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Abstract— Support vector machines (SVMs) are known to
result in a quadratic programming problem, that requires a
large computational complexity. To overcome this problem, the
authors proposed two incremental SVMs from the geometrical
point of view in the previous study, both have a linear complexity
with respect to the number of examples on average, One method
was shown to produce the same solution as an SVM in batch
mode, but the other, which stores the set of support veclors,
was known to have a larger generalization error. In this study,
we derive the learning curves of the latter method, assuming
that the probability the set of support vectors is updated is
proportional to the current margin and so is the decrease of
the margin in the update, too. In the derivation, we employ the
disc¢ approximation which is to be justified yet, but the result
agrees well with computer simulations.

I. INTRODUCTION

A support vector machine (SVM) nonlinearly maps given
input vectors to feature vectors in a high-dimensional space
and linearly separates the feature vectors with an optimal
hyperplane in terms of margin [1]-[5]. Since finding the
optimal hyperplane results in a convex quadratic programming
problem (QP) with linear constraints, it has an advantage
that there are no local minima in the error surface. from
which traditional gradient-based methods, such as multi-layer
perceptrons [6], sulfer in convergence. However, a QP requires
a high computational complexity and even good QP solvers,
such as interior-point methods, can solve problems of a limited
size.

Another property of SVMs is that they have a sparse
solution; that is, only a limited number of the examples
contribute to the SVM solution while the others do not. This
means that we could reduce the computational complexity if
such useless examples could be removed in advance.

In order to reduce the complexity, we proposed two incre-
mental methods in the previous study, based on the properties
of SVMs mentioned above [7]. One can produce the same
solution as that of the SVM in a batch mode, however, its
implement is not easy. The other is simple and has a less
complexity but its performance is a little worse. A rough
gcometrical analysis showed that the degradation of perfor-
mance is limited; its generalization error has the same order
as that of the SVM in a batch mode [7]. In this paper, we
derive the learning curves more quantitatively based on the
disc approximation. Although the disc approximation is to be
justified yet, the theoretical learning curves agree well with
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those of computer simulations,

Il. EFFECTIVE EXAMPLES AND SUPPORT VECTORS

An SVM maps an input vector @ to a vector f = f(x)
called a feature vector in the feature space. In this study.
however, we employ the so-called lincar kernel and assume
that the feature vector is normalized. Thatis, || f|| = || f(x)]|
||| = 1 for any @, as is done in [8]. In addition, we only
consider SVMs with homogeneous separating hyperplanes,
w! f = 0, instead of inhomogeneous separating hyperplanes
in the original SVMs, w’f + b — 0, where T denotes
the transposition. Note that a problem with inhomogeneous
hyperplanes is easily transformed to one with homogeneous
hyperplanes using the so-called lifting up (Fig. 1), @’
(w’.h) and }" = (f'. 1), where :— means definition, though
they differ a little since the latter also penalizes the bias b [9].

Fig. 1.  Geometrical view of lifting up where the origin is denoted by O.
Since the distances of examples from @ (thick solid line) are proportional
to those from w (black circle), lifting up does not change the problem of
separating examples at all in terms of margin maximization. Neither does
transforming a negative example (cross) to a positive one (white circle).

An SVM is given N examples and the «th example is
a pair of an input vector f, in the AM-dimensional unit
hypersphere S and the corresponding label v, € {*1}
satistying v, sen(w*” £}, where w* is the true weight
vector to be estimated. Since the separating hyperplane is
homogeneous, an example (f;, ;) is completely equivalent
o (y; f;.1) as scen in Fig. 1 and hence we can consider that
any example has a positive label. In short, input vectors f are
chosen S = {f|f"iw' > 0}, which we call the input space.
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Since the magnitude of w does not affect its separation
ability, we assume that w € S without loss of generality
where S™ is called the weight space. When an example
(f; wi) is given, the true vector w* must be in the hyper-
semisphere {w|y;w’ f, > 0}. This means that an example is
represented as a point in the input space and a hyperplane in
the weight space (Fig. 2). On the other hand, a weight vector
is represented as a hyperplane in the input space and a point
in the weight space.

w+

Fig. 2. An example in the input and weight spaces.

When N examples are given, w* has to be in an area

Ay = {wlyw” f;, >0,i = 1,...,N}, (N
which we call the admissible region [10] (Fig. 3). The ad-
missible region Ap., called the version space in physics, is a
polyhedron in SM_If the admissible region changes when an
example is removed, the example is called effective. Note that
the set of effective examples, referred to as the effective set,
makes the same admissible region as all the examples. So,
some algorithms for estimating w, including SVMs, utilize
only effective examples. This fact implies that any support
vector is an effective example.

Fig. 3.

Admissible region in the weight space

Under the assumption that the feature vectors are normal-
ized, an SVM solution has a clear geometrical picture. Finding
a hyperplane that maximizes the margin results in a quadratic
programming problem,
sLw'f, > 1. (2)

o 2
min — [Jw|*
w, gy 2

It is known that the SVM solution w necessarily has the form

N
w = Zn"ifi (3)
i=1

where o; are the Lagrangian multipliers. When o 4 0, f; is
called a support vector. In other words, w consists of only
support vectors. From the Karush-Kuhn-Tucker optimality
conditions, support vectors f; satisfy @’ f, — 1 and the others
do not. This means that the SVM solution w is equidistant
from support vectors [8]. Since ||w|| is not necessarily unity,
we consider the meaning of the above in the weight space
SM_ Tt is easily shown that the normalized w in S™ (that
is, w/|lw|) is still equidistant from support vectors in the
angular distance of S™ and the SVM solution @ is the center
of maximum inscribed sphere in the admissible region Ay
(Fig. 4) Note that the other examples are more distant from
the center. even though they are effective. [11].

\

Fig. 4. The optimal weight w is the center of maximum inscribed sphere
in the admissible region.

III. INCREMENTAL SVMS

The discussion above claims that a learning machine can get
the same information from only the set of effective examples.
Thus, the incremental algorithm below referred to as Method
1, gives the same answer as the SVM in batch mode:

1. The machine has the effective set of n given examples.

2. Unless the (r + 1)st example is effective, neglect it.

3. Otherwise, the effective set is remade, adding the (n

1)st example.

This algorithm has a low computational complexity in average,
since the average number of effective examples does not
depend on N [7], [10]. However, it is not easy to know
whether an example is effective or not. To implement this,
there are several packages, e.g. the function ‘convhulln’ in
MATLAB, which is based on the Delaunay triangulation, but
the complexity seems large.

To cope with the problem, we proposed another incremental
method, referred to as Method 2, which stores support vectors
instead of effective examples, since any support vector is
effective by definition. Although there may be some loss in
information, an example is easily determined whether it is a
new support vector or not: the example is a support vector i
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and only if its distance from the current separating hyperplane
is less than the current margin. Hence, Method 2 is written as
below:

1. The machine has the set of support vectors of n given
examples.

2. If the (n + 1)st example is more distant from the
separating hyperplane than the current margin, neglect
it

3. Otherwise, the set of support vectors is updated by an
SVM solver with the support vectors and the (r + 1)st
cxample.

Method 2 neglects a new example that is effective but not

a support vector. Since such a vector may become a support
vector in the future, it is expected that Method 2 has a lower
performance than a conventional SVM or Method 1. For
instance, when a new example is located in (a) in Fig. 3,
the example is thrown away in both incremental algorithms;
in (b), each update procedure of the stored examples starts in
both algorithms; in (¢), an effective example is neglected in
Method 2.

(@) © ®

Fig. 5. A difference of the incremental algorithms appears in case (c).

IV. LEARNING CURVES OF METHOD 2

As mentioned before, Method 2 would have a lower per-
formance than Method 1 since some effective examples are
thrown away. How much is it? We give a more quantitative
answer to this problem than [7].

We assume hereafter that examples are chosen from S’_,”
uniformly and independently as well as a test input, as is done
in [10]. The learning curves will be derived, as was in [7],
based on the following two assumptions:

« The probability that the set of support vectors is updated

is proportional to M,,.

s The decrease of the margin is also proportional to M,,.

The above assumptions lead to the following update equation

M1 = [1 —aM,|M, + aM,, [AM,,] 4
M, — all = A\|M2, (5
by simple calculation that leads to
Caa I
My == Cos = ————.
N= == =N (6)

We here introduce a new approximation, which we term the
disc approximation, and evaluate the values of @ and A in (5).
In short, the disc approximation regards the admissible region
a disc.

The probability aM,, that the set of support vectors is
updated is approximately expressed as the ratio of the radius of
the admissible region to that of the hemisphere. In asymptotics
of N — oc, the admissible region shrinks and can be regarded
as a disc in a plane, however, the hemisphere cannot. since it is
curved. Therefore, we evaluate an approximate of the radius of
a hemisphere from its volume, using the fact that the volume
is proportional to the radius power o M. As a result, the
probability «M,, is evaluated as

i /M
/ / sin™ ' rdrdw
all,, JSM-T '\”.2 (7)
[ f sin ! pdrdw
Jgm-1 Jy
M,
N — (8)
(J’HL\[)”‘”
where
w/2 Vil [M/2]
) sinM—! pdrdw = Yot/ 4 C
In l sin rdrdu ST[CAM + 1)/2] 9)

The decrease of the margin is also evalvated based on
the volume of the admissible region. When the admissible
region is a disc and the new cxample intersecting the region
is distributed uniformly thereon, the decrease of the volume
can be calculated as below, using the disc approximation and
the radius-cvaluation based on the volume, as before.

Suppose that the new example divides the admissible region
A,, with radius M,, into two regions, A%, and A® , atz
# € (=M, M,,) (see Fig. 6). Then, the radius of the maximum
inscribed sphere in A% | is M,, + 0 and thatin A% | is M, —0.
Based on the disc approximation, their volumes are written as

|A% | = |DM|(Mn + )M, (10)
|AR 1| = | DM|(M., — )M, (11)
Anl |[)'“|.'al-n’r'?!. {12]

where |DM] is the volume of the unit M -dimensional disc.
Taking into account that the probability of the true parameter
being located in A%, is given as [AL . ||/|A,|. the average
ratio of the volume of the updated admissible region to the
original is written as

g[Maal] _ 1 M (k) (4R
’ 1‘1n| 21"11: J—Mn f{ln 317:

(13)
—2 14
2M+ 1 e
Then A is
9 1/M
=~ ) 15
(23\1 I l) {15)
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In total, ¢, is expressed as
(MIp )M

—— 7% (16)
1—(§x§ﬁ)lm

rﬂﬁ

from (6). (7) and (15).

new example

Fig. 6. The new example divides the admissible region into two regions at
2 =0¢€ (=M, M)

V. COMPUTER SIMULATIONS

In order to confirm the validity of (16), some computer
simulations were carried out. N = 5000 examples are chosen
from S uniformly and independently and Method 2 learns
the examples gradually.

Fig. 7 shows the average margins versus the number of
examples, where the solid lines represent the theoretical results
and dashed lines the experimental resulis for M = 4 and
M = 20. It is clearly shown that the experimental curves in
both figures approach the theoretical ones.

VI. CONCLUSIONS

In this paper. we analyzed Method 2 more guantitatively
than [7]. under the assumption that both the probability of
the set of support vectors being updated and the decrease
of the margin are proportional to the current margin. The
disc approximation, we introduced here, makes it possible
to evaluate their coefficients. The theoretical learning curves
derived here agreed well the experimental results given by
computer simulations.
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