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Abstract

In this article, we present a new method of multiclass classi-
fication by combining multiple binary classifiers in the con-
text of information transmission theory. In the framework of
the error correcting output coding (ECOC), a misclassifica-
tion of each binary classifier is formulated as a bit inversion
with a probabilistic model. While the conventional hamming
decoding assumes the binary symmetric channel in a infor-
mation transmission, the symmetric assumption is especially
problematic in multiclass classification problems: for exam-
ple, 1 vs R approach typically makes an asymmetric situation
even if all classes contain the same number of examples. The
asymmetry property corresponds to two kinds of error rate of
the binary classification problem; the false positive error and
the false negative error. We propose a probabilistic model
which assumes an asymmetric channel having 3 inputs and 2
outputs.

By the maximum likelihood estimation with the proposed
probabilistic model, we can identify properties of the noisy
channel according to performances of applied binary classi-
fiers. A multiclass label and a class membership probability
for an input are easily estimated by the model. Experimen-
tal studies using a synthetic dataset and datasets from UCI
repository are performed and results show that the proposed
method is superior to the Hamming decoding and compara-
tive to other multiclass classification methods such as multi-
class Support vector machine.

1 Introduction

There are many methods to reduce a multiclass problem to
multiple binary classification problems. Dietterich and Bakiri
presented a general framework called error-correcting output
coding (ECOC), in which a multiclass problem is decom-
posed into a number of binary classification problems [1].
Such decomposition is represented as a p × G code matrix
W , where G and p are the number of classes and that of bi-
nary classification problems, respectively. Each class is rep-
resented as a p-dimensional vector called a code word. If
Wjk = 1(= −1), where Wjk is the jk component of W , then
the example feature vectors belonging to class k are regarded
as positive (negative) examples for the j-th binary classifi-

cation problem. The simplest method of ECOC, called the
Hamming decoding, obtains the class prediction of a new
feature vector according to Hamming distance between the
estimated code of the feature vector and the code word of
each class, but ignores the reliability of each predictor. Al-
though the original ECOC did not allow the code matrix to
contain zero components, meaning all examples are used in
every binary classification problem, Allwein et al. extended
the framework of ECOC such to allow the coding matrix to
have 0 components and analyzed its theoretical aspects [2]. If
Wjk = 0, examples belonging to the k-th class are not used in
training the j-th classifier. They also presented the loss-based
decoding which includes the Hamming decoding as a special
case where the loss is associated with the Hamming distance.

Decoding in these methods primarily tries to assign a single
class label to each example, but they do not output class mem-
bership probability estimate for an example. Such a probabil-
ity estimate is important, because its representation of clas-
sification confidence is useful not only for considering var-
ious noises like mislabeling but also designing code words
(i.e., coding). Hastie and Tibshirani presented a different ap-
proach to the decoding problem, which integrates multiple
binary classifiers to obtain class probability membership esti-
mates for a multiclass problem, given the code matrix W and
a binary classification algorithm which outputs probability es-
timates [3]. They considered all-pairs (1 vs. 1) coding, where
a classifier is trained for every pair of classes by ignoring the
examples that do not belong to the class pair. Zadorozny ex-
tended this coding framework to applicable to arbitrary code
matrices [4]. These two methods were based on the Bradley-
Terry model (See [5]).

Although these Bradley-Terry model-based approaches
can thus treat class membership probabilities, general esti-
mation of probabilities is still problematic, because there are
a little theoretical support for convergence of assignment of
class probability into a unique solution except in the case of
all-pairs (1 vs 1) [6]. In addition, while the Bradley-Terry
model-based approaches requires probabilistic outputs from
binary classifiers, most of the popular classifiers like SVM
return binary class labels and then, another estimation pro-
cess to get probabilistic outputs is necessary. . In this article,
we propose an alternative but novel approach to the proba-
bilistic decoding, which is based on a probabilistic model of
information transmission.
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In section 2, basic settings and a probabilistic model of
noisy channel are formulated. In section 3, we discuss the
relationship between the proposed model and the conven-
tional Hamming decoding. In section 4. performance of
the proposed method is examined by comparing other multi-
class classification methods using a synthetic dataset and UCI
repository datasets.

2 Setting and method

In this section, we propose a new approach to multiclass clas-
sification problems. In subsection 2.1, a model of noisy chan-
nel in multiclass classification is mathematically formulated.
We present a decoding method of class label disturbed by the
noisy channel in subsection 2.2.

2.1 Information transmission through noisy
channel and multiclass classification prob-
lem

In this study, we define a multiclass classification problem
as the optimization of the decoder of information bits. Let
x ∈ Rp be a feature vector and y ∈ {1, · · · , G} be a label
of the feature vector x. The label y is represented as a G-
dimensional vector s whose j-th component sj is I(j = y),
where I(·) is an indicator function:

I(R) =
{

1 if R is true
0 otherwise,

(1)

where R is an arbitrary conditional expression. We assume
that a dataset (X, Y ) ≡ {xi, yi}n

i=1 is given and let si be the
representation of yi and S =

(
s1, · · · , sn

)
the set of si.

Now we consider the decomposition of a multiclass clas-
sification problem into multiple binary classification prob-
lems. Let W ∈ {1, 0,−1}p×G be a coding matrix. The
maximum number of binary classification problems p, is
(3G − 2G+1 + 1)/2, which exponentially grows as G be-
comes large, as shown in Table 1. Then, the coding matrix
W is often restricted so that a subset in the full coding matrix
W ∗ is used: in the 1 vs R method, each code word contains
only one 1 (e.g. (−1, 1,−1, · · · ,−1)), or in all pairs (1 vs 1),
each code word contains only one 1 and one −1 so that all
other components are 0 (e.g. (1, 0,−1, 0, · · · , 0)).

Table 1: The maximum number of binary classification prob-
lems for G-class problems.

G 2 3 4 5 6 · · · G

max p 1 6 25 90 301 · · · 3G−2G+1+1
2

For example, if G = 3, the full coding matrix W ∗ is given

by

W ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1
−1 1 −1
−1 −1 1

1 −1 0
1 0 −1
0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

Let z = (z1, · · · , zp)
′

be a random variable vector, whose
instance is given by a ‘coded label’ zi = Wsi, which is usu-
ally a redundant representation of the label yi. Let zi

j be the
j-th component of the code label zi and Z = WS be the set
of coded labels. Note that the matrix Z has special degener-
acy, because its column vectors have only G patterns.

Using the notations above, the multiclass classification
problem is defined as follows: given a code matrix W , bi-
nary classifiers are trained based on the dataset (X, Z). A
combination of the input set X and each row of the coded
label matrix Z provides a dataset to one binary classification
problem. Let Zj· ≡ (z1

j , · · · , zn
j ) be the j-th row of Z. The

Zj· is the label set of the input set X .
To the j-th binary classification problem (X, Zj·), we can

apply any binary classification algorithm such as SVM and
AdaBoost. Training of the j-th binary classifier is executed
by examples whose label zi

j is either of 1 or −1 in the code
word, but examples labeled as 0 are not used. After the train-
ing phase, examples labeled as 0 are also classified into 1 or
−1 by the trained binary classifier. We describe these classi-
fied labels as Z̃j· = (z̃1

j , · · · , z̃n
j ). By applying this procedure

for all rows in Z, we obtain another matrix Z̃ whose j-th row
is Z̃j·.

This process can be interpreted in the context of informa-
tion transmission theory as follows (see figure 1). A com-
ponent zj of the coded label is transmitted into z̃j through a
noisy channel. We assume that the noisy channel is memory-
less and is not necessarily binary symmetric. Additionally,
the distribution of noise associated with zj is assumed to be
different from the others. Here the memory-less assumption
implies dependence of coded labels. Each component zi

j of
zi is added a noise of bit inversion if zi

j is 1 or −1, or trans-
formed into 1 or −1 if zi

j is 0, by the noisy channel. Asym-
metric assumption corresponds to two kinds of error rate of
the binary classification problem; the false positive error and
the false negative error. Those errors are not generally equal,
and this asymmetric property is prominent especially in mul-
ticlass classification problems: for example, 1 vs R approach
typically makes an asymmetric situation even if all classes
contain the same number of examples. Considering those sit-
uations leads to the assumption that each component zj of the
coded label is associated with a specific binary asymmetric
channel.

The transmitted coded label z̃j is composed of 1 and −1.
The property of the noisy channel is schematically shown in
figure 2. The inversion probability of zj from 1 to −1 is de-
noted as ε1j and that from −1 to 1 is as ε2j . The code 0 is
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transformed to 1 with probability fj . Those quantities rep-
resent the property of the noisy channel for zj , and can be
estimated with a probabilistic model according to the perfor-
mance of applied binary classifiers.

Z = WS

Zj·

Zj′·

pp

nn

Z̃

Z̃j·

Z̃j′·

Noisy Channel j

Noisy Channel j ′

Figure 1: Transmission of the coded label matrix Z.

11

−1−1

0

ε1j

ε2j

1 − ε1j

1 − ε2j

fj

1 − fj

Figure 2: Property of the noisy channel for a j-th component
zj of the coded label.

Now we define a probabilistic model of information trans-
mission of the j-th coded label zj . Let z̃j be the transmitted zj

through the noisy channel, assumed to be a realization value
of the random variable. The transmission of each component
zj of the coded label is modeled as a stochastic process:

p(z̃j |zj ; βj , γj , δj) = exp ((βjzj + γj)z̃j − ψ1(zj , βj , γj))
z2

j

exp (δj z̃j − ψ2(δj))
1−z2

j ,

where βj is a coefficient which is associated with the noise
level of the channel, γj represents the degree of asymmetry
of the channel and δj represents the rate of transformation
when zj = 0. The characteristic parameters of the noisy
channel, ε1j , ε2j and fj , are determined by βj , γj and δj .
ψ1(zj , βj , γj) and ψ2(δj) are normalization terms defined by

ψ1(zj , βj , γj) = log

⎛
⎝ ∑

z′∈{1,−1}
exp(z′(βjzj + γj))

⎞
⎠ ,

ψ2(δj) = log

⎛
⎝ ∑

z′∈{1,−1}
exp(z′δj)

⎞
⎠ . (3)

Since we assume that each component of the coded label is
transmitted independently, the transmission of the full coded
label z is simply modeled as

p(z̃|z; β, γ, δ) =
p∏

j=1

p(z̃j |zj ; βj , γj , δj) (4)

= exp
[
z̃

′
ζ(βz + γ) + z̃

′
(I − ζ)δ

−
p∑

j=1

z2
j ψ1(zj , βj , γj) −

p∑
j=1

(1 − z2
j )ψ2(δj)

⎤
⎦ ,(5)

where β, γ, δ, ζ are defined by

β =

⎛
⎜⎜⎜⎝

β1 0 · · · 0
0 β2 · · · 0
...

...
...

0 0 · · · βp

⎞
⎟⎟⎟⎠ , γ =

⎛
⎜⎜⎜⎝

γ1

γ2

...
γp

⎞
⎟⎟⎟⎠ ,

δ =

⎛
⎜⎜⎜⎝

δ1

δ2

...
δp

⎞
⎟⎟⎟⎠ , ζ =

⎛
⎜⎜⎜⎝

z2
1 0 · · · 0
0 z2

2 · · · 0
...

...
...

0 0 · · · z2
p

⎞
⎟⎟⎟⎠ . (6)

Note that we can extend the above model to assuming
full or partly dependency between code zj and zk by off-
diagonalization of the matrix β.

If we employ all possible binary classifiers into the cod-
ing matrix W , the ‘code length’ p of the coded label experi-
mentally increases as the class number G grows, which may
be computationally intractable. Then, we need to introduce
some constraints to the code dependency matrix β especially
when considering the full or partly dependency of codes. In
addition, the restriction on the code word zj to select p rows
from the full coding matrix W ∗ is effective not only for sav-
ing the computational cost but also for improvement in gen-
eralization. The latter problem is statistically the variable se-
lection problem, or the ‘coding problem’. These two prob-
lems are difficult and still pending in this study, though we
can consider some heuristics such as regularization and back-
ward (or forward) elimination of variables (and hence binary
classifiers) based on cross-validation performance (e.g., [7]).

In this study, for simplicity, we assume independence of
codes and the coding matrix W is given a priori. For a given
coded label matrix Z and a transmitted code label matrix Z̃,
the coefficients β, γ, δ can be estimated by maximizing the
log-likelihood function:

L
(
Z̃; β, γ, δ

)
=

n∑
i=1

log p(z̃i|zi). (7)

By differentiating (7), we have

0 =
∂L

∂βj

=
n∑

i=1

(zi
j)

2

(
zi

j z̃
i
j − zi

j

exp(βjz
i
j + γj) − exp(−βjz

i
j − γj)

exp(βjzi
j + γj) + exp(−βjzi

j − γj)

)
,
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0 =
∂L

∂γj

=
n∑

i=1

(zi
j)

2

(
z̃i

j −
exp(βjz

i
j + γj) − exp(−βjz

i
j − γj)

exp(βjzi
j + γj) + exp(−βjzi

j − γj)

)
,

0 =
∂L

∂δj
=

n∑
i=1

(1 − (zi
j)

2)
(

z̃i
j −

exp(δj) − exp(−δj)
exp(δj) + exp(−δj)

)
.

The solution of those equations is given as

β̂j =
1
4

log
(1 − ε̃1j)(1 − ε̃2j)

ε̃1j ε̃2j
, γ̂j =

1
4

log
(1 − ε̃1j)ε̃2j

ε̃1j(1 − ε̃2j)
,

δ̂j =
1
2

log
f̃j

1 − f̃j

, (8)

where

ε̃1j =

∑n
i=1 I(zi

j = 1, z̃i
i = −1)∑n

i=1 I(zi
j = 1)

,

ε̃2j =

∑n
i=1 I(zi

j = −1, z̃i
i = 1)∑n

i=1 I(zi
j = −1)

, f̃j =

∑n
i=1 I(zi

j = 0, z̃i
j = 1)∑n

i=1 I(zi
j = 0)

.

The coefficient β̂j becomes large if the error levels, ε̃1j and
ε̃2j , of the noisy channel are both low. The absolute value of
the coefficient γ̂j becomes large when the noisy channel is
highly asymmetric, presumably corresponding to unbalanced
problems, and the coefficient δj represents the asymmetry
level of the noisy channel for the zero code (zj = 0).

2.2 Decoding of label

After identifying the property of the noisy channel by esti-
mating its characteristic parameters, we can decode the origi-
nal coded label z from the transmitted label z̃. The decoding
is executed by calculating the posterior probability p(z|z̃) of
the coded label z, and searching for a coded label that max-
imizes the posterior probability. Under the usual situation,
there could be 2p candidates to search and therefore, Maxi-
mum a posteriori (MAP) decoding is difficult. Then Maxi-
mization of the posterior marginals (MPM) approach is ap-
plied with the belief propagation method [8]. In our multi-
class classification problem, on the other hand, we can ap-
ply MAP decoding because the number of candidates to be
searched is only G, whereas the dimension of code p can be
exponentially large. The prior distribution p(z) of the coded
label z can be estimated as

p(z) =
{

1
n

∑n
i=1 I(yi = j) if z = W·j

0 otherwise.
(9)

After the model of noisy channel is obtained, we can pre-
dict the label of a new feature xnew as follows:

1. The noisy coded label z̃new for xnew is obtained from
the set of trained binary classifiers.

2. Calculate the posterior probability as

p(z|z̃new) =
p(z̃new|z; β̂, γ̂, δ̂)p(z)

p(z̃new; β̂, γ̂, δ̂)
. (10)

3. Reconstruct the ‘noise-less’ code by
argmaxz p(z|z̃new; β̂, γ̂, δ̂).

Note that maximization operation is performed by compar-
ing G codes with the consideration of the prior p(z) and this
decoding process is computationally easy. Note also that the
posterior p(z|z̃) provides the class membership probability
estimates for the feature vector x, which could be used for
managing misclassification risk.

3 Relationship between the proposed
method and the hamming decoder

If we set γj = 0, δj = 0 for all j and p(z) is uniform over
possible G classes, then the proposed method reduces to the
weighted Hamming decoder, which returns the label that min-
imizes the weighted Hamming distance between the transmit-
ted code and each code word in the coding matrix W . The
posterior probability of z is

p(z|z̃) ∝ exp

⎛
⎝ p∑

j=1

βj z̃jzj

⎞
⎠ . (11)

Note that the normalization term does not depend on z or z̃ in
this setting. The maximization of this posterior is equivalent
to the minimization of the weighted Hamming distance:

p∑
j=1

βj
1 − zj z̃j

2
. (12)

4 Simulation study

In this section, we examine the performance of the proposed
method by comparing with the Hamming decoding and two
implementations of multiclass support vector machine (see
[9]) with a polynomial kernel and an rbf kernel, using a syn-
thetic dataset and UCI repository datasets. In our method, we
used SVM as individual binary classifiers and the full coding
matrix W ∗ as the coding matrix W .

4.1 Synthetic dataset

The proposed method was first applied to the following syn-
thetic dataset. The number of classes, G, was four and
x = (x1, x2)

′
was uniformly distributed on [−1, 1]2. The
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label y was a priori distributed as p(y) = 1/4, so that the
true label y was given by

y =

⎧⎪⎪⎨
⎪⎪⎩

1 −1 ≤ x2 < −0.5
2 −0.5 ≤ x2 < 0
3 0 ≤ x2 < 0.5
4 0.5 ≤ x2 ≤ 1,

(13)

but was assumed to be observed after randomly shuffled with
probability 0.3. A typical dataset containing 200 examples is
shown in figure 3. When applied to this dataset, the proposed

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x2

Figure 3: A typical dataset (◦ : y = 1,� : y = 2, + : y =
3,× : y = 4).

method could easily estimate the class membership probabil-
ity for each example (and each point on the domain). The
probability along x1 = 0, p(y|x1 = 0, x2), estimated by 200
examples is shown in figure 4. When the probability of la-
bel shuffling was lower, the class boundaries were estimated
more sharply (data not shown). We repeatedly generated 100
pairs of a training dataset and a test dataset each contain-
ing 200 and 5000 examples, respectively, and examined the
average performance. For comparison, we applied C-svm,
spoc-svm, which are implementation variants of multiclass
SVM. Means, and 5% and 95% percentiles among 100 tri-
als of training error and test error are shown in figure 5 and
6. We can observe that the proposed method in average out-
performed C-svm and spoc-svm with respect to the test error
regardless of the kernel function employed. About the train-
ing error, the proposed method was likely to attain reasonable
results. Moreover, error variance of the proposed method was
smaller than those of the other methods, suggesting the sta-
bility of the classification performance.

4.2 UCI repository

We next applied the proposed method to some datasets (Table
2) registered in the UCI repository. Each of the three datasets
from the top are originally separated into a training set and a

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1=0,x2

C
la

ss
 m

em
be

rs
hi

p 
pr

ob
ab

ili
ty

Class 1
Class 2
Class 3
Class 4

Figure 4: The estimate of class membership probability along
x1 = 0.

Table 2: Information of UCI datasets.
Dataset #Examples #Attributes #lCasses

Ann-thyroid 7200 21 3
Satimage 6435 36 6

Segmentation 2310 19 7
Iris 150 4 3

Wine 178 3 3
Glass 214 9 6

test set. For the other datasets, we applied 5-fold cross valida-
tion to estimate the generalization performance; we repeated
the 5-fold cross validation 100 times and observed the aver-
age performance.

In Table 3, averaged generalization performance is shown
and a method with the best performance for each dataset is
boldfaced. For the dataset to which we applied 5-fold cross-
validation, the average of 100 trials and its standard deviation
are shown. While a superior method and a good kernel func-
tion depend on datasets, all methods have attained reason-
ably low error rates. We can see, however, that the proposed
method is comparative to or outperforms the multiclass SVM
implementations.

5 Conclusion

We proposed an integration method of binary classifiers
to construct a multiclass classifier based on a probabilistic
model of information transmission. The probabilistic formu-
lation of a noisy channel was presented, which allowed the
original multicalss class label to be decoded from the trans-
mitted and hence noisy code output. The method includes
the weighted Hamming decoding as a special case and the
decoding of the proposed method was easy to implement.
Moreover, the method was likely to outperform the existing
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Table 3: Generalization error rate for UCI repositry datasets
Method Spoc-svm:Rbf(Poly.) C-svm:Rbf(Poly.) Ham.:Rbf(Poly.) Prop.1:Rbf(Poly.) Prop.2:Rbf(Poly.)

Thy. 0.0502(0.0414) 0.0534(0.0338) 0.0524(0.0368) 0.0324(0.0333) 0.0327(0.0335)
Sat. 0.1175(0.1640) 0.1185(0.1405) 0.1250(0.1643) 0.1210(0.1455) 0.1180(0.1465)
Seg. 0.1419(0.0738) 0.1762(0.0581) 0.1647(0.0855) 0.1557(0.0762) 0.1710(0.1381)
Iris 0.0419 ± 0.0083 0.0404 ± 0.0081 0.0405 ± 0.0076 0.0395 ± 0.0077 0.0405 ± 0.0074

(0.0363 ± 0.0075) (0.0371 ± 0.0075) (0.0365 ± 0.0080) 0.0375 ± 0.0092 (0.0359 ± 0.0079)
Wine 0.0171 ± 0.0084 0.0133 ± 0.0041 0.0127 ± 0.0035 0.0129 ± 0.0039 0.0140 ± 0.0050

(0.0325 ± 0.0084) (0.0383 ± 0.0085) (0.0329 ± 0.0082) (0.0331 ± 0.0086) (0.0328 ± 0.0104)
Glass 0.1516 ± 0.0134 0.1646 ± 0.0131 0.1536 ± 0.0128 0.1222 ± 0.0131 0.0945 ± 0.0142

(0.0762 ± 0.0128) (0.0661 ± 0.0113) (0.0873 ± 0.0132) (0.0463 ± 0.0086) (0.0450 ± 0.0096)

0.
2

0.
3

0.
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0.
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g 
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ro
r

Spoc.Rbf
Spoc.Poly
C.Rbf
C.Poly
Hamm.Rbf
Hamm.Poly
Prop1.Rbf
Prop1.Poly
Prop2.Rbf
Prop2.Poly

Figure 5: Average performance, and 5% and 95% percentiles
over the training error of 100 trials for each method. Spoc-
svm, C-svm and the proposed method with an rbf kernel and
a polynomial kernel were applied.

multiclass classification methods such as Hamming decod-
ing, spoc-svm and C-svm. An extension to a model consider-
ing dependency between binary classifiers, regularization for
sparseness condition and introduction of the Bayesian frame-
work, which correspond to the optimization in coding, are
future work.
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