
Fuzzy Aggregation Techniques in Situations
Without Experts: Towards A New Justification

Hung T. Nguyen
Jkpartnmt of Mathematical Sciences

New Mexico State University
La$ Cruces, New Mexico, 880113, USA

Email: hunguyen @nrnsu.edu

Abstrac-Fuzzy tcchniqucs havc bccn originally imcntcd
ap a mcthoddogy that transforms the knowkdgc of cxpcrts
formulated in tcrms of natural languagc into a prccisc computcp
implcmcntablc form. Thcrc arc many s u d u l applications of
this methodology to situations in which cxpcrt knowlcdgc &st,
thc m t wcll known is an application to fwxy control.
In somc cases, fmq methodology is a p p l i i m n whcn

no cxpcrt knowladgc instcad of trying to approximate
thc unknown control function by splincs, polynomials, or by
any othcr traditional appmximation tcchniquc, rcscarchcrs try
to approximate it by gumsing and tuning thc cxpcrt rulcs.
Surprisingly, this approximation oftcn works Rnc.

In this wc give a mathematical explanation for this
phmommon, and show that approximation by using fu7g
mcthodology i s i n d d (in somc rcawnablc snsc) thc M.

Fuz7.y techniques have been originally invented as a method-
ology that transforms the knowledge of experts forrnu-
lated in terms of natural language into a precise computer-
implementable form. There are many successful applications
of this methodology to situations in which expert knowledge
exist, the most well known is an application to fumy contml;
see, e.g-, P I , PI, I 101.

R. Universal appmximation resub

A guarantee d success comes from the fact that fuzzy
systems are rittiversal approximators in the sense that for every
continuous function f (xl, . . . , xn) and for every E > 0, there
exists a set of rules for which the corresponding input-output
function is &-close to f ; see, e.g., [I], [3], [4], [6], 171, [9],
[lo], [I I], [I 21, [I 31, [I41 and references therein.

C. Fuzzy methodology is .sometimes .success$~I witholrt any
expert knowledge

In somc cascs, fux7.y mcthodology is applicd cvcn whcn
no expert knowledge exists: instead of trying to approximate
the unknown control function by splines, polynomials, or by
any other traditional approximation technique, researchers try
to approximate it by guessing and tuning the expert rules.
Surprising1 y, this appmximation often works fine.

Vladi k Kreinovich
Jkpartment of Computer Science

University of Texas at El Paso
El Paw, Texa5 79968. USA

Email: vladik8utep.edu

D. What we plan to do

In this papr, we give a mathematical explanation for this
phenomenon, and we show that approximation by using fumy
methodology is indeed (in some reasonable sense) the &st.

Comment. Jn this paper, we build upon our preliminary results
published in [8].

We have mentioned that one of the main applications d
fu7.y methndnlogy is to intelligent control.

In applications to autnmatic cnntml, the computer must
constantly compute the current values d contml. The value of
the control depends on the state of the controlled object (called
plant in control theory). So, to get a high quality control, we
must measure as many characteristics x I , . . . , xm of the current
state as we can. The more characteristics we measure, the
more numbers we have to process, so: the more computation
steps we must perform. The results of these computations
must be ready in no time, before we start the next mund of
measurements. So, automatic control, especially highquality
automatic control, is a ml-time computation problem with a
serious time pressure.

A natural way to increase the speed of the computations
is to wrform computations in parallel on several processors.
To make the computations really fast, we must divide the
algorithm into paralleli7ahle steps, each of which requires a
small amount of time.

What are these steps?

IV. ~ ~ E S C R IPTION OF THE FASTEST POSSIRI.E
CONTROI.-ORIRNT~D PARAI .I.RI. COMPUTER

A. The fewer variable., the faster

As we have already mentioned, the main reason why control
algorithms are computationally complicated is that we must
procas many inputs. For example, mntmlling a car is easier
than controlling a plane, because the plane (as a 3-D object)
has more characteristics to take care of, more characteristics to

440

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

measure and hence, more characteristics to process. Control-
ling a space shuttle, especially during the lifi-off and landing,
is even a more complicated task, usually performed by several
groups of people who conwol the mjec~ory, tempemrare,
rolalion, elc. In short, he more n u m h we need LO process,
the more complicated the algorithm. Therefore, if we want
to decompose our algorithm into fastest possible modules, we
must make each mdule to process as few n u m b as pmsible.

R. Functions of one variable are not sq3cient
Ideally, we should only use the modules that compute

functions of one variable. However, if we only have functions
of one variables (i.e., procedum with one input and one
output), then, no matter how we combine them, we will always
end up with functions of one variable. Since our ultimate
goal is to compute the control function u = f (xl , . . . , xn)
that depends on many variables XI, . . . , x, , we must therefote
enable our processom to compute at least one function of two
or more variables.

What functions of two variables should we choose?

C. Choosing j k t a i o ~ of EWO or mow variabIes
h i d e the computer, each function is represented as a

sequence of hardware implemented operations. The fastest
functions are those that are computed by a single hardware
operation. The basic hardware supported operations are: arith-
metic operations a + b, a - b, a - b, a/b, and rnin(a, b)
and rrwx(a, t) . The lime q u i d for each opadticm, ~rudel y
speaking, corresponds to the number of bits operations that
have to be performed:

Division is done by successive multiplication, comparison
and subtraction (basically, in the same way as we do it
manlmll y), so, it is a much slowm operation than -.
Mulliplicalim is implemmled as a sequence or additions
(again, basically i n the same manner as we do it manu-
ally), so it is much slower than +.
- and + are usually implemented in the same way. To
add two n-bit binary numbers, we need n bit additions,
and also potentially, pa bit additions for canics. Totally,
we need about 2n bit operations.
min of two la-bit binary numbers can be done in n binary
operations: we compare the bits from the highest to the
lowest, and as soon as they differ, the number that has 0 as
opposed to 1 is the desired minimum: e.g., the minimum
of 0.10101 and 0.10011 is 0.1001 1, because in the third
bit, this number has 0 as opposed to 1 . . Similarly, mruc is an +bit operation.

So, the fastest pmsible functions of two variables are min and
max. Similarly fast is computing the minimum and maximum
of several (more than two) real numbers. Therefore, we will
chrrose these functions for our control-oriented computer.

Summariing the above-given analysis, we can conclude
that out mmputer will contain module of two type:

modules that compute functions of one variable;
r modules that compute rnin and max of two or several

numbers.

D. How to combine these modules?
We want to combine these modules in such a way that the

resulting computations are as fast as possible. The time that is
required for an algorithm is crudely proportional to the number
of sequential steps that it takes. We can describe this number
of steps in clear geometric terms:

at the beginning, the input numbers are processed by
some processors; these processors form the jirst layer of
computations;
the results of this processing may then go into different
processors, that form the second layer,
the results of the second layer of processing go into the
third layer,
etc.

In these terms, the fewer layers the computer has, the faster
it is.

So, we would like to combine the processors into the
smallest possible number of layers.

Now, we are ready for the formal definitions.

V. DEFINITION AND THE MAIN RESUI.T
Let us first give an inductive definition of what it means for

a function to be computable by a k-layer computer.

Definition.
We say that a function f (XI, . . . , x,) is computable by
a I-layer computer if either n = 1, or the function f
coincides with min or with max
Let k > 1 be an integec We say that a fitnction
f (XI, . . . , x,) is computable by a (k + 1)-layer computer
if one of the jollowing three statements is true:

f = g(h(x1,. . . , x ~)) , where g is a fiuocron of one
variable, and h(x1, . . . , xn) is computable by a k-
layer computer;
f = min (gl(x1,. . . ,3n),. . . ,gm(xl,. . . ,~n))r
where all functions gi am computed by a k-layer
computer;
f =max(gl(~l,...,~n),...,gm(~l,...,~n)),
where all functions a a E computed by a k-layer
computer.

Cmmc!~. A computer is a finitsprecision machine, so, the
results of the computations are never absolutely precise. Also,
a computer is limited in the siw of its numbers. So, we
can only compute a function approximately, and only on a
limited range. Thmfore, when we say that we can compute an
arbitrary function, we simply mean that for an arbitrary mnge
T, for an arbitrary continuous function f : [-T, TIn + R, and
for an arbitrary accuracy E > 0, we can compute a function
that is &-close to f on the given range. In this sense, we will
show that not every function can be computed on a Wayer
computer, but that 3 layers are already sufficient.

Proposition. ThErc exist rcal numbers T and E > 0, and a
continwus function f : [-T, qn + R such that no function
E-close to f on [-T,qn can be computed on a 2-layer
conspute~:

441

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Comment. To make the text more readable, we present both
p f s in the last d m . However, we will make one comment
here. The function that will be proved to be not computable on
a Wayer computer is not exotic at all: it is f (XI, x2) = X I + X ~

on the domain [-I, 112, and the Proposilion is irue Ibr E = 0.4.

T b e o m For every real nwnbers T and E > 0, and for every
coprrrprrrnuous fuAmcnon f : [-T, TI" R them exists a fwaction
?- rhar is &-close to f on [-T, TI" and that is computable on
a 3-layer compurel:

Comnt. In other words, f.nctions computed by a fiayer
conapuier are universal a p p ~ o o r s .

Relath to fuzzy cotutvl,As we will see from the proof, the
approximating function f is of the type max(A1,. . . ,A,),
where Aj = min(fjl(xl), . . . , fjn(xn). These functions W-
respond the so-called fuuy c o m l [Z], [3], [lo]: Tndeed, let
us define

and

Let us now assume that ltw rules bast: that describes the expert
recomrnendalions Tor conwol consisk or exaclly two rules:

'if one of the conditions Cj is true, then ~6 = UII;
"else, u = -U",

where each condition Cj means that the following n conditions
are satisfied:

XI satisfies the property Cjl (described by a membership
function pj 1 (XI));

satisfies the property Cj2 (described by a membership
function ~jjz(xz));
...
x, satisfies the proprty C;., (described by a membership
function pj, (x,)).

In logical terms, the condition C for ~6 = U has the form

(c l l&. . .&Cln) v . . . v (Ckl&. . . &Ckn).

If we use min for &, and max for V (these are the simplest
choices in fumy control methodology), then the degree pc
with which we believe in a condition C = Cl V . . . V Ck can
be expressed as:

PC =

Correspondingly, the degree of belief in a condition for ~6 =
- U is 1 - pc. According to fuzzy control methodology, we
must use a duuication to determine the actual control,
which in this case leads to the choice of

Recause of our choice of pji, one can easily see
that this expression coincides exactly with the function

max(Al,..-,Arn), where Aj = min(fjl(~l),...,fjn(~n)-
So, we get exactly the expressions that stem from the l i m y
control methodology.

Conclt~sion. Since our 3- layer expression describes the fastest
possible computation tool, we can conclude that for confml
pmblems, the w e s t possible universal computation scheme
cormsponds to using ficzzy methodology.

This result explains why fwzy methodology is sometimes
used (and used successfully) without any expert knowledge
being present, as an extrapolation tool for the (unknown)
function.

Comment. We have considered digital parallel computers. If
we use analog processors instead, then min and max stop
being the simplest functions. Instead, the sum is the simplest:
if we just join the two wires together, then the resulting
current is equal to the sum of the two input currents. In this
case, if we use a sum (and more general, linear combination)
instead of min and max, 3-layer computers are also universal
approximators; the cornpondin& cornputem correspond to
n e d mtworks [S].

VI. Dlscusslo~
Universal a p p m h t i o n p m p m - traditional just$cation
of fuzzy c ~ l l c r s . W we are looking for a general control
methodology, i.e., a methodology thal enables us to implement
(within a given accuracy) an arbitrary mnml strategy, then the
functions corresponding to this methodology must be universal
appximatm.

From this viewpoint, the h m fact t h ~ f u x q contnollets
are universal appmximatnrs is one nf the reasons why fumy
controllers a e indeed used in many practical situations.

Several other types of controllers also have a universal ap
p m M o n properry. The universal approximation character
of fwzy controllers does not imply, however, that fuzzy con-
m l l m ate the cml y possible clas of canaollws - indeed, there
are many other universal approximators, e.g., polynomials,
neural networks, etc.

Hmm, if our only rquimmmt on the wnml methodology
is that lhis methodology be general (universal), we can also
use, e.g., (more aaditional) polynomial comllers or neural
controllers.

Empirical fact: fuay controllers ore ofien bette~: From the
viewpoint of the universal approximation property, traditional
or fumy controllers are as good as fwzy controllers. However,
in many practical situations, fumy oontrollers perform better.

F w controllers not only lead to beiter control, they usually
enable us to fmter compute the dtsiwd conml. In many
practical situations, fumy controllm pMform bcttcr. Rcttcr
in what sense? In different practical situations, we may have
different requirements to a controller and thus, different criteria
for gauging how good a conmller is. For example, we may
want to look for a control which is smoother w which is more
robust or which is more stable.

442

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1n some practical situations, fuzzy controllers do have
these advantages: e.g., in m y cases, a fumy mttoller is
more robust than the traditional one. However, in most case,
f w q controller is also computationally simpler and thus, its
compulafions are much him. For example, Tor non-linear
systems, computing a fwxy mml requires an explicit use of
simple functions, while, e.g., to apply a more traditional non-
lineat controller we may need to solve systems of equations.

We provide a tkeoreiical explanation for this empirical phe-
nomenofi ln this paper, we explain that fuzzy controllers are
indeed, in some reasonable sense, fastet. This result explains
the above empirical fact - that fuzzy controllers often enables
us to compute control faster.

TRew may be other clmses of fasr controllers. The fact that
fuzzy controllers are among the fastest does not necessarily
mean that the class of fwzy controllers is the only fastest
class: there may he other non-fwzy controllers which are also
computable by a 3-layer computers.

In our proof of the theorem, we use 3-layer computers cor-
responding to fuzzy conml, but there could be different proofs
of the universal approximation property of 3-layer computers,
proofs which would usc diffmnt typcs of con~~~llcrs.

In other words, while we p v e that fwzy controllers are
a rcasonablc class. thcrc may bc othcr classes of controllers
which am as teasonable (and as fast).
For cxamplc, in our prod - similarly to most proofs that

fuzzy systems are universal approximaton the construc-
tion fwxy system is based on the values of the function
f (x l , . . . , xn) at diffefent tuples x (~) = (x r) , . . . , xAk)).
Fumy controllers provide a continuous transition between the
corresponding values; however, instead, we can simply use the
look-up table and assign, to each tuple x, the value f (~ (~ 1)
at the nearest selected tuple d k) . This look-up table idea also
leads to a computationally low lost - although the disconti-
nuity of the resulting approximating piecewise function is, in
many practical applications, a definite disadvantage.

vn. PROOFS

A. Proof of the Proposition

0". Let us proof (by reduction to a contradiction) that if a
function 7(xl ,?2) is 0.4-close to f (X I , x2) = xl + xa on
1- 1,1] 2, then f cannot be computed on a Z-layer computer.
Indeed, s w that it is. Then, according to the Definition,
the function f (XI, xz) is of one of the following three forms:

g (h (q , Q)), where h is computable on a 1-layer com-
putw;
rnin(g1 (X I , xz) , . . . , gm (X I , xz)) , where all the functions
gi ate computable on a 1 -layer computer;
rnxx(g1(x1,x2), . . . , g m (x l , x 2)) , whereall the functions
g; are computable on a 1 -layer computer.

Let us show case-by-case that all these three cases are impos-
sible.

l o . In the first case, f (x l , x z) = g(h(x l , x z)) , where h is
computable on a I-layer computer. Re definition, this means
that h i s either a function of one variable, or min, or max.
Let us consider all these three sub-cases.

1.l0. If F(xl,x2) = g(h(x l)) , then the function depends
only on X I . In particular.

f(0, -1) = f (0 , l) . (1)
-

Rut since f is E-clnse tn f (x l + x2) = x1 + 22, we get

and

So, y(0, -1) 5 -0.6 < F(0, l) , hence, y(0 , -1) # F(0, I) ,
which contradicts to (I). So, this sub-case is impossible.
Similarly, it is impossible to have h depending only on xa.

1.2O. Let us consider the sub-case when

? (X I , 5 2) - g(min(x1, 52)) .

b this sub-case, -
f (-1, -1) = g(min(-1, -1)) = g(-1) =

g (r 4 - 1 , l)) = ?(-I, 11,

and

Rut

j (-1 , -1) 5 f (-1, -1) + E = -2 + 0.4 = -1.6

and

j (- 1 , l) 2 f (- 1 , l) - E = 0 - 0.4 = -0.4 > -1.6,

so, the equality (2) is also impossible.

1.3O. Let us now consider the sub-case

fl(x1,xa) = s (m a x (x 1 , ~ 2)) .

In this sub-case,

7 (- 1 , 1) = g(max(-1 , l)) = g(1) =

g (m a x (l , l)) = 7 (1 , 1) ,

and

Rut
f (- 1 , l) 5 f (- 1 , l) + 6 = O + 0.4 = 0.4,

and

F(i , 1) 3 f (i , 1) - E = z - 0.4 = 1.6 > 0.4,

so, the equality (3) is also impossible.

443

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

444

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Since the maximum of the two numbers is 5 -1.6, we can
conclude that each of them is 5 - 1.6, i .e., that hl (- 1) 5
-1.6 and b (-1) 5 -1.6. For xl = 1 and x2 = -1, we have

Since h2(-1) 5 -1.6, we conclude that T(l , -1) = hl (1).
From

fl(1,-1) 5 f(1,-1) + E = 0.4,

we can now conclude that h l (l) 5 0.4. Similarly, one can
p v e that ha (1) 5 0.4. Hence,

Rut

which contradicts to (5).
The conltdiction shows that the third case is also impossi-

ble.

4O. 1% all there cases, we have shown tfiat the assumption
that f can be ccnyuted on a Zlayer computer leads to a
conMction. So, f cannot be thus computed. Q.E.D.

R. Ptvof of rhe Theomm

Since the function f is continuous, there exists a 6 > 0 such
that if I xi - yil 5 6, then

Let us mark the grid points on the grid of si7e 6, i.e., all the
points for which each coordinate X I , . . . , x, has the f m qi . 6
for integer qi (i.e., we mark the points with coordinates 0, f 6,
f26, ..., fT).

On each coordinate, we thus miark - 2T/6 points. So,
totally, we mark e (2T/6)n grid points. Let us denote the
total n u m b of grid points by k, and the points them$elm
by Pj = (~ ~ 1 , . . . ,xjn), 1 5 j 5 k.
Ry mj , l e ~ us denote he minimum or $:

For each grid point Pi, we will form pieoswise linear funo
tims fji(xi) BS ~OIIOWS:

if Ixi - xjil I 0.6 6, then

if lxi - xjil 2 0.7.6. then

if 0.6- 6 I 1xi - xjil I 0.7 - 6, then

Let US S ~ O W lhat f ~ r these functions f j i , the function

where
4 = m i n (f j l (~ l) , .. . , fjn(xn)),

is &-close to f .
To prove that, we will prove the following two inequalities:

For all X I , . . . ,xn, -
f (~ l , . . . , i n) 2 f(xl , . . . ,xn)-E.

For all X I , . . . ,xn, -
f ($1, . . . ,in) 5 f (X I , . . . , xn) + E .

Let us first p m e the fitst inequality. Assume that we have
a point (xl , . . . ,x,). For every i = 1,. . . ,a, by qi, we will
denote the integer that is the closest to xi/&. Then,

I S -9: -61 5 0.5.6.

These values qi deternine a grid point Pi = (x j l , . . . , xjn)
with coordinates xji = qi . 6. For this j , and for every i,

therefore, by definition of fji , we have fji(xi) = f (9).
Hence,

Aj = m (f j i (~ i) , . . . , f j m (~ m)) =

min (f (9) , . . . , f (9)) = f(9).
Therefore, -

f (~ 1 , ..,%) = max(A1,. . . ,Am) h Aj = f (Pj).

Rut since Ixji - xil 5 0.5 . b < 6, by the choice of 6,
we have If(x1, ..., xn) - f (P j) l 5 E. Therefore, f (P j) 2
f (X I , . . . , xn) - 8, and hence,

7(.1,...,xn) 2 f (P j) 2 f (x l , . . . , ~ n) - ~ .

Let us now prove the second inequality. According to out
definition of f j d l the value of f j d (xi) is always in between mf
and Pj, and this value is different from mf only for the grid
points Pj for which Ixji - xil 5 0.7. 9. The value

Aj = min(fj i(zi) , . . . , fjn(xn))

is thus different from m only if all the values fji(xi) are
d i h t from m, i.e., when Isj: - xil 5 0.7 6 fur all i. For
this grid point, Ixji - 5 0.7 9 < 9; therefore,

If(Pj) - fbl, .. . ,x*)l I E

and hence, f (P j) 5 f (X I , . . . , x,) + E. Ry definition of f j i ,

we have fji(xi) 5 f (Pj). Since this is true for all i, we have

Aj = m (f j l (x l) , , . , , fjn(xn)) 5

f (Pj) I f(x1,...,x,) + E .

For all other grid points Pj, we have

for a given (xl , . . . , x ~) . Since mf has been defined as the
minimum of f , we have

445

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

So, for all grid points, we have

Aj If(xl,...,xn)+~,

and therefote, -
f (z l , . . . ,q) = m a x (A 1 , . . . , A,) 5 f (z l , . . . , z ,) + s.

The second inequality is also proven.
So, both inequalities are true, and hence, j i s &-close to f.

Q.F-n.

Fwq techniques have been originally invented as a method-
ology that transforms the knowledge of experts (fonnu-
lated in terms of natural language) into a precise computer-
implementable form. There are many successful applications
of this methodology to situations in which expert knowledge
exist; the most well known (and most successful) are applica-
tions to fuzzy ooml.

In some cases, fuzzy methodology i s applied wen when no
expert knowledge exists. In such cases, instead of trying to
approximate the unknown mml function by splines, poly-
nomials: m hy any other traditirmal arpmximation technique,
meamhers try to approximate it by guessing and tuning the
expert rules. Surprisingly, this approximation often works fine.

In this paper, we give a mathematical explanation for this
empirical phenomenon. Specifically, we show that approxima-
tion by using fwzy methodology i s indeed the best (in some
reasonable sense).

ACKNOWI.EDGMENTS

This work was supported in part by NASA under CCP

operative agreement NCC5-209, NSF grants FAR-0225670
and DMS-053264.5, Star Award from the University of Texas
System, and Texas Ikpamnent of Transportation gtam No. CL
5453.

The authors are thankful to the anonymous referees for
valuable suggestions.

[I] J. J. Ruckley, "Sngeno type conhollers are univeml mmllers", Furg,
Sets md System, 1993, pp. 299-303.

[a A. Kandel and G. langholtz (eds.), F ~ u e y Corud System, CRC Wss,
Roca Ratan, R, 1994.

[3] G. Klir and R. Ywm, FWQ sets ivadfuzg logic: fkcory Md qydhiions
(Prentice Hall, Upper Saddle Rim, NJ, 1W).

143 R. Kosko, 'Fumy systems as univerval approximatm", Pnmedings qf
rhc 1st IFXE Iruemrioml Gx$er@nce on Fuzzy Sys~tms, San Diego,
CA: 1992, pp 115L1 la.

[Sl V. Kreinovich and A. Rernat, "ParalW algorithm for imerval compwa-
tionr: an irumduction", In& Cmtpum'm, 1994, NO. 3, pp. 6-62 [a V. Kreinovich, G. C. Mwmuris, and H. T. Nguyen, "Fumy d e
based modeling as a u n b l appmximation toolw. In: H. T. N p p
and M. Sugeno (eds.), F q Qstems: Modeling and Conaol, Kluwer.
Rosbn, MA, 1998, pp 135-195.

m V. Kreinovich, H. T. Nguyen, and Y. Yam, "Fwq System Are
U n i i Appmximatols fw a S a h Function And I& lkivativesnn
ktrrnariomal Journal @ lnnlligcnr Systuns, 2000. MI. 15, No. ti,
pp. 565-574.

[Kj R. N. 1.ea snd V. Kreinovich, "Intelligent Control Makes Sense Even
Withwt Expen Krwwlsdge: an F~cplanation", ReIinble Cm-, 1995.
Supplement (F.xten&d Abshacts of APIC'95: International Workshop
on Applications of I m m d Computations, El hm, TX, Febr. 2SZ5.
I%), pp. 14&145.

19) H. T. Nguyen and V. Kreinovich, "On appmximation of conbrols by
famy systen~s". Promdings @the Fyth hrr-I F u q System
AsmianMon mrld Congrrss, Sewl, Kmes, J d y 1993, pp. 1414-1417.

11 Ol H. T. N g u w and E. A. Walker, A fim course infmzy logic, CRC Press.
Roca Raton, Florida, UXM.

[I I] 1. Perfilieva and V. Kreinovich. "A New U n i w d Approximution Result
For h 7 q Systems, Which ReRe*s CNF-ONF Duality", h u c d d
Jmmtal @Intelligent Sysmm, 2002. MI. 17. No. 12, pp. 1121-1130.

[l a I..-X. Wang, "Fwq systems are pnivwsal approximtorsn, Proceedings
qftfre IEEE Iuremazimai Cqfmwcr on Fuziy Symmw, Sw Diega CA.
1% pp. 116W 1fB.

[I 31 I..-X. Wang and J. Mendel, Generatingjky nrIesfiono numerid dnta.
wih qpEiclltioM. U n h i t y of S o n k m California, Signal and I m w
M n g Inslinne, Technical Repwl USC-SIP]# 169, 1991.

[I41 R. R. Yager and V. Kreincwich. "Universal Approximation Theorem
for Uninorm-Bawl Mzy Symms Modeling", Fuzzy Sets and Sysccm.
XKJ3. MI. 140, NO. 2. 331-339.

446

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

