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Abstract—1In this paper, we present a novel algorithm for
learning fuzzy measures for Choquet integration. There are two
novel aspects of the algorithm: it seeks to explicitly reduce the
number of nonzero parameters in the measure to eliminate
noninformative or useless information sources and it uses a
Bayesian model for parameter estimation which has not been
previously applied to the fuzzy measure learning problem. The
method uses a hierarchical model that implements a sparsity
promotion algorithm through a Gibbs sampler. This approach
builds on the methods proposed by Figueiredo et. al which
uses Expectation Maximization (EM) to maximize the Least
Absolute Shrinkage and Selection Operator (LASSO) criterion
under a distribution that promotes sparsity. Additional con-
straints are needed to satisfy the requirements of fuzzy measures.
Figueiredo’s algorithm does not have a mechanism for imposing
these constraints. The constraints are imposed by sequentially
exploring the lattice tree of the power set and requiring that
each fuzzy measure value assigned to a set lies in the domain
of a truncated Gaussian determined by the fuzzy measures of
supersets of the set under consideration.

I. INTRODUCTION

Methods and motivations for learning fuzzy measures are
well-documented in the literature [1], [2], [3], [4], [5], [6],
[71, [8], [9], [10], [11], [12] Previous approaches to learning
fuzzy measures have generally relied on heuristic methods
or on methods from classical optimization such as gradient
descent, quadratic programming, etc. In this paper, we adapt
a probabilistic approach to classification and regression model
design to the measure learning problem for Choquet inte-
gration. This method seeks to simultaneously accomplish the
classification or regression task while forcing as many model
parameters to zero as possible. The classification or regression
task is supported by requiring the difference between actual
and desired outputs to come from a Gaussian distribution with
zero mean. Parameters are driven to zero by forcing them
to have distributions with high probabilities of zero values,
such as the Laplacian distribution. These latter distributions
are referred to as sparsity promoting distributions. There are
multiple motivations for sparsity promotion. One is that sparse
algorithms are more resistant to overtraining. Another is that
by eliminating parameters (setting them to zero), we may
eliminate redundant or useless information sources.

The paper is divided into nine sections. In the first, fuzzy
measures and Choquet integration are defined. The second
explores the basic model used by Figueiredo et. al [13].
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The next five sections develop the idea of using the Gibbs
Sampler [14], [15], [16] for learning fuzzy measures used
in the Choquet integral to fuse information from different
algorithms. In the next section, we describe two experiments
that illustrate the capabilities of the new algorithm to handle
the learning and sparsity promotion. In the conclusion, we
summarize our results and discuss possible future research.

II. CHOQUET INTEGRAL

We first define some of the basic concepts behind the theory
of fuzzy measures. These definitions can be found in [17],
(51, (11, [18].

Definition 1: Let X = {x1,...,x,} be any finite set. A
discrete fuzzy measure on X is a function y : 2% — [0,1]
with properties

1) w(®) =0and u(X)=1.

2) Given A, B € 2%, if A C B then u(A) < u(B).

For our purposes, the set X is considered to contain the
names of sources of information (features, algorithms, agents,
features, sensors,etc), and for a subset A C X, u(A) is
considered to be the worth of this subset of information.

To fuse evidence supplied by different sources of infor-
mation from a discrete fuzzy set of X, we use the discrete
Choquet integral [19], [12], [17], [10], [9], [20], [21]

Definition 2: Let f be a function from X = {x1,...,2,}
to [0,1]. Let {z4 (1), .- 7w0(n)} denote a reordering of the set
X such that 0 < f(z,)) < ... < f(Zs(n)), and let Ag;) be
a collection of subsets defined by A(;y = {xa(i), e ,mg(n)}.
Then, the discrete Choquet integral of f with respect to a
fuzzy measure i on X is defined as

Culf) = 1(Aw)(fz@) — f@i-1)) (1)
=1

where we take f (x<0)) =0, Ay = ¢ and Ty = To(i)-

III. HIERARCHICAL SPARSITY MODEL

Consider the generalized linear model

gl p) =Y pihi(x) = Hp,
=1

y=g(x,pu) +eand e ~ N(0,0?), 2
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where y is the desired output for the algorithm, pu =
(1, -+, )T is a vector of model parameters, and H =
(hi(x),...,hm(x)) is a collection of functions of the input
vector . It is assumed that the difference between the desired
output, and the computed output g(x, ) is a zero mean
Gaussian €. We seek to maximize the likelihood of p and o2
given the output of the y data, L(u, o2|y). For this, we assume
a distribution for each coordinate of g = (pu1,..., pm)?. In
our specific case each f; is a measure of an element of the
power set 2%. We would like to eliminate the positions in p
that do not have much influence on the output. Figueiredo [13]
proposed the following hierarchical model to accomplish this

Yi o~ N(Hiu,o2)Vi:1,...,n
pj ~ N(O,7) Vji=1,.

Tj o~ exp( ) Vi=1,.

~v ~ non-informative prior

2

0 ~ non-informative prior 3)

where the y1, . . ., y, represent our known data or labels, the
41, - - - 5 [ Tepresent the weights to be learned, the 74, . . .
represent the hidden variables that promote sparsity in the
weights,  is the amount of sparsity in the model , and o2
is the amount of noise in the model. It can be proved under
this model that the u; have the following density
i~ ?exp {—=v7|;]} (Laplacian). 4)
This density promotes sparsity in the g since it has a sharp
peak at zero. If the components of p are samples from the
Laplacian, then they are likely to be small. Assuming 74, ..., 7}

as hidden data, an EM algorithm can be used to maximize the
likelihood

aTm

Lp, 0%y, 7) = p(y, 7|p, 0%)
p(ylp, o?)p(p|r)p(c?). Q)

IV. CONSTRAINING THE HIERARCHICAL MODEL FOR
SPARSITY PROMOTION

A problem we have in the model (3) is that we cannot con-
strain elements in g that obey complex relations. For example,
the fuzzy measure definition has the following relations:

1) (@) =0 and u(X)=1.

2) Given A, B € 2%, if A C B then u(A) < u(B).

Let K = |X|. We seek to estimate the 2% — 2 parameters
w(A),A C X. To simplify our notation, and treat a fuzzy
measure as a parameter vector, we order the subsets of 2% into
the succession {A1, Ao, ..., Asx_1} and write p; = p(A;).
Now, we will impose the fuzzy measures relations using the
following strategy based on the Gibbs sampler. Given the
model for spars1ty promotion in the section 3, and taking
j=1...,m = |2X| — 2, we can try to calculate the
joint probablhty (7,02, 141, -y fbmy T1,---,Tm) using the
following strategy. Looking at the structure of the power set
lattice, for example X = {a,b,c} in figure (1), starting at
the top (i.e. X) going downward to the singelton elements.

X={a,b,c}

{b,c

Fig. 1. Example of a lattice. Arrows represent the subset relation.

It is easy to observe that the value of a fuzzy measure on a
particular set, for example u({a}), depends on the previous
values for the sets that contain p({a}), i.e. p({a, b}), n({a, c})
and p({a,b,c}). Because of this, we can constrain the value
of each measure j; by sampling from a truncated Gaussian
on the interval [0, min {pa,|A; C Ag}]. Thus, the hierarchical
model from section (3) can be modified in the following way

yi ~ N(Hp,0®)Vi=1,...,n

Um = 1

ti o~ N, ) ljo,min{ua,14,ca Vi=1,...,m—1
T; o~ exp(%) Vi=1,...,m—1
v~ non-informative prior

02 ~ non-informative prior

In this model the row vectors H; are composed of zeros and
the differences [f(zx)) — f(z(x—1))] corresponding to the
correct positions of the vector ! = (1, 12, ..., pm )*. Hence,
the Choquet integral can be written as an inner product

Culfi) = D wlAw)(filzw) = filzg-1)))
H1
= H;- (6)
Hm

V. GIBBS SAMPLER FOR THE NEW MODEL

Knowing that the Gibbs sampler is a variation of the
generalized Expectation Maximization algorithm [15], and
given that fact that we can constraint our samples to be taken
in defined sets. Then, we can use the Gibbs sampler as a way
to learn the fuzzy measures.

With the previous idea, we can see that given an initial
pOil’lt (703 Ugvu(l)a R M9n77-107 s 77-'21) = (707 0-87 /-1'07 TO) and
assuming the samples v, ..., y, identically independent, the
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Gibbs sampler looks like: to be
l) .ut+1 ~ p(ﬂj|%70t27/izjv7't7yl7-~-7?/n) = exp 72?:1((HU)2‘UI§) (ll)
p(ug~,y1,--4,yn\Vt,fff»NijsTt) 202
p(yumjyn)t ) n 7
PW1s - ynlof, m)p(pilmi, {ns| A5 C As}) V= 2im1 20y — Hy ) Hig)
1,...,m—1 with + 252
Hj ~ N(Ov Tj)‘[O,min{us|AJCAs}] Zn ( H ] _)2 MZ
- i=1
2) 7—;+1 ~ p(tj")/tvo-?yug_a'"7M$n77—f7"'7Tfn7y17"'7yn) - 20_2 — _# (12)
=p(tjlv) Vi=1,...,m—1 !
3) Yt+1 ~ non-informative prior. The exponential term can be rewritten as
4) ¢2_, ~ non-informative prior. n
s P Y (i (Hy)u3)
Thus, we only need to devise a method for the posterior sam- 2027
pling of the p;’s, and select the appropriate non-informative n n i
priors for v and o2. We need to point out that the selection of n 2> i1 T [Zi=1 (yi — H; )H”] Hj
the non-informative prior for the random variables v and o2 2027;
can be extrc?mely dl'fﬁcult'. For e;xample, it is knqwn that son}e Zzz iy — HY J ,)2 + o2 M?
of the non-informative priors, like the Jeffrey prior p(y) = > - 9527, . (13)
are not proper probabilities. Thus, this part of our model is 07
still an open problem. Thus, we can have simplify this to be equal to
(m (L (Hy)?) + o3
2.
VI. SAMPLING FROM A POSTERIOR DISTRIBUTION OF 2077
27 [ZL (i — H p_j)Hy; }uj
. L +
Given (Y7,...,Y,) a sample from multivariate normal 2027;
. . . . . 2 T _ n s
variable with lestrlbutlon N(Hu,.o 1), Where? [J,X = STy — H; J”’—j)z
(p1, p2, -, ptm )T represent the mapping of the lattice 2% — () 5 (14)
. . 20T
into a vector, and H represent the sorting of the values
[f(zx)) — f(x@+1))] - Thus, we can see from the model in ~ We have finally that
section 3 for the Gibbs sampler that 02— 2[00 (wi—H )H”]M N Z: S (s Hp )
J 75 " [.117 2 02 J H;j;)? 02
5~ DL syl Hit 2 Dl |75 (sl A4y € A)) - (D~ B > 2y o))
Consider for a moment that p(u;|7;, {pa,|A; € Ag}) is not (i (D (Hij)?)+o?)
truncated that is . ) (15)
We have the following after completing squares
plpslmi {pa,|A; C AsY) = p(ujlmy). ®) )
. o . p(p]0,07) o
Then, p(y1, .., Yn|Hp, o21)p(u;|7;) is a unlvarlate Gaussian N = 2
Do i H ) Hig)
distribution with mean # and variance o2. Thus, we only Hi— = O~ Hy)) 107
need to devise a closed form expression for this Gaussian exp{ — ’ 2":; _ i . (16)
and truncate it. Now, we write the complete expression of (TJ(Z:: K H:j)g) To7)

p(u;10,0%) as

p(pil0,0%) = p(ys, .o, yul Hr, 0* Dp(ps]7) o Then, we have that

1 & 1 r~[ " (g — H _H}
exp{—NZ(%—Hiu)Q}*exp{—z_,u?}, ) pj~ N ! Zfl(nz i) Hy ,
7 K (75 (Xi=1 (Hij)?) +0?)
where H; is the i row in the design matrix H = 027
(Hy,... ,Hn)T and pi; is the j position in the vector p. Thus, 5 (HJ)Q) T 02))
J i=1

we can then rearrange the terms in the exponential part of

(110, 02) to be Vi=1,...,m. 17

Lo 1 Using this distribution, we can then sample from the truncated
exp {_M ((yi — H 7 p_j) - Hijpj)? _Tnug} (10) normal in the interval [0,min {us|A; C As}]. Finally, the
i=1

where H, 7 = (H},..,H]"" H!™ _ H") and p_; =
(B oy =1 Mgy -y um) Equatlon (10) can be rearranged
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truncated distribution looks like
[Z?ﬂ(% - Hiiju—j)Hij}
(15 (i, (Hij)?) +02)

g~ N |7

(75 (i (Hig)?) +02))

ll0.min{p.jA;ca Vi =1,...,m. (18)

VII. PROBLEMS WHEN SAMPLING FROM A GAUSSIAN
WITH SMALL VARIANCE.

An immediate problem that this method has is that variance
for the normal sampling distribution tends to be small. This
produces inaccuracies in the sampling of the measures. A way
to solve this problem is based in the following observation.
Imagine that we are sampling from a Gaussian distributions,
it is clear that we have a higher probability to sample from
the places near to mean than away from it. If the standard
deviation decrease, the probability to sample things near to
the mean is higher. Now, if we are trying to sample from an
interval that is far away from the mean with respect to the
standard deviation, the curve of the Gaussian function tends
to be flat. Thus, we can assume that we are sampling from a
uniform distribution in the interval of interest. Although, this
looks like an inefficient solution, our experiments indicate that
this simple approach works. We need to remark that this is not

a theoretically correct solution. The correct solution is based
in the distribution p1; ~ K * exp [— (n 2;2)2}, where K is the
inverse of the integral of the exponential term in an interval.
For this reason, we are looking for more efficient ways to

circumvent this problem.

VIII. IMPROVING THE SPARSITY PROMOTING MODEL

Something that is clear from sections (IV) - (V) is that we
are trying to promote Sparsity using a Gaussian distributions.
This is clear if we look at the first equation in the Gibbs
sampler,

1 « 1
CXP{—W Z(Z/z —HiH)Q} *CXP{_TTJ,“?}' (19)
=1

It is clear that the first exponential represents the minimiza-
tion term for the classification and the second exponential
represents the sparsity promoting term. In the moment we
understand this, we realize that given p; € [0, 1], we shall we
using a better sparsity promoting distribution. When looking at
Figueiredo [13], we realized that we should be using directly
the Laplacian, or in our case the exponential distribution, to
promote more sparsity in our model. Thus, the new model
looks like

N(H;p,0*) Vi=1,...,n

Yi o~
pm = 1
o .
Hj o~ exp (5) l0,minfua,|a;cay Vi=1...,m—1
v ~ non-informative prior
0? ~ non-informative prior

Thus, the new model eliminate the intermidiate 7 and uses
directly a exponential distribution for the measures to be
learned. Now, the Gibbs sampler looks like

D pitt ~ P(islve, o, 5 1, s Yn) =
P Y1y 7,07 L)
p(yls'“s%’ll) p x .
Py Ynlods BO)P(pjlve, {pslA; € Agy) Vi =
1,...,m with

1~ exp(3)lfo,minfp.4,c4.1]
2) Y¢+1 ~ non-informative prior.
3) o7, ~ non-informative prior.
In this new model, the p; will be sampled from the
distribution

(Z?:l(yi - Hflej)Hij) + 0%y
> it (Hiz)? ’

pi~ N

‘[O,min{u5|AJ§As}]vj =1,...,m. (20)

Other possible improvement for this new model could be
assuming not a single «y as a rate of sparsity for each measure
but multiple «’s for each measure to be learned. In addition we
would like to be able to have a feedback from the sparsity ratio
to this s to increase the level of sparsity if it is necessary. In
order to to this, we need to include an extra distribution for
the ~’s which cannot be a non-informative prior.

IX. INTERPRETING THE RESULTS FROM SPARSITY
PROMOTION

A tool used to measure the importance of each input in
the Choquet integration is the Shapley index. The Shapley
index [22] for input z; with respect to the measure 4 is given
by

¢1‘1 (H‘) = Z

z, gSCX

| — —1)!
‘S"(‘X“Xl',s' D s o) = uls)).
21
A comparison of the definition of the Shapley index with
the definition of the Choquet integral shows how the Shapley
index measures the importance of each element in the set X
by essentially computing the average value of the coefficients
involving a particular element. More specifically, any weight
in the Choquet integral involving a particular element x; will
have the form p(SJz;) — pu(S) where z; ¢ S. If all these
values are zero, then x; has no influence on the output at all.
If all these values are large, then z; has a significant influence
on the output.

X. COMPARISON WITH QUADRATIC PROGRAMMING

A classical way to learn a complete measure is the optimiza-
tion method proposed by Grabisch et. al [23]. In this method
a quadratic objective function under constraints is defined to
obtain the optimal measures. The number of constraints is a
exponential function of the dimensionality of the input and
they are stored in a matrix. Therefore, solving the quadratic
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programming quickly becomes intractable. Although the Gibbs
sampler has a similar limitation than the quadratic program,
the exponential nature of the input, the Gibbs sampler does not
depend on a sparse matrix of constraints, but on a clever way
of imposing the constraints which decreases the complexity in
calculating the solution.

It has been seen empirically, using the same hardware
for both methods, that the Gibbs sampler is faster than the
quadratic programming, but a complete complexity analysis
will be performed.

XI. EXPERIMENTS

In this section, we present results on two synthetic problems
to illustrate the sparsity promotion capability of the system.
Each of them is a two class synthetic problem with 1000
samples in each class with four features in each sample. In
addition, each Gibbs sampler chain has a length of 10000
iterations.

A. Case I

In this case the only separable features are in the odd posi-
tions which contain samples for Class 1 from the distribution
N(0.2,0.1), and Class 2 from the distribution N (0.8,0.1). The
second features and the fourth feature contain uniform noise.
For features bigger than one and less than zero, we clipped
the values. If we plot the samples in their three first features
(figure 2), we can see the separation between the classes.

Fig. 2. Plot of samples for class 1 ‘0’ and class 2 “+’ for the first three
features in Case 1. Note that feature 2 has not value for classification.

It can be seen that the algorithm is able to separate the
classes because of the confusion matrix in table (I). The fuzzy
measures are in the table(I) and the Shapley values are in
table (III). Note that the Shapley indices of the informative
features (features 1 and 3) are approximately 20 times larger
than those of the non-informative features (features 2 and 4).

CM class 1 | class
classl 1000 0
class2 0 1000

TABLE 1

CONFUSION MATRIX FOR CASE I

Measures Mean std
w(z) 0.4506 0.033273
u(xe) 0.01005 0.0078438
u(xs) 0.46807 0.038589
wu(xy) 0.0074683 | 0.0068834

(s, zq) 0.52648 0.04968

w(xa, xq) 0.035829 | 0.016663

w(xa, z3) 0.50671 0.055892

w(xy, z4) 0.49988 0.042394

w(x, z3) 0.96511 0.020748

w(xy, z2) 0.49782 0.04617

w(zy, x9, x3) 0.99138 0.011033
w(xy, o, 4) 0.53374 0.050566
w(xy, w3, 4) 0.98527 0.014186
w(xe, 3, 24) 0.5743 0.055924
w(X) 1 0
TABLE 11

MEASURES CASE [ WITH MEAN AND STD OF THE MARKOV CHAINS

B. Case Il

In this case the the only separable feature is the first one
which contain samples for Class 1 from N (0.2,0.1), and Class
2 from N (0.8, 0.1). The rest of features contain uniform noise.
The same clipping strategy is used. The confusion matrix is
shown in table (IV). The measures are in the table (V) and
the Shapley values ae in the table (VI).

XII. CONCLUSION

A novel method for learning fuzzy measures for Choquet
integration has been presented. The method uses a maximum
likelihood approach to learn mappings from inputs to outputs
coupled with a sparsity promoting term that reduces the
influence of uninformative features. In our future work, we are
planning to explore how the sparsity in the fuzzy measures
affects the Shapley index. In this regard, we would like to

Feature | Shapley Value
1 0.46229
2 0.024708
3 0.48755
4 0.025449
TABLE III

SHAPLEY VALUES FOR THE FEATURES IN CASE |
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CM class 1 | class
classl 998 2
class2 0 1000

TABLE IV

CONFUSION MATRIX FOR CASE II

Measures Mean std
w(x) 0.4846 0.04257
w(z2) 0.019192 | 0.010254
w(xs) 0.022071 | 0.010317
w(xa) 0.025016 | 0.011738

w(zs, xa) 0.049664 | 0.016633

w(za, xa) 0.051202 | 0.021779

w(ze, x3) 0.03418 | 0.016434

w(z1,xa) 0.60286 | 0.069511

w(zy, x3) 0.98603 | 0.035203

w(z1,x2) 0.60599 | 0.064725

w(xi, 2, x3) | 099137 | 0.013091
w(z1, z2,24) 0.6642 0.086878
w(xi, s, x4) | 099648 | 0.020278
w(xe, 3, x4) 0.1134 0.014942
w(X) L 0
TABLE V

MEASURES CASE II WITH THE MEAN AND STD OF THE MARKOV CHAINS

Feature | Shapley Value
1 0.72993
2 0.029855
3 0.20466
4 0.035554
TABLE VI

SHAPLEY VALUES FOR THE FEATURES IN CASE [

prove a direct relation between the Sparsity and the variance of
the Shapley index. In addition we are developing a minimum
error classification error using the logistic distribution and the
Gibbs sampler
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