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Abstract— A generalized fuzzy c-means (FCM) clustering is
proposed by modifying the standard FCM objective function
and introducing some simplifications. FCM clustering results
in very fuzzy partitions for data points that are far from
all cluster centroids. This property distinguishes FCM from
Gaussian mixture models or entropy based clustering. The
generalized FCM clustering aims at aggregating standard FCM
and entropy based FCM so that the generalized algorithm is
furnished with the two distinctive properties for data points
that are far from all centroids and for those that are close to
any centroid. k-Harmonic means clustering are reviewed from
the view point of FCM clustering. Graphical comparisons of
the four classification functions are presented.

I. INTRODUCTION

The unsupervised partitioning of data is often called
clustering, which forms a significant area of research such
as data mining, statistical data analysis, data compression
and vector quantization. k-Means or hard c-means clustering
method stands out, among the many clustering algorithms,
as one of the few most popular algorithms accepted by many
application domains. However, k-means does have a widely
known problem, i.e., the local minimum it converges to is
very sensitive to the initialization. The standard fuzzy c-
means (FCM-s) algorithms [1], [2] can alleviate the problem
and are robust tools for the problem of clustering objects into
groups of similar individuals when the data is available as
object data, consisting of a set of feature vectors.

Within the framework of FCM clustering, the methods that
uses an additional entropy term [3] or a quadratic term [4]
for fuzzification was proposed. The same algorithm as the
Gaussian mixture models (GMM) or normal mixture [5], [6]
with the expectation maximizing algorithm [7], [8] is derived
from the FCM objective function with regularization by
entropy term. The difference between the FCM-s and FCM-
e comes from the difference of the membership functions
as amplified in [3]. FCM-s results in very fuzzy partitions
for data points that are far from all cluster centroids. This
property distinguishes FCM-s from FCM-e. This paper pro-
poses a generalized FCM clustering (FCM-g) by slightly
modifying the objective function of FCM-s and introducing
some simplifications. FCM-g clustering aims at aggregating
FCM-s and FCM-e so that FCM-g is furnished with the two
distinctive properties for data points that are far from all
centroids and for those that are close to any centroid.

k-Harmonic means (KHM) clustering [9], [10], [11], [12]
is a relatively new iterative unsupervised learning algorithm
for clustering. The motivations come principally from an

analogy with powerful supervised classification methods
known as boosting algorithms [13], [14], [15]. The papers
and patents of KHM have emphasized a new trend in
clustering. It basically consists of penalizing solutions via
weights on the instance points. We review KHM clustering
from the view point of FCM clustering.

The paper is organized as follows. Section II gives a brief
description of the standard, entropy based and quadratic term
based FCM clustering. A modified FCM objective function
is proposed and the characteristics of the three algorithms
are described in Section III. In Section IV, we give the
reinterpretation of k-harmonic means clustering within the
framework of FCM clustering. Section V provides graphical
comparisons of the classification functions of the four algo-
rithms. Some simplifications of the clustering algorithm will
be described in Section VI. Section VII concludes the paper.

II. UNSUPERVISED CLUSTERING

We first review the three kinds of objective functions,
i.e., the standard [1], entropy-term-based [3], [5], [6], and
quadratic-term-based [4] fuzzy c-means. The objective func-
tion of FCM-s is:

Ū = arg min
U∈Uf

Jfcm(U, V̄ ). (1)

Jfcm(U, V ) =
c∑

i=1

n∑
k=1

(uik)mD(xk, vi), (m > 1), (2)

under the constraint:

Uf = {U = (uik) :
c∑

j=1

ukj = 1, 1 ≤ k ≤ n;

uik ∈ [0, 1], 1 ≤ k ≤ n, 1 ≤ i ≤ c }. (3)

D(xk, vi) denotes the squared distance between feature vec-
tor xk and cluster centroid vector vi, so the standard objective
function is the weighted sum of squared distances.

Following objective function is used for the entropy-based
method.

Jefc(U, V ) =
c∑

i=1

n∑
k=1

uikD(xk, vi) + ν

c∑
i=1

n∑
k=1

uik log uik.

(4)
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The objective function of the quadratic-term-based method
is:

Jqfc(U, V ) =
c∑

i=1

n∑
k=1

uikD(xk, vi) +
1
2
ν

c∑
i=1

n∑
k=1

(uik)2.

(5)

Combining these three, the objective function can be
written as :

J(U, V ) =
c∑

i=1

n∑
k=1

(uik)mD(xk, vi) + ν

c∑
i=1

n∑
k=1

K(u), (6)

where both m and ν are the fuzzifiers.
When m > 1 and ν = 0, (6) is the standard objective

function. When m=1 and K(u) = uikloguik, (6) is the
objective function of entropy-based method, whose algorithm
is the same as the EM algorithm for GMM or normal mixture
with a unit covariance matrix and equal cluster volume.
When m = 1 and K(u) = (uik)2, (6) is the objective
function of the quadratic-term-based method.

III. A GENERALIZED OBJECTIVE FUNCTION

From the above consideration we can generalize the stan-
dard objective function a little further. Let m > 1 and
K(u) = (uik)m, then (6) is the objective function (Jgfc)
from which we can easily derive the necessary condition for
the optimality.

We consider minimization of (6) with respect to U under

the condition
c∑

i=1

uik = 1 using the method of Lagrange

multipliers. Let the Lagrange multiplier be λk , k = 1, . . . , n,
and put

L =
c∑

i=1

n∑
k=1

(uik)mD(xk, vi) + ν
c∑

i=1

n∑
k=1

(uik)m

+
n∑

k=1

λk(
c∑

i=1

uik − 1)

= Jgfc +
n∑

k=1

λk(
c∑

i=1

uik − 1). (7)

For the necessary condition of optimality of (7) we differ-
entiate

∂L

∂uik
= m(uik)m−1(D(xk, vi) + ν) + λk = 0.

D(xk, vi)+ ν > 0 (i = 1, . . . , c), if ν > 0. To eliminate λk ,
we note

ukj =
[ −λk

m(D(xk, vj) + ν)

] 1
m−1

. (8)

Summing up for j = 1, . . . , c and taking
c∑

j=1

ukj = 1 into

account, we have

c∑
j=1

[ −λk

m(D(xk , vj) + ν)

] 1
m−1

= 1.

Using (8) to this equation, we can eliminate λk , having

uik =

⎡
⎣ c∑

j=1

(
D(xk, vi) + ν

D(xk, vj) + ν

) 1
m−1

⎤
⎦
−1

. (9)

This solution satisfies uik ≥ 0 and uik is continuous.
The solution for V is also easily derived by differentiating

L with respect to V .

vi =

n∑
k=1

(uik)mxk

n∑
k=1

(uik)m

. (10)

We now have insight about the property, which distin-
guishes FCM-g from FCM-s and FCM-e.

Let �U
(i)
gfc(x; V ) denote the classification function for the

generalized method. We use the term “classification function”
to signify the function for partitioning the input feature space
into clusters.

�U
(i)
gfc(x; V ) =

⎡
⎣ c∑

j=1

(
D(x, vi) + ν

D(x, vj) + ν

) 1
m−1

⎤
⎦
−1

. (11)

It should be noted that when m = 2 and ν = 1, �U
(i)
gfc(x; V )

has a close relationship with Cauchy weight function nor-
malized such that the weights sum to one. The membership
function of FCM-s suffers from the singularity which occurs
when D(xk, vi) = 0. When ν > 0, (9) alleviates the
singularity.

Next proposition states that ν is a fuzzifier.

Proposition 1. The function �U
(i)
gfc(x; V ) is a decreasing

function of ν when

‖x − vi‖ < ‖x− vj‖, ∀j �= i (x ∈ Rp),

and if ν > 0,

max
x∈Rp

�U
(i)
gfc(x; V ) = �U

(i)
gfc(vi; V ) < 1. (12)

�U
(i)
gfc(x; V ) is an increasing function of ν when

‖x − vi‖ > ‖x− vj‖, ∀j �= i (x ∈ Rp).

�U
(i)
gfc(x; V ) tends to 1/c as ν → +∞.

lim
ν→+∞

�U
(i)
gfc(x; V ) =

1
c

. (13)

�U
(i)
gfc(x; V ) tends to 1/c as ‖x‖ → +∞.

lim
‖x‖→+∞

�U
(i)
gfc(x; V ) =

1
c

. (14)

The first part of the proposition immediately follows from

1/�U
(i)
gfc(x; V ) − 1 =

∑
j �=i

( ‖x − vi‖2 + ν

‖x − vj‖2 + ν

) 1
m−1

,(15)
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hence (12) follows.
For (13) and (14), we can use (15) again:

1/�U
(i)
gfc(x; V ) − 1 → c − 1 (ν → +∞ or ‖x‖ → +∞).

�U
(i)
fcm(x; V ) shares the last property (14) but

lim
x→vi

�U
(i)
fcm(vi; V ) = 1 (16)

holds for ∀i. By choosing the values of the fuzzifier m and
ν , FCM-g is equipped with the two distinctive properties
of FCM-s and FCM-e for data points that are far from all
centroids and for those that are close to any centroid.

Table I summarizes the characteristics of the three methods
when ‖x‖ → +∞ or x → vi. It is a rational decision
to fuzzily partition the data that are far from all centroids.
Human intuition may suggests to do so and no one can
answer which cluster the distant points should belong. Al-
though FCM-s is favorable in this point, we sometimes want
to fuzzily partition even the data points that are very close
to any cluster centroid. FCM-g improves this deficiency of
FCM-s.

TABLE I

CHARACTERISTICS OF FUZZY CLUSTERINGS

‖x‖ → +∞ x → vi

standard (FCM-s) fuzzy crisp
entropy-based (FCM-e) crisp crisp-fuzzy

generalized (FCM-g) fuzzy crisp-fuzzy

Note that the objective function of the possibilistic clus-
tering [16], [17] is written similarly to (7) as:

Jpos(U, V ) =
c∑

i=1

n∑
k=1

(uik)mD(xk, vi)

+ ν

c∑
i=1

n∑
k=1

(1 − uik)m (17)

where the condition
c∑

i=1

uik = 1 is omitted.

As pointed out in [16], [17], the possibilistic clustering is
closely related with robust M-estimation [18], [19] and ν in
(17) plays the role of robustizer whereas ν in (7) is a fuzzifier
as stated in Proposition 1.

IV. CONNECTIONS WITH k-HARMONIC MEANS

k-harmonic means (KHM) [9], [10], [11], [12] is a rela-
tively new iterative unsupervised learning algorithm for clus-
tering. KHM is essentially insensitive to the initialization of
the centroids. It basically consists of penalizing solutions via
weights on the data points, somehow making the centroids
move toward the hardest (difficult) points. The motivations
come from an analogy with supervised classifier design
methods known as boosting [13], [14], [15].

The harmonic average of c numbers a1, ..., ac is defined
as c

c
i=1

1
ai

. For clarifying the connection between FCM and

KHM, the objective function of KHM is rewritten as:

JKHM(V ) =
n∑

k=1

c
c∑

i=1

1
‖xk − vi‖p

=
n∑

k=1

c∑
i=1

⎛
⎜⎜⎜⎜⎝

D(xk, vi)
p
2

c∑
l=1

D(xk, vi)
p
2

D(xk, vl)
p
2

⎞
⎟⎟⎟⎟⎠

=
n∑

k=1

c∑
i=1

(
c∑

l=1

D(xk, vi)
p
2

D(xk, vl)
p
2

)−1

D(xk, vi)
p
2 .

(18)

When p=2, (18) is the same as Jgfc in (7) or Jfcm in (2)
with m=1 and ν = 0, if substituted with (9) where m = 2
and ν = 0. The objective function (18) does not coincide
with (2), though the update rule of centroids v is the same
as (10) with m = 2 and ν = 0 as we will show below.

By taking partial derivative of JKHM(V ) with respect to
vi, we have

∂JKHM(V )
∂vi

= −cp

n∑
k=1

xk − vi

D(xk, vi)
p
2+1

(
c∑

l=1

1
D(xk, vi)

p
2

)2

(19)

Although D(xk, vi) includes vi, from (19) the iterative
update rule can be written as:

vi =

n∑
k=1

1

D(xk, vi)
p
2+1

(
c∑

l=1

1
D(xk, vi)

p
2

)2 xk

n∑
k=1

1

D(xk, vi)
p
2 +1

(
c∑

l=1

1
D(xk, vi)

p
2

)2

=

n∑
k=1

(
c∑

l=1

D(xk, vi)
p
2

D(xk, vl)
p
2

)−2

D(xk, vi)
p
2−1 xk

n∑
k=1

(
c∑

l=1

D(xk, vi)
p
2

D(xk, vl)
p
2

)−2

D(xk, vi)
p
2−1

(20)

When p=2, (20) is the same as (10) substituted with (9) where
m = 2 and ν = 0. Thus, we have the same clustering results

as FCM-s with m = 2. In (20),

(∑c
l=1

D(xk,vi)
p
2

D(xk,vl)
p
2

)−2

is the

weight on xk for computing weighted mean of xk’s.
Let uik be the membership function as:

uik =

(
c∑

l=1

D(xk, vi)
p
2

D(xk, vl)
p
2

)−1

, (21)
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then for ∀p > 0, uik’s sum to one except when
∃l, D(xk, vl) = 0.

c∑
i=1

uik =
c∑

i=1

(
c∑

l=1

D(xk, vi)
p
2

D(xk, vl)
p
2

)−1

= 1 (22)

For p > 2, D(xk, vi)
p
2−1 in (20) can be seen as weights on

data points, which come from an analogy with supervised
classifier design methods known as boosting. This view of
the weights is slightly different from [9], [10], [11] but the
effect of the weights is the same. As D(xk, vi) approaches
to zero, the effect of uik for computing vi decreases. When
p ≤ 2, similar to FCM-s, KHM clustering also suffers from
the singularity which occur when D(xk, vi) = 0, and the
weight D(xk, vi)

p
2−1 mitigates this effect when p > 2.

V. GRAPHICAL COMPARISONS

Fig. 1. Rather crisply partitioned result by the standard method (FCM-s)
with m = 1.3

Fig. 2. Rather crisply partitioned result by the entropy-basedmethod (FCM-
e) with ν = 0.05

Characteristics of the four clustering methods are com-
pared in Figs.1-7, where c = 3 and other parameter values
are given in the legend of each figure. In each figure, upper

Fig. 3. Fuzzily partitioned result by the standard method (FCM-s) with
m = 4

Fig. 4. Fuzzily partitioned result by the entropy-based method (FCM-e)
with ν = 0.12

left and middle, and lower left graphs show 3D graphics
of the classification functions. Lower middle graph shows
the membership function with respect to distance from a
cluster centroid. Upper right graph shows the contours of
classification functions. The contours of maximum values
among the three classification functions are drawn. Lower
right graph shows the clustering results where stars mark
cluster centroids.

Figs.1 and 2 show rather crisply partitioned results by
the standard method (FCM-s) with m = 1.3 and by the
entropy-based method (FCM-e) with ν = 0.05 respectively.
The contours are different from each other at the upper right
coner of the graphs since the points near (1.0, 1.0) are far
from all the cluster centroids. Figs.3 and 4 show fuzzily
partitioned results by FCM-s with m = 4 and by FCM-e
with ν = 0.12 respectively. These two methods produce quite
different contours of classification functions when the fuzzi-
fier is relatively large. Fig.3 shows the robustness of FCM-
s where all centroids are located at densely accumulated
areas. FCM-s suffers from the problem called singularity
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Fig. 5. Rather crisply partitioned result by the generalized method (FCM-g)
with m = 1.05 and ν = 0.7

Fig. 6. Fuzzily partitioned result by the generalized method (FCM-g) with
m = 1.05 and ν = 2

when D(xk, vi) = 0, which thus results in the singularity
in the shape of classification function �U

(i)
fcm(x; V ). When the

fuzzifier m is large, the classification function appears to be
spiky at the centroids as shown by 3D graphics in Fig.3 and
this is the singularity in shape.

Fig.5 shows rather crisply partitioned result by FCM-g
with m = 1.05 and ν = 0.7. The result is similar to one by
FCM-e in Fig.2.

Fig.6 shows fuzzily partitioned result by FCM-g with m =
1.05 and ν = 2. The result also is similar to one by FCM-e
in Fig.4.

Since FCM-g is reduced to FCM-s when the fuzzifier ν =
0, FCM-g can produce the same results with those by FCM-
s. Therefore, FCM-g is an aggregated algorithm of FCM-s
and FCM-e.

Fig.7 shows the clustering result of KHM with p = 2.2.

The 3D graphics shows the weight

(∑c
l=1

D(xk,vi)
p
2

D(xk,vl)
p
2

)−2

×
D(xk, vi)

p
2−1. A dent is seen on each centroid of the cluster,

though the clustering result is similar to one by FCM-s.

Fig. 7. Result by KHM with p = 2.2

VI. CLUSTERING WITH ITERATIVELY REWEIGHTED

LEAST SQUARE TECHNIQUE

By replacing the entropy term of the entropy-based method
in (4) with K-L information term, we can consider the
minimization of the following objective function under the
constraints that both the sum of uik and the sum of πi with
respect to i equal one respectively.

Jefc(U, V, S, Π) =
c∑

i=1

n∑
k=1

uikD(xk, vi)

+ ν

c∑
i=1

n∑
k=1

uik log
uik

πi

+
c∑

i=1

n∑
k=1

uik log |Si|, (23)

where

D(xk, vi) = (xk − vi)�S−1
i (xk − vi) (24)

is Mahalanobis distance from xk to i-th cluster prototype,
and Si is a covariance matrix of data samples of the i-
th cluster. From this objective function, we can derive an
iterative algorithm of the normal mixture or Gaussian mixture
model when ν = 2. From the necessary condition for the
optimality of the objective function, we can derive:

Si =
∑n

k=1 uik(xk − vi)(xk − vi)�∑n
k=1 uik

. (25)

vi =
∑n

k=1 uikxk∑n
k=1 uik

. (26)

πi =
∑n

k=1 uik∑c
j=1

∑n
k=1 ujk

=
1
n

n∑
k=1

uik. (27)

This is the only case known to date, where covariance
matrices (Si) are taken into account in the objective function
J(U, V ) in (6). Although Gustafson and Kessel’s modified
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FCM [20] is derived from an objective function with fuzzifier
m, we need to specify the values of determinant |Si| for
all i. In order to deal with covariance structure more freely
within the scope of fuzzy c-means clustering, we need
some simplifications based on the iteratively reweighted least
square (IRLS) technique [18]. Runkler and Bezdek’s [21]
fuzzy clustering scheme called alternating cluster estimation
(ACE) is this kind of simplification.

Now we consider to deploy a technique from the robust
M-estimation [18], [19]. The M-estimators try to reduce the
effect of outliers by replacing the squared residuals with ρ-
function, which is chosen to be less increasing than square.
Instead of solving directly this problem, we can implement
it as IRLS. While the IRLS approach does not guarantee the
convergence to a global minimum, experimental results have
shown reasonable convergence points. If one is concerned
about local minima, the algorithm can be run multiple times
with different initial conditions.

We implicitly define ρ-function through the weight func-
tion. Let us consider a clustering problem whose objective
function is written as:

Jρ =
c∑

i=1

n∑
k=1

ρ(dik) (28)

where dik =
√

D(xk, vi) is a square root of the distance
given by (24). Let vi be the parameter vector to be estimated.
The M-estimator of vi based on the function ρ(dik) is the
vector which is the solution of the following m×c equations:

n∑
k=1

ψ(dik)
∂dik

∂vij
= 0, i = 1, ..., c, j = 1, ..., m (29)

where the derivative ψ(z) = dρ/dz is called the influence
function. We can define the weight function as:

w(z) = ψ(z)/z. (30)

Since
∂dik

∂vi
= − (

(xk − vi)�S−1
i (xk − vi)

)− 1
2 S−1

i (xk − vi),

Equation (29) becomes
n∑

k=1

w(dik)S−1
i (xk − vi) = 0, i = 1, ..., c, (31)

where we set as w(dik) = uik. (31) is equivalent to (26),
which is exactly the solution to the following IRLS problem.
We minimize

Jifc =
c∑

i=1

n∑
k=1

w(dik) (D(xk, vi) + log|Si|) . (32)

Covariance matrix Si in (25) can also be derived from (32).
The weight w should be recomputed after each iteration
in order to be used in the next iteration. In robust M-
estimation, the function w(dik) provides adaptive weighting.
The influence from xk is decreased when |xk − vi| is very
large and suppressed when it is infinitely large. While IRLS
approaches in general do not guarantee the convergence to a

global minimum, experimental results have shown reasonable
convergence points.

To facilitate competitive movements of cluster centroids,
we need to define the weight function to be normalized as:

uik =
u∗

ik∑c
l=1 u∗

lk

. (33)

We confine our numerical comparisons to the following
two membership functions u∗(1) and u∗(2).

u
∗(1)
ik =

πi|Si|−1/γ

(D(xk, vi)/0.1 + ν)1/m
, (34)

where D(xk, vi) is divided by a scaling factor (0.1) so that
the proper value of ν is around 1 when the variance of each
element of x is 1.

u
∗(2)
ik = πiexp(−D(xk, vi)/ν)|Si|−1/γ. (35)

Especially for (34), uik of (33) can be rewritten as:

uik = πi|Si|−1/γ ×⎡
⎣ c∑

j=1

(
D(xk, vi)/0.1 + ν

D(xk, vj)/0.1 + ν

) 1
m

πj|Sj |−1/γ

⎤
⎦
−1

.(36)

u∗(1) is a modified and parameterized multivariational ver-
sion of Cauchy’s weight function in M-estimator or of the
probability density function (PDF) of Cauchy distribution.
It should be noted that in this case, (33) corresponds to
(9), but (26) is slightly simplified from (10). u∗(2) is a
modified Welsch’s weight function in M-estimator. Both
the functions take into account covariance matrices in an
analogous manner with Gaussian PDF. If we choose u∗(2) in
(35) with λ = 2, γ = 2, then the IRLS-FCM is the same as
GMM.

Algorithm IRLS-FCM: Procedure of IRLS Fuzzy c-Means.
IFC1. [Generate initial value:] Generate c×n initial values

for uik (i = 1, 2, . . . , c, k = 1, 2, . . . , n).
IFC2. Calculate vi, i = 1, ..., c by using (26).
IFC3. Calculate Si and πi, i = 1, ..., c by using (25) and

(27).
IFC4. Calculate uik, i = 1, ..., c, k = 1, ..., n by using

(33) and (34).
IFC5. [Termination:] If the objective function (32) is

convergent then terminate, else go to IFC2.
End IFC.
Since d2

ik is Mahalanobis distance,
∑c

i=1

∑n
k=1 w(dik)d2

ik

converges to a constant value, (i.e., the number of instances
(n) × the number of variates).

Fig.8 shows the clustering rezult by IRLS-FCM with u∗(2),
ν = 2.9 and γ = 2. The result is quite the same as the
result by GMM, though the fuzzifier ν is larger than GMM
(i.e., ν = 2 in GMM). The data set is partitioned with
ellipsoidal clusters. The points located at the left bottom
of the graph (near the origin) crisply belong to the upper
ellipsoidal cluster. This is a significant difference from the
result shown in Fig.9 where u∗(1) is used and m = 1, γ = 2
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and ν = 1. Those points are fuzzily partitioned and the
membership values are around 0.5 in Fig.9. For the points
that are distant from the two cluster centroids, no one knows
which cluster the points should belong. IRLS-FCM with
u∗(1) is based on the FCM-g and reflects the rational intuition
of human beings.

Fig. 8. Result by IRLS-FCM with u∗(2) , ν = 2.9 and γ = 2

Fig. 9. Result by IRLS-FCM with u∗(1), m = 1, ν = 1 and γ = 2

VII. CONCLUSION

In this paper we presented a modified FCM clustering
method for enhancing the property which is typical in the
clustering based on entropy such as GMM or normal mixture.
A slightly modified FCM objective function resolves the
problem of singularity in FCM-s while maintaining the ro-
bustness of FCM-s. KHM clustering is reinterpreted as a kind
of FCM clustering. The weighting approach to IRLS-FCM
clustering by penalizing solutions via weights on the data
points as KHM clustering may be a prospective modification
of fuzzy clustering.

IRLS-FCM clustering based on FCM-g is applied to a
post-supervised classifier design in [22], and achieves high
classification performance.
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