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AbstracI-Support vector machines (SVMs) are known to 
result in a quadratic programming problem, that requires a 
lame com~ulational com~lexitv. To overcome this ~rohlem. the 
auihors pkpcwd twn incrcmcnlal SV\ls from thb geometrical 
point of vicv in the previt~uu u l u d .  hoth haw a linear n~mplcxitv 
with respect to the numher of ex~mples on average. One method 
was shown to produce the same solution as an SVM in hatch 
mcde, hut the other, which stores the sel of support vectors. 
was known lo have a larger generalization error. In thi study, 
we derive the learning curves of the latter methnd, awuming 
that the probability the set of support vectors is updated is 
proportional lo the current mapin and so is the decreaw of 
the margin in the updale, too. In the derivation, we employ the 
disc rpproximalion which is to he ,justified yet, hut the result 
agrees well with computer simulations. 

I. INTRODUCTION 

A support vector machine (SVM) nonlinearly maps given 
input vectors to feature vectors in a high-dimensional space 
and linearly separates the feature vectors with an optimal 
hyperplane in terms of margin [I]-[5]. Since finding the 
optimal hyperplane results in a convex quadratic programming 
prohlem (QP) with linear constraints, it ha$ an advantaxe 
that there are no local minima in the error surface, from 
which traditional gradient-hased methods, such as multi-layer 
pemeptrons [6], suffer in convergence. However, a QP requires 
a high computational complexity and even good QP solvers, 
such a$ interior-point methods, can solve problems of a limited 
size. 

Another property of SVMs is that they have a sparse 
solution: that is. onlv a limited number of the exam~les 

hose of computer simulations. 

11. EFFECTIVE EXAMPLES AND SUPPORT VECTORS 

An SVM maps an input vector x to a vector f = f ( x )  
called a feature vector in the feature space. In this study, 
however, we employ the so-called linear kernel and assume 
that the feature vector is normalized. That is, 1 1  f 1 1  = 1 1  f ( = ) I 1  = 

llxll = 1 for any I, as is done in [81. In addition, we only 
consider SVMs with homogeneous separating hyperplanes, 
wT f = 0, instead of inhomogeneous separating hyperplanes 
in the original SVMs, w T f  + b = 0, where denotes 
the transposition. Note that a problem with inhomogeneous 
hyperplanes is easily transformed to one with homogeneous 
hyperplanes using the so-called lifting up (Fig. I), w' := 
( w l , b )  and j' := ( f ' ,  l), where := means definition, though 
they differ a little since the latter also penalizes the bias b [91. 

. 
contribute to the SVM solution while the others do not. This 
means that we could reduce the computat~onal complexity if Fig. 1. Geomehical view of lifting up where the origin is denaced by 0. 

Since the distances of examples from ti (thick solid line) are proponional 
such useless examples could he removed in advance. to those from w (black circlc), lining up does n a  change the prohlem of 

In order to reduce the complexity, we proposed two incre- separating examples at all in terms of margin maximimtion. Neither does 
mental in the Drevious studv. based on the DrooeIties Va11sfw"ng a alesative example (cross) to a positive one (white circle). . . 
of SVMs mentioned ahove [7]. One can produce the same 
solution as that of the SVM in a batch mode, however, its 
implement is not easy. The other is simple and has a less 
complexity but it. performance is a little worse. A rough 
geometrical analysis showed that the degradation of perfor- 
mance is limited; its generalization error has the same order 
a$ that of the SVM in a hatch mode 171. In this paper, we 
derive the learning curves more quantitatively based on the 
disc approximation. Although the disc approximation is to be 
justified yet, the theoretical learning curves agree well with 

An SVM is given N examples and the ith example is 
a pair of an input vector f ,  in the M-dimensional unit 
hypersphere SM and the corresponding label y; E {f 1)  
satisfying yi = sgn(w"'fi) ,  where w* is the true weight 
vector to be estimated. Since the separating hyperplane is 
homogeneous, an example ( f , ,  y ; )  is completely equivalent 
to (yi  f i ,  1 )  as seen in fig. 1 and hence we can consider hat  
any example has a positive label. In shon input vectors f are 
chosen 5':' = { f 1 f T w *  > 0). which we call the input space. 
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Since the magnitude of w does not affect its separation It is known that the SVM solution w necessarily has the form 
ability, we assume that w E SM without loss of generality N 
where SM is called the weight space. When an example 

2it=xaifi 
(fi, y;) is given, the we vector w* must be in the hyper- :-, 

(3) 
. . ~ .  
semi~~here>wly;w'~f~ > 0). This means that an example is 
represented as a point in the input space and a hyperplane in where a; are the Lagrangian multipliers. When a< # 0, f i  is 

the weight space (Fig. 2). On the other hand. a weight vector called a support vector. In other words, zir consists of only 

is represented as a hyperplane in the input space and a point support vectors. From the Karush-Kuhn-'Thcker optimality 

in the weight space. conditions, support vectors f i  satisfy &"fi = 1 and the others 
do not. This means that the SVM solution w is eauidistant 
from support vectors [81. Since 1 1 ~ 1 1  is not necessarily unity, 

W we consider the meaning of the above in the weight space 
S M .  It is easily shown that the normalized w in SM (that 
is, w/llwll) is still equidistant fmm support vectors in the 

-. angular distance of S" and the SVM solution 8 is the center 
of maximum inscribed sphere in the admissible region AN 
(Fig. 4) Note that the other examples are more distant from 
the center, even though they are effective. [I I]. 

Fig. 2. An example in h e  inpt  and weight spaces. 

When N examples are given, w' has to be in an area 

which we call the admissible region [lo] (Fig. 3). The ad- 
missible region A N ,  called the version space in physics, is a 
polyhedron in S M .  If tl~e admissible region changes when an 
example is removed, the example is called effective. Note that 
the set of effective examples, referred to as the effective set, 
makes the same admissible region as all the examples. So, 
some algorithms for estimating w, including SVMs, utilize 
only effective examples. This fact implies that any support 
vector is an effective example. 

Fig. 3. Admissible region in the weight space 

Under the assumption that the feature vectors are nomal- 
ized, an SVM solution 11% a clear geometrical picture. Finding 
a hyperplane that maximizes the margin results in a quadratic 
programming problem, 

1 
min -llw112 s.t. wlfi > 1. 
W.E. 2 

(2) 

Fig. 4. The optimal weigh1 ri, is the center of maximum insaibed sphere 
in h e  adrnissihle region. 

111. INCREMENTAL SVMS 

The discussion above claims that a learning machine can get 
the same information from only the set of effective examples. 
Thus, the incremental algorithm helow referred to as Method 
1, gives the same answer as the SVM in batch mode: 

1. The machine has the effective set of n given examples. 
2. Unless the (n + 1)st example is effective, neglect it. 
3. Otherwise, the effective set is remade, adding the (n + 

1)st example. 
This algorithm has a low computational complexity in average, 
since the average number of effective examples does not 
depend on N [7], [lo]. However, it is not easy to know 
whether an example is effective or not. To implement this, 
there are several packages, e.g. the function 'convhulln' in 
MATLAB, which is based on the Delaunay triangulation, but 
the complexity seems large. 

To cope with the problem, we proposed another incremental 
method, referred to as Method 2, which stores support vectors 
instead of effective examples, since any support vector is 
effective by definition. Although there may he some loss in 
information, an example is easily determined whether it is a 
new support vecta or not: the example is a support vector if 
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and only if its distance fmm the current separating hyperplane 
is less than the current margin. Hence. Method 2 is written as 
below: 

1. The machine has the set of support vectors of n given 
examples. 

2. If the (n + 1)st example is more distant from the 
separating hyperplane than the current margin, neglect 
i t  

3. Otherwise, the set of support vectors is updated by an 
SVM solver wi& the support vectors and the (n  + 1)st 
example. 

Method 2 neglects a new example that is effective but not 
a support vector. Since such a vector may become a suppm 
vector in the future, it is expected that Method 2 has a lower 
performance than a conventional SVM or Method 1. For 
instance, when a new example is located in (a) in Fig. 5, 
the example is thrown away in both incremental algorithms; 
in (b), each update procedure of the stored examples starts in 
hoth algorithms; in (c), an effective example is neglected in 
Method 2. 

Fip. 5. A differenoe of the incremental nlgwithms appears in case (c) 

IV. LEARNING CURVES OF METHOD 2 
As mentioned before, Method 2 would have a lower per- 

formance than Method 1 since some effective examples are 
thrown away. How much is it? We give a more quantitative 
answer to this problem than [71. 

We assume hereafter that examples are chosen from S y  
uniformly and independently as well as a test input, as is done 
in [lo]. The learning curves will he derived, as was in [7], 
based on the following two assumptions: . The probability that the set of suppon vectors is updated 

is proponional to Mn. 
The decrease of the margin is also proportional to M,,. 

The above assumptions lead to the following update equation 

by simple calculation that leads to 

We here i n d u c e  a new approximation, which we term the 
disc approximation, and evaluate the values of a and X in (5). 
In short the disc approximation regards the admissible region 
a disc. 

The probability a M ,  that the set of support vectors is 
updated is approximately expressed as the ratio of the radius of 
the admissihle region to that of the hemisphere. In asymptotics 
of N - m, the admissible region shrinks and can be regarded 
as a disc in a plane, however, the hemisphere cannot, since it is 
curved. Therefore, we evaluate an approximate of the radius of 
a hemisphere from its volume, using the fact that the volume 
is proportional to the radius power to M. As a result the 
prohahilily aM, is evaluated as 

where 

The decrease of the margin is also evaluated based on 
the volume of the admissible region. When the admissible 
region is a disc and the new example intersecting the region 
is distributed uniformly thereon, tlie decrease of the volume 
can be calculated as below, using the disc approximation and 
the radius-evaluation based on the volume, as before. 

Suppose that the new example divides the admissible region 
A, with radius into two regions, A:+, and A:+,, at z = 
0 E (-Mn, M,,) (see Fig. 6). Then, the radius of the maximum 
inscribed sphere in Ak,, is M,,+Oand that in A:+:,, is M,-8. 
Based on the disc approximation, their volumes are written as 

where lDMl is the volume of the unit M-dimensional disc. 
Taking into account that the probability of the m e  parameter 
being located in A:,, is given as iAf;+,l/lAnl, the average 
ratio of the volume of the updated admissible region to the 
original is written as 

- 
2 -- 

2 M +  1 '  
Then X is 
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In toral, %, is expressed as 

from (6). (7) and (15). 

new examnle 

Fig. 6. The new example divides the admissible region into two regions at 
x = 0 E ( - M , , M , )  

V. COMPUTER SIMULATIONS 

In order to confirm the validity of (16). some computer 
simulations were carried out. N = 5000 examples are chosen 
from S y  uniformly and independently and Method 2 learns 
the examples gradually. 

Fig. 7 shows the average margins versus the number of 
examples, where the solid lines represent the theoretical resulu 
and dashed lines the experimental results for M = 4 and 
M = 20. It is clearly shown that the experimental curves in 
both figures approach the theoretical ones. 

VI. CONCLUSIONS 

In this paper, we analyzed Method 2 more quantitatively 
than [71, under the assumption that both the prohahility of 
the set of support vectors being updated and the decrease 
of the margin are proportional to the current margin. The 
disc approximation. we introduced here. makes it possible 
to evaluate their coefficients. The theoretical learning curves 
derived here agreed well the experimental results given by 
computer simulations. 
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Fig. 7. Leaning curves of Method 2. 
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