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Abstract— This paper proposes a TS recurrent fuzzy
neural network (RFNN) and a robust RFNN control of
uncertain nonlinear time-delay systems. First, the TS-RFNN
is proposed to learn complex functions with delays. Next,
the robust adaptive TS-RFNN control is developed for time-
delay nonlinear systems. The advantages of the proposed
controller includes: i) asymptotic stability independent on
the delay; ii) more simple and legible gain design; and iii)
simpler structure of FNN (fewer fuzzy rules). Simulation
results demonstrate the validity of the proposed control
scheme.

Index Terms— FNN, robust control, time-delay system,
uncertainty.

I. INTRODUCTION

Since time-delay is a main source of instability and
poor performance, the control problem of time-delay
systems has received considerable attentions in literature,
such as [1]-[7]. Most literatures focus on linear time-
delay systems due to the fact that the stability analysis
developed in the two methods is usually based on linear
matrix inequality (LMI) techniques [8]. Some sliding-
mode control (SMC) schemes have been applied to
uncertain nonlinear time-delay systems in [4], [5], [6].
However, these SMC schemes still exist some limits as
follows: i) specific form of the dynamical model and
uncertainties [4], [5]; ii) an exactly known delay time
[6]; and iii) a complex gain design [4], [5], [6].

Recently, many fuzzy neural network (FNN) articles
are proposed by combining the fuzzy concept and the
configuration of neural network, e.g., [9]-[12]. There, the
fuzzy logic system is constructed from a collection of
fuzzy If-Then rules while the training algorithm adjusts
adaptable parameters. Nevertheless, few results using
FNN are proposed for time-delay nonlinear systems due
to a large computational load and a vast amount of
feedback data, for example, see [11], [12]. Moreover, the
training algorithm is difficultly found for systems with
unknown time-delay.

To cope with uncertain complex systems, a TS re-
current fuzzy neural network (TS-RFNN) is introduced
and extended to robust adaptive control in this paper.
The proposed TS-RFNN combines the concept of TS
fuzzy rules ([13], [14], [15]) and the structure of neural
networks to provide high capacity for approximation
of complex uncertainty which may contain delays. To
apply to robust adaptive control, this paper introduces a
novel sliding surface design to keep the sliding motion
insensitive to uncertainties and unknown time-delay. The
gain condition is transformed in terms of a simple and
legible LMI. Based on the asymptotic sliding surface,
the ideal and TS-RFNN-based reaching laws are derived.
In detail, the TS-RFNN provides a near ideal reaching
law by combining TS fuzzy rules and recurrent neural
network. The advantages of the proposed TS-RFNN are:
i) allowing fewer fuzzy rules for complex systems (since
the Then-part of fuzzy rules can be properly chosen); and
ii) a small switching gain is used (since the uncertainty
is indirectly cancelled by the TS-RFNN). As a result,
the adaptive TS-RFNN based sliding mode controller
achieves asymptotic stabilization for a class of uncertain
nonlinear time-delay systems.

This paper is organized as follows. The problem formu-
lation is given in Section 2. The sliding surface design
and ideal sliding mode controller are given in Section
3. In Section 4, the adaptive TS-RFNN control scheme
is developed to solve the robust control problem of
time-delay systems. Section 5 shows simulation results
to verify the validity of the proposed method. Some
concluding remarks are finally made in Section 6.

II. TS-RFNN

In control engineering, neural network is usually used
as a tool for modeling nonlinear system functions because
of their good capabilities in function approximation. In
this section, the TS-RFNN (TS recurrent fuzzy neural
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network) is proposed to approximate a complex nonlinear
function u∗(t, x) (which may be an ideal control law)
with states x. Indeed, the recurrent FNN is composed of
a collection of T-S fuzzy IF-THEN rules as follows:

Rule i :
IF z̄1(t) is Gi1 and · · · and z̄ni

(t) is Gini
THEN

uN = z1vi1 + z2vi2 + · · · + znv
vinv

= zT vi (1)

for i = 1, 2, ..., nR, where nR is the number of fuzzy
rules; z1(t) ∼ z̄ni

(t) are the premise variables composed
of available signals sj form the inputs; uN is the fuzzy
output; vi = [ vi1 vi2 · · · vinv ]T ∈ Rnv with tun-
able weights vi1 ∼ vinv

; z = [ z1 z2 · · · znv ]T ∈
Rnv with properly chosen signal z1 ∼ znv

; Gij (j =
1, 2, · · · , ni) are the fuzzy sets with Gaussian member-
ship functions which have the form

Gij(z̄j) = exp

(
−(z̄j −mij)2

σ2
ij

)
(2)

for i = 1, 2, · · · , nR and j = 1, 2, · · · , ni, where
mij is the center of the Gaussian function; and σij is
the variance of the Gaussian function. Note that when
the FNN fuzzifies the inputs, the activated level will be
back-propagated into the premise variables as

z̄j(N)=sj(N)+hijGij(z̄j(N − 1))

where N denotes the number of iteration; and hij is
the recurrent weight associate with the (i, j) membership
function. Therefore, the FNN has a recurrent form.

Using the singleton fuzzifier, product fuzzy inference
and weighted average defuzzifier, the inferred output of
the fuzzy neural network is

uN =
nR∑
i=1

µi(z̄(t))zT vi

where µi(z̄(t)) = w̄i(z̄(t))/
∑nR

i=1 w̄i(z̄(t)) with
z̄(t) = [ z̄1(t) z̄2(t) · · · z̄ni

(t) ] and w̄i(z̄(t)) =∏ni

j=1Gji(z̄j(t)). For simplification, define two auxiliary
signals

ξ = [ zTµ1 zTµ2 · · · zTµnR ]T ∈ RnvnR

θ = [ vT
1 vT

2 · · · vT
nR

]T ∈ RnvnR

In turn, the output of the recurrent TS-RFNN is rewritten
in the form:

uN = ξT θ (3)

Thus, the above TS-RFNN has a simple structure, which
is easily implemented in comparison of traditional FNN.
Moreover, the signal z can be appropriately selected for
more complex function approximation. In other words,
we can use less fuzzy rules to achieve a better approxima-
tion. Moreover, the recurrent neuron can further provides
better approximation of complex functions with delays.

According to the uniform approximation theorem, there
exists an optimal parametric vector θ∗ of the TS-RFNN
which arbitrarily accurately approximates the function u∗.
This implies that the function can be expressed in terms
of an optimal TS-RFNN as

u∗ = ξT θ∗ + ε(x)

where ε(x) is a minimum approximation error which is
assumed to be upper bounded in a compact discussion
region. Meanwhile, the output of the TS-RFNN is further
rewritten in the following form:

uN = u∗ − u∗ + ξT θ

= u∗ + ξT θ̃ − ε(x) (4)

where θ̃ = θ − θ∗ is the estimation error of the optimal
parameter. Thus, the tuning law of the FNN will be de-
rived for some criteria. Since the proposed FNN contains
a recurrent loop, we take controlling time-delay systems
as its application in the following.

III. APPLICATION PROBLEM DESCRIPTION

Consider a class of nonlinear time-delay systems de-
scribed by the following differential equation:

ẋ(t) = (A+ �A(t))x(t) + (Ad + �Ad(t))x(t− d)
+Bg−1(x)(u(t) + h(x(t), x(t− d)))

x(t) = ψ(t), t ∈ [ −d 0 ] (5)

where x(t) ∈ Rn and u(t) ∈ R are the state vector
and control input, respectively; d is an unknown constant
delay time; A and Ad are nominal system matrices with
appropriate dimensions; �A and �Ad are time-varying
uncertainties; h(·) is an unknown bounded nonlinear
function; B is a known input matrix; g(x) ∈ R is
an unknown function presenting the input uncertainties;
and ψ(t) is the initial condition. In the system (5), for
simplicity, we assume the input matrix

B =
[

0 0 · · · 0 1
]T

and partition the state vector x into x = [ xT
1 x2 ]T

with x1 ∈ Rn−1 and x2 ∈ R. Accompanying the state
partition, the system matrices can be decomposed into the
following:

A =
[
A11 A12

A21 A22

]
,�A(t) =

[ �A11 �A12

�A21 �A22

]
Ad =

[
Ad11 Ad12

Ad21 Ad22

]
,�Ad =

[ �Ad11 �Ad12

�Ad21 �Ad22

]
where Aij , Adij , �Aij , and �Adij (for i, j = 1, 2)
are decomposed components of A, Ad, �A, and �Ad,
respectively; A11,�A11, Ad11,�Ad11 ∈ R(n−1)×(n−1);
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and A22,�A22, Ad22, �Ad22 ∈ R. Thus, we rewrite the
system (5) as two coupling subsystems:

ẋ1(t) = (A11 + �A11(t))x1 + (A12 + �A12(t))x2

+(Ad11 + �Ad11(t))x1(t− d)
+(Ad12 + �Ad12(t))x2(t− d) (6)

ẋ2(t) = f(x(t), x(t− d)) + g−1(x)(u+ h) (7)

x(t) = ψ(t), t ∈ [ −d 0 ]

where f(x(t), x(t− d)) = (A21 +�A21(t))x1 + (A22 +
�A22(t))x2(t)+(Ad21 +�Ad21(t))x1(t−d)+(Ad22 +
�Ad22(t))x2(t− d).

Throughout this study we need the following assump-
tions:
Assumption 1: For controllability, g(x) > 0 for all
x ∈ Uc, where Uc ⊂ Rn is a certain controllable region.
Moreover, ġ(x(t), x(t− d)) ∈ L∞ if x(t) ∈ L∞.
Assumption 2: The uncertain matrices �A11(t),
�A12(t), �Ad11(t), and �Ad12(t) satisfy

[ �A11(t) �A12(t) ] = D1C1(t)[ E11 E12 ]
[ �Ad11(t) �Ad12(t) ] = D2C2(t)[ E21 E22 ]

for some known matrices D1, D2, E11, E12, E21, E22

with proper dimensions and unknown matrices C1(t),
C2(t) satisfying ‖C1(t)‖ ≤ 1 and ‖C2(t)‖ ≤ 1.

The control objective is to determine a robust adaptive
FNN controller such that the state x(t) converges to zero.
Since high uncertainty is considered here, we want to
derive a SMC-based design for the control goal.

IV. SMC-BASED TS-RFNN CONTROL

A. Sliding Surface Design

Due to the high uncertainty and nonlinearity in the sys-
tem (5), we propose a SMC-based TS-RFNN controller
to solve the control problem. To this end, an asymptotic
stable sliding surface is designed below.

Without loss of generality, let the sliding surface denote

sf (t) =
[ −Λ 1

] [ x1(t)
x2(t)

]
= Λ̃x(t) = 0 (8)

where Λ ∈ R1×(n−1) and Λ̃ = [ −Λ 1 ] ∈ R1×n

determined later. In the surface, we have

ẋ1(t) = (A11 +A12Λ +D1C1(t)E11

+D1C1(t)E12Λ)x1(t) + (Ad11 +Ad12Λ
+D2C2(t)E21 +D2C2(t)E22Λ)x1(t− d)

(9)

where the facts x2(t) = Λx1(t) and Assumption 2
have been applied to (6). Since the subsystem (9) is not
coupling with x2(t), the asymptotical stability of x1(t)
can be achieved by an appropriate Λ. Thus, the result of
sliding surface design is stated in the following theorem.

Theorem 1: Consider the system (5) lie in the sliding
surface (8). The sliding motion is asymptotically stable
independent of delay, i.e., limt→∞ x1(t), x2(t) = 0,
if there exist positive symmetric matrices X,Q and a
parameter Λ satisfying the following LMI:

Given ε > 0
subject to X > 0, Q > 0

M (∗) (∗)
XAT

d11 +KTAT
d12 −Q (∗)

E11X +E12K 0 −εIa
0 E21X + E22K 0
DT

1 0 0
DT

2 0 0
(∗)
(∗)
(∗)
−εIa

0
0

(∗) (∗)
(∗) (∗)
(∗) (∗)
(∗) (∗)

−ε−1Ib (∗)
0 −ε−1Ib

 < 0(10)

where M = A11X+XAT
11 +A12K+KTAT

12 +Q; K =
ΛX; Ia, Ib are identity matrices with proper dimensions;
and (∗) denotes the transposed elements in the symmetric
positions.

Proof: When the system (5) lie in the sliding surface
(8), the sliding motion is described by the dynamics (9).
To analyzes the stability of the sliding motion, let us
define the following Lyapunov-Krasoviskii function

V (t) = xT
1 (t)Px1(t) +

∫ t

t−d

xT
1 (τ)Qx1(τ)dτ

where P > 0 and Q > 0 are symmetric matrices. The
time derivative of V (t) along the dynamics (9) is V̇ (t) =
x̄T (t)Ωx̄(t) with x̄(t) = [ xT

1 (t) xT
1 (t− d) ]T ,

Ω =
[

Ψ (∗)
Ω21 −Q

]
Ω21 = [Ad11 +Ad12Λ +D2C2(t)(E21 +E22Λ)]T P

and Ψ = [A11 +A12Λ +D1C1(t)(E11 + E12Λ)]T P +
P [A11 +A12Λ +D1C1(t)(E11 + E12Λ)]T +Q. Thus, if
Ω < 0 is satisfied, then V̇ (t) < 0. In other words, the
design is transformed to find matrices P,Q,Λ satisfying
Ω < 0. To this end, we decompose the matrix Ω into two
parts as follows:

Ω = Ω1 + Ω2

with

Ω1 =

 {(A11 +A12Λ)T
P

+P (A11 +A12Λ) +Q} (∗)
(Ad11 +Ad12Λ)TP −Q


Ω2 =

 {PD1C1(t)(E11 + E12Λ)
+[D1C1(t)(E11 + E12Λ)]TP} (∗)
[D2C2(t)(E21 + E22Λ)]T P 0

 .
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Note that the second term Ω2 can be further rewritten in
the form:

Ω2 =
[
PD1 PD2

0 0

]
·C(t)

[
E11 + E12Λ 0

0 E21 + E22Λ

]
+
[
E11 + E12Λ 0

0 E21 + E22Λ

]T

·CT
(t)
[
PD1 PD2

0 0

]T

with C(t) = diag{C1(t), C2(t)} satisfying C
T
(t)C(t) ≤

Id for identity matrix Id from Assumption 2. According
to the above decomposition, the stability condition Ω < 0
is equivalent to

Ω1 +


E11 + E12Λ 0

0 E21 + E22Λ
(PD1)T 0
(PD2)T 0


T

·Iε


E11 + E12Λ 0

0 E21 + E22Λ
(PD1)T 0
(PD2)T 0

 < 0

for some ε > 0 and Iε = diag{ε−1Ia, ε
−1Ia, εIb, εIb}

with proper identity matrices Ia, Ib. After applying Schur
complement to the above inequality, we further obtain the
LMI (10) with X = P−1 and Q = XQX . Therefore,
if the LMI problem has a feasible solution, then the
sliding dynamical system (9) is asymptotically stable, i.e.,
limt→∞ x1(t) = 0. In turn, from the fact x2(t) = Λx1(t)
in the sliding surface, the state x2(t) will asymptotically
converge to zero as t → ∞. Moreover, since the gain
condition (10) does not contain the information of the
delay time, the stability is independent of the delay. �

B. TS-RFNN Controller Design

Based on Theorem 1, the control goal becomes to drive
the system (5) to the sliding surface defined in (8). To this
end, take the time derivative of sf (t) below

g(x)ṡf = g(x)Λ[(A+ �A)x(t)
+(Ad + �Ad)x(t− d)] + u+ h(x(t), x(t− d))

where g(x) > 0 from Assumption 1. If the plant dynam-
ics and delay-time are exactly known (i.e., all matrices
A, �A, Ad, �Ad and the functions g(·), ġ(·), h(·) are
exactly known), then the ideal control law u∗ is set to

u∗ = −{g(x)Λ[(A+ �A)x(t) + (Ad + �Ad)x(t− d)]

+
1
2
ġ(x)sf + h(x(t), x(t− d)) + kfsf} (11)

u x

Nu

cu

δη
fs

θη

θ

ξηθ θ fs−=&

fsδηδ =&ˆ

δ̂

Fig. 1. The configuration of TS-RFNN.

where kf is a positive control gain. Thus, the error
signal sf converges to zero in an asymptotic manner.
Unfortunately, the ideal control law (11) is unrealizable in
practice applications. To overcome this difficulty, the TS-
FRFNN reaching control law is stated in the following.

Based on the proposed TS-RFNN and sliding surface
design, the overall control law is set to

u = uN + uc (12)

where uN is the TS-RFNN controller part defined in
(3); and uc is an auxiliary compensation controller part
determined later. Indeed, the configuration of the adaptive
TS-RFNN sliding mode control system is depicted in
Fig. 1. The TS-RFNN control uN is the main tracking
controller part that is used to imitate the idea control law
u∗ due to high uncertainties, while the auxiliary controller
part uc is designed to cope with the difference between
the idea control law and the TS-RFNN control. Then,
applying the control law (12) and the expression form
of uN in (4), the error dynamics of sf is obtained as
follows:

g(x)ṡf = −kfsf − 1
2
ġ(x)sf + ξT θ̃ − ε(x) + uc (13)

where the definition of u∗ in (11) has been used. Now,
the auxiliary controller part and tuning law of FNN are
stated in the following.
Theorem 2: Consider the uncertain time-delay system
(5) using the sliding surface designed by Theorem 1 and
the control law (12) with the TS-RFNN controller part
(4) and the auxiliary controller part

uc = −δ̂sgn(sf ). (14)

The controller is adaptively tuned by

θ̇ = −ηθsfξ (15)
·
δ̂ = ηδ |sf | (16)

where ηθ and ηδ are positive constants. The closed-loop
error system is guaranteed with asymptotic convergence
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of sf (t), x1(t), and x2(t), while all adaptation parameters
are bounded.

Proof: Consider a Lyapunov function candidate as

VN (t) =
1
2

(
g(x)s2f (t) +

1
ηθ
θ̃T θ̃ +

1
ηδ
δ̃2
)

where δ̃ = δ̂ − δ is the estimation error of the bound of
ε(x) (i.e., supt |ε(x(t))| < δ). By taking the derivative
the Lyapunov VN (t) along with (13), we have V̇N (t) ≤
−kfs

2
f . Since VN (t) > 0 and V̇N (t) ≤ 0, we obtain

the fact that VN (t) ≤ VN (0), which implies all sf ,
θ̃ and δ̃ are bounded. In turn, ṡf ∈ L∞ due to all
bounded terms in the right-hand side of (13). Moreover,
integrating both sides of the above inequality, the error
signal sf is L2-gain stable. As a result, combining the
facts that sf , ṡf ∈ L∞ and sf ∈ L2, the error signal
sf (t) asymptotically converges to zero as t → ∞ by
Barbalat’s lemma. Therefore, according to Theorem 1,
the state x(t) will is asymptotically sliding to the origin.
�

To further improve the performance and increase the
learning freedom, the fuzzy membership functions are
trained on-line by a gradient descent method along with
an error function Vs = 1

2g(x̄)s
2(t). The following theo-

rem is given.
Theorem 3: Consider the uncertain time-delay system
(5) using the sliding surface designed by Theorem 1 and
the control law (12) with the auxiliary controller part (14)
and the TS-RFNN controller part (4) adaptively tuned by
(15),

·
m̂ij = −ηmsf

(
zT vi − uN∑nR

i=1 w̄i

)(
w̄i

2(z̄j −mij)
ρ2

ij

)
·
ρ̂ij = −ηρsf

(
zT vi − uN∑nR

i=1 w̄i

)(
w̄i

2(z̄j −mij)2

ρ3
ij

)
·
ĥij = −ηhsf

(
zT vi − uN∑nR

i=1 w̄i

)(
2(z̄j −mij)

σ2
ij

)
·Gij(N − 1)

with ηm, ηρ, ηh > 0. The closed-loop error system is
guaranteed with asymptotic convergence of sf (t), x1(t),
and x2(t), while all adaptation parameters are bounded.

Note that the above tuning laws have used the property
∂Vs

∂uN
= sf from the gradient descent method applied on

the adaptive law of the weight θ. The above adaptive law
will cope with an inappropriate initial selection of fuzzy
membership functions. Moreover, the stability property
derived in Theorem 2 is not affected when using the on-
line tuning laws.

V. SIMULATION RESULTS

In this section, the proposed TS-RFNN sliding mode
controller is applied to an uncertain time-delay system.

Consider an uncertain time-delay system described by the
dynamical equation (5) with x = [ x1 x2 x3 ]T , B =
[ 0 0 1 ]T , g(x) = 1, h(x(t), x(t − d)) = ‖x(t)‖ +
‖x(t− d)‖ + sin(t), and

A+�A(t) =

 −10 + sin(t) 1 1 + sin(t)
1 −8 − cos(t) 1 − cos(t)

5 + cos(t) 4 + 2sin(t) 2 + cos(t)



Ad+�Ad(t) =

 1 + sin(t) 0 1 + sin(t)
0 1 + cos(t) 1 + cos(t)

3 + sin(t) 4 + cos(t) 2 + sin(t)

 .
It is easily checked that Assumptions 1∼2 are satisfied
for the above system. Moreover, for Assumption 2, the
uncertain matrices �A11(t), �A12(t), �Ad11(t), and
�Ad12(t) are decomposed as Assumption 2 with E12 =
E22 = [ 1 1 ]T , D1 = D2 = E11 = E21 =
diag{1, 1}, C1(t) = diag{sin(t),−cos(t)}, C2(t) =
diag{sin(t), cos(t)}.

First, let us design the asymptotic sliding surface
according to Theorem 1. By choosing ε = 0.2
and solving the LMI problem (10), we obtain Λ =
[ −0.4059 −0.4270 ]. The error signal sf (x) is thus
created from (8). Next, the TS-RFNN (1) is constructed
with ni = 1, nR = 8, and nv = 4. Since the T-S fuzzy
rules are used in the FNN, the number of the input of the
TS-RFNN can be reduced by an appropriate choice of
THEN part of the fuzzy rules. Here the error signal sf (x)
is taken as the input of the FNN, while the discussion
region is characterized by 8 fuzzy sets with Gaussian
membership functions as (2). Each membership function
is set to the center mij = −2 + 4(i − 1)/(nR − 1) and
variance σij = 10 for i = 1 ∼ nR and j = 1. On the
other hand, the basis vector of THEN part of fuzzy rules
is chosen as z = [ 1 x1 x2 x3 ]T . Then, the fuzzy
parameters vj are tuned by the update law (15) with all
zero initial condition (i.e., vj(0) = 0 for all j).

In this simulation, the update gains are chosen as
ηθ = 0.04 and ηδ = 0.01. When assuming the initial state
x(τ) = [ 1 2 1 ]T for −d ≤ τ ≤ 0 and delay time
d = 0.2, the TS-RFNN sliding controller (12) designed
from Theorem 3 leads to the control results shown in
Figs. 2 and 3. The trajectory of the system states and
error signal sf (x) asymptotically converge to zero. Figure
4 illustrates the corresponding control effort.

VI. CONCLUSION

In this paper, the robust control problem of a class of
uncertain nonlinear time-delay systems has been solved
by the proposed robust TS-RFNN control scheme. The
TS-RFNN provides high capacity to learn complex func-
tions with time-delay states. The sliding surface design
using LMI techniques achieves an asymptotic sliding mo-
tion in the presence of mismatched uncertainty. Although
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the system has high uncertainties (here both state and in-
put uncertainties are considered), the adaptive TS-RFNN
guarantees the asymptotic convergence. Therefore, the
resultant control scheme is suitable for dealing with more
general nonlinear time-delay systems with uncertainties.
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