similarly to the second
case) follows from the following sequence of steps:

]na‘x(gl (.'3'.'1 ,_L‘-_;), saa sgm(-rlx :r'_’})u

3.1%, If one of the functions g; is of the type max(x;,xz2),
then we can rewrite

max(gi, . -, gi—1, MaxX(T1,22), Git1, - - » Gm)
as
3 2
lllax(gh....g,-,],grg)*qf)_‘gi+]'~"':gm}:~

where ¢\ (xy,29) = x; is a function that is clearly com-
putable on a I-layer computer. After we make such transfor-
mations, we get an expression for f that only contains min
and functions of one variable.

3.27. Let us show that this expression cannot contain min.
Indeed, if it does, then

J(xy,20) = max(...,min{xy, x9)) = min(x,a2).

In particular,

f(=1.—1) Z min(—1,—1) = —1.

But we must have

f(-1,-1) < f(-1,-1) +e=

—2404=-16<-1

The contradiction shows that min cannot be one of the
functions g;.

3.3°. So, each function g; depends only on one variable. If all
of them depend on one and the same variable, say, ;, then
the entire function f depends only on one variable, and we
have already proved (in the proof of the first case) that it is
impossible. So, some functions g; depend on x;, and some
of the functions g; depend on @4. Let us denote by hq(zq)
the maximum of all functions g; that depend on x;, and by
ho(x2), the maximum of all the functions g; that depend on
9. Then, we can represent [as

flay,29) = max(hy (&1), ha(a2)).

3.4°. To get a contradiction, let us first take x; = —1 and
x9 = —1. Then,
F(=1,-1) = max(hy (—1), ha(—1)) <

—1.6.

fl=1,=1)4+e=—-2404

444

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Since the maximum of the two numbers is < —1.6, we can
conclude that each of them is < —1.6, ie., that h;(—1) <
—1.6 and ho(—1) € —1.6. For z; = 1 and 2o = —1, we have

f(1,—1) = max(h; (1), ho(—1)) 2
f(1,=1)—e=—0.4.

Since hs(—1) < —1.6, we conclude that f{l,—l)
From

hy(1).

flL=1) < f(l,—-1)+¢

we can now conclude that £;(1) < 0.4. Similarly, one can
prove that hs(1) < 0.4. Hence,

0.4,

F(1,1) = max(hy (1), ha(1)) > 0.4. (5)
But

F1,1)> f(1,1)—e=2-04=16> 04,

which contradicts to (5).
The contradiction shows that the third case is also impossi-

ble.

47, In all there cases, we have shown that the assumption
that f can be computed on a 2-layer computer leads to a
contradiction. So, f cannot be thus computed. Q.E.D.

B. Proof of the Theorem

Since the function f is continuous, there exists a ¢ > 0 such
that if |x; — ;| < &, then

[f(@1,. .. 2n) = fly1,.

Let us mark the grid points on the grid of size 4, i.e., all the
points for which each coordinate , ..., x, has the form ¢; - &
for integer ¢; (i.e., we mark the points with coordinates 0, £4,
+24, ..., £T).

On each coordinate. we thus mark = 27'/d points. So,
totally, we mark = (27/6)" grid points. Let us denote the
total number of grid points by k, and the points themselves
b}' !), — {IJ:]_, ‘s ..'I.'j.,,), 1 EJ S k.

By my, let us denote the minimum of f:

)| <€

min

m —
L e[=T\Tzne]-T,

] f{Ili' ey Zn).

For each grid point P;, we will form piece-wise linear func-
tions fji(x;) as follows:
"E‘..;,'| E 0.6 - 6. then
Fii(zi) = f(P;)(Z my);
o if |I,; = ;'."."..;,'| >0.7- 5, then
fii(@i)
o if06-8< |’Lt - :I?jjl < 0.7 - 4. then

0.7-8 — |l“¢ - f.'.‘_.';§|

Faitwa) =myg + UF) =ms) =55 565
Let us show that for these functions f;, the function

f(xlj'“:xn)

o if |(E,; =

my;

mﬂ.)((/‘ IEEEEE] Avn)'.!

where

A; = min(f1(x1), ..., fin(@Tn)),

is e-close to f.
To prove that, we will prove the following two inequalities:

o For all 21, ..4%g;

F@1reerin) 2 f(@1re . 20) €.
o Forall z4,...,2,,
f{:i:l, sl leragme) e

Let us first prove the first inequality. Assume that we have
a point (xy,...,2,). Forevery i = 1,...,n, by q;, we will
denote the integer that is the closest to x; /4. Then,
|fl’.'; — ;- b| E 0.5-4.

These values ¢; determine a grid point P; = (xj1,...,%n)
with coordinates zj; = ¢; - . For this j, and for every i,

la; — 245 <058 < 0.6 4,
therefore, by definition of f;;. we have f;(x;) = f(FP;).
Hence,
Aj =min(f1(x1),. .., fin(@n)) =
min(f(FP;),..., f(P;) = f(FP;).

Therefore,

f{;rh,.,;rn} f(}::;)
But since |z — x;] < 0.5-5 < 4§, by the choice of §,
we have |f(z1,...,2,) — [(P;)] < &. Therefore, f(P;) >
flz1,...,2n) — £, and hence,

max(Ay, ..., Ay) = A;

Let us now prove the second inequality. According to our
definition of f};, the value of f;;(z;) is always in between m;
and P;, and this value is different from 1, only for the grid
points P; for which |z;; — x;| < 0.7- 4. The value

A_'.l' = ll'liﬂ(f_-jl{;?.'l}, wwey fjﬂ (2n))

is thus different from m only if all the values f;;(x;) are
different from m, i.e.. when |z;; — 2;| < 0.7 6 for all 7. For
this grid point, |zj; — ;| < 0.7 6 < 4: therefore,

|f{})J} _Jr('rl?"' ?‘-U‘N-}l <e

and hence. f(FP;) < f(z1,....z,) + €. By definition of f;;,
we have fj;(x;) < f(F;). Since this is true for all 4, we have

Aj =min(fj(x1),..., fin(za)) <
F(P) < fza,...,z0) +e.
For all other grid points P;. we have
Aj(zy,...,x,) =my

for a given (xq,...,x,). Since my has been defined as the
minimum of f, we have

Aj=my < flay,. .. xn) < flag,. .o 2,) + &

445

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

So, for all grid points, we have
AL flayy vy @y)-8,
and therefore,
ﬁfln-..x,,)

The second inequality is also proven. 3
So, both inequalities are true, and hence, [is =-close to f.
QED.

max{[l],...‘jlm) g f(xlv--'arn) HE.

VIIT. CONCIUSION

Fuzzy techniques have been originally invented as a method-
ology that transforms the knowledge of experts (formu-
lated in terms of natural language) into a precise computer-
implementable form. There are many successful applications
of this methodology to situations in which expert knowledge
exist: the most well known (and most successful) are applica-
tions to fuzzy control,

In some cases, fuzzy methodology is applied even when no
expert knowledge exists. Tn such cases, instead of trying to
approximate the unknown control function by splines, poly-
nomials, or by any other traditional approximation technique,
researchers try to approximate it by guessing and tuning the
expert rules. Surprisingly, this approximation often works fine.

In this paper, we give a mathematical explanation for this
empirical phenomenon. Specifically, we show that approxima-
tion by using fuzzy methodology is indeed the best (in some
reasonable sense).

ACKNOWI.EDGMENTS

This work was supported in part by NASA under co-
operative agreement NCC35-209, NSF grants EAR-0225670
and DMS-0532645, Star Award from the University of Texas
System, and Texas Department of Transportation grant No. 0-
5453.

The authors are thankful to the anonymous referees for
valuable suggestions.

REFERENCES

[1] J.). Buckley, “Sugeno type controllers are universal controllers”™, Fuzzy
Sets and Systems, 1993, pp. 299-303.

[2] A. Kandel and G. Langholiz (eds.)., Fuzzy Control Systems. CRC Press,
Boca Raton, FI.. 1994,

[3] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and applications
(Prentice Hall, Upper Saddle River, NJ, 1995).

[4] B. Kosko, “Fuzzy systems as universal approximators™, Proceedings of
the Ist TEEE International Conference on Fuzzy Systems, San Diego,
CA, 1992, pp. 1153-1162.

[5] V. Kreinovich and A. Bernat, “Parallel algorithms for interval computa-
tions: an introduction”, Interval Computations, 1994, No. 3, pp. 6-62.

[6] V. Kreinovich, G. C. Mouzouris, and H. T. Nguyen, “Fuzzy rule
based modeling as a universal approximation tool”, In: H. T. Nguyen
and M. Sugeno (eds.), Fuzzv Svstems: Modeling and Control, Kluwer,
Boston, MA, 1998, pp. 135-195.

[7]1 V. Kreinovich, H. T. Nguyen, and Y. Yam, “Fuzzy Systems Are
Universal Approximators for a Smooth Function And Its Derivatives”,
International Jowrnal of Intelligent Svstems, 2000, Vol. 15, No. 6,
pp. 365-574.

[8] R. N. Lea and V. Kreinovich, “Intelligent Control Makes Sense Fven
Without Expert Knowledge: an Explanation”, Reliable Computing, 1995,
Supplement (Extended Abstracts of APIC'95: International Workshop
on Applications of Interval Computations, Fl Paso, TX, Febr. 23-25,
1995). pp. 140-145.

[9] H. T. Nguyen and V., Kreinovich, “On approximation of controls by
fuzzy systems”, Proceedings of the Fifth International Fuzzy Systems
Association World Congress, Seoul, Korea, July 1993, pp. 1414-1417.

[10] H. T. Nguyen and E. A. Walker, A first course in fuzzy logic, CRC Press,
Boca Raton, Florida, 2005.

[11] L Perfilieva and V. Kreinovich, *A New Universal Approximation Result
For Fuzzy Systems, Which Reflects CNF-DNF Duality”, Iternarional
Jowrnal of Intelligent Systems, 2002, Vol. 17. No. 12, pp. 1121-1130.

[12] 1.-X. Wang, “Fuzzy systems are universal approximators”, Proceedings
of the TEEE International Conference on Fuzzy Systems, San Diego, CA,
1992, pp. 1163-1169.

[13] 1.-X. Wang and J. Mendel, Generating fuzzy rules from numerical data,
with applications, University of Southern California, Signal and Image
Processing Institute, Technical Report USC-SIPL # 169, 1991,

[14] R. R. Yager and V. Kreinovich, “Universal Approximation Theorem
for Uninorm-Based Furzy Systems Modeling”, Fuzzy Sets and Systems,
2003, Vol. 140, No. 2, pp. 331-339.

446

