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Abstract— This paper presents the mathematical
basis of the immunocomputing using feature
extraction and pattern recognition. The key notions of
the approach are the formal immune network (FIN)
and the coding theory for machine learning. The
training of FIN includes apoptosis (programmed cell
death) and autoimmunization both controlled by
cytokines (messenger proteins), whereas parameters
of FIN can be optimized by Kullback entropy. Recent
results suggest that the approach outperforms (by
training time and accuracy) state-of-art approaches of
computational intelligence.

I. INTRODUCTION

Two types of biological systems, the neural system and the

vertebrate immune system, possess the capabilities of

"computational intelligence", which include memory, the

ability to learn, to recognize, and to make decisions with

respect to unknown situations, and dynamical and noisy

environments. In practice, an immune system protects the

organism against pathogen threats and autoimmune diseases.

From a computational point of view, the natural immune

system constitutes a robust integrated defense system.

The potential of the natural neural system as a biological

prototype of a computing scheme has already been well

established in the field of Artificial Neural Networks (ANN),

or neural computing (Cloete & Zurada, 2000). However, the

computing capabilities of the natural immune system (Jerne,

1974; Farmer, Packard & Perelson, 1986; De Boer, Segel, &

Perelson, 1992) have only recently been appreciated as a field

of Artificial Immune Systems (AIS) (Dasgupta, 1999; Cutello

& Nicosia 2002; De Castro & Timmis, 2002; Nicosia 2004).

The mathematical formalization of these capabilities

(Tarakanov & Dasgupta, 2000) forms the basis of

ImmunoComputing (IC) as a new computing approach that

replicates the principles of information processing by proteins

and immune networks (Tarakanov, Skormin, & Sokolova,

2003).

This IC approach looks rather constructive as a basis for a

new kind of computational intelligence. A number of

successful applications of IC to real world tasks have been

reported, including detection of dangerous ballistic situations

in near Earth space (Tarakanov & Dasgupta, 2002), computing

of ecological map and optical response of laser diode

(Tarakanov A. & Tarakanov Y., 2004, 2005), and

reconstruction of hydroacoustic fields (Tarakanov, Prokaev, &

Varnavskikh, 2006). It is also worth noting that a connection

between IC and cellular automata has led to encouraging

results in three-dimensional computer graphics (Tarakanov &

Adamatzky, 2002). As for biological applications of IC, a

concept of "biomolecular immunocomputer" as a computer

controlled fragment of the natural immune system has recently

been proposed (Goncharova, Melnikov, & Tarakanov, 2003;

Goncharova, Jacques, Martin-Vide, Tarakanov, & Timmis,

2005). A connection of IC with brain research has also shed

light upon principles of organization of receptor mosaics and

molecular networks (Agnati, Tarakanov, Ferre, Fuxe, &

Guidolin, 2005). In such background, this paper presents the

foundations of the IC approach to intelligent signal processing.

II. THE IMMUNOCOMPUTING APPROACH

In general, the IC approach to signal processing consists of

two usual parts: feature extraction and pattern recognition.

Feature extraction is inspired by a mode of biomolecular

"computing" where immune cells chop unknown antigen to its

local singularities and expose them to the immune system.

Analogously, the IC approach represents unknown signal as a

tree of data, and chops the branches of the tree to detect local

singularities of the signal. The approach is based on the

rigorous mathematical methods of Discrete Tree Transform

(DTT) (Atreas, Karanikas, & Tarakanov, 2003; Karanikas &

Proios, 2003) and Singular Value Decomposition (SVD)

(Horn & Johnson, 1986).

Pattern recognition is used because a feature vector

(pattern) has to be extracted from a raw signal by the above

part. The IC approach to pattern recognition is based on a

notion of cytokine FIN (Formal Immune Network) proposed

in (Tarakanov [et al.] 2005). Cytokines (messenger proteins)

are a group of biologically active mediator molecules that

provide the intercellular interactions within the immune

system. They are the central regulators of leukocyte growth

and differentiation, being produced by a wide variety of cell
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types, targeting various cell subsets and exhibiting numerous

biological activities. Up to now more than 100 different

human cytokines are identified. Apoptosis is a natural

mechanism by which cells commit suicide when they have

outlived their purpose, become defective, or have aged. A

mathematical model of apoptosis and autoimmunization (to

correct mistakes of apoptosis) has also been proposed in the

frame of FIN (Tarakanov [et al.] 2005).

However, the IC approach contains a set of parameters to be

adjusted depending upon the properties of the signal type (e.g.,

audio, video, radar, sonar, etc.). This theoretical gap can be

filled using the Kullback entropy (Kullback, 1959), as has

been proposed for AIS and evolutionary algorithms (Cutello,

Nicosia, & Pavone, 2003, 2007; Nicosia 2004). In the IC

approach, the entropic functions measure the quantity of

information that FIN discovers during the training and testing

processes.

III. FORMAL IMMUNE NETWORK

Henceforth, vector/matrix transposing will be designated by

upper stroke ][ . For example, if X is a column vector then

X is a row vector.

Definition 1. A Cell is a pair V = (f, P), where f is real value

Rf , whereas ),...,( 1 qppP = is a point of a q-dimensional

space:
q
RP , and P lies within the unit

cube: max{| p1 |,...,| pq |} 1.

Let the distance, affinity measure, ),( jiij VVdd = between

cells
i
V and jV be defined by a norm:

jiij PPd = .

For example, it can be Euclidian
E

P , Manhattan
M

P ,

Tchebyshev
T

P , or any appropriate norm.

Fix a some finite non-empty set of cells, innate immunity,

),...,( 10 m
VVW = with non-zero distance between cells:

0ijd , ji, : ji .

Definition 2. FIN is a set of cells:
0

WW .

Definition 3. Cell
i
V recognizes cell k

V if the following

conditions are satisfied:

<ki ff , hd
ik
< , ijik dd < , WV j , j i,k ,

where 0 and 0=h are non-negative real values (the

recognition threshold and the affinity threshold).

Let the behavior of FIN be defined by the following two

rules.

Rule 1 (apoptosis). If a given cell WV
i

recognizes cell

WV
k then remove

i
V from FIN.

Rule 2 (autoimmunization). If cell WV
k is nearest to cell

WWV
i

\
0

among all cells of FIN: ijik dd < , WV j ,

whereas ki ff , then add
i
V to FIN.

Let
A

W be FIN as a consequence of the application of

apoptosis to all cells of
0

W . Let
I

W be FIN as a consequence

of the autoimmunization of all cells of
A

W by all cells of
0

W .

WA = Apoptosis(W0);

WI = Autoimmunization(WA ,W0);

Note that the resulting sets
A

W and
I

W depend on the

ordering of the cells in
0

W . In the rest of the paper it will be

assumed that the ordering is given.

Considering the general mathematical properties of FIN, it

is obvious that neither the result of apoptosis
A

W nor the

result of autoimmunization
I

W can overcome
0

W for any

innate immunity and thresholds:

,,,, 000 hWWWWW
IA .

The following Propositions give more important and less

evident properties of FIN. Their proofs can be found in

(Tarakanov [et al.] 2005).

Proposition 1. For any innate immunity
0

W and

recognition threshold there exists an affinity threshold
0
h

such that apoptosis does not change
0

W for any h less than
0
h :

0
WW

A
= ,

0
hh < .

Proposition 2. For any innate immunity
0

W and

recognition threshold there exists affinity threshold
1
h such

that the consequence of apoptosis and autoimmunization

)( 11 hWW
I

= provides the minimal number of cells || 1W for

given
0

W and and any h: |)(||| 1 hWW
I

= , h ,
0

WW
I

.

Actually, Proposition 2 states that the minimal number of

cells after apoptosis and autoimmunization is a kind of inner

invariant of any FIN, which depends on the innate immunity

and the recognition threshold but does not depend on the

affinity threshold. Practically, it means that such invariant can

be found for any FIN by apoptosis and autoimmunization

without considering any affinity threshold (in Definition 3) at

all.

It is worth noting that Rule 1 and Rule 2 should be applied

consequently, but not simultaneously. In their own turn, Rule

1 and Rule 2 should be applied consequently to all members of

FIN. These are defined by the software implementation of FIN

in standard (serial) PCs. However, such sequential FIN could

be revisited for the implementation in digital signal processors

which allow any multi-sequencing (Tarakanov, Kvachev &

Sukhorukov 2005).

IV. CODING AND INFORMATION THEORY FOR LEARNING

In coding theory, one models the information being passed

from a sender to a receiver through a channel. The channel

may introduce noise, distorting the value of some of the bits

(data, in general) during the transmission. The channel can be
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a wireless or wired connection, a storage system or a

biological system. In this section we describe the immune

system as a noisy channel. So, the signal S is the population of

lymphocytes B, the channel is the global IS, the noise source

N is the antigen (Ag), and the received signal E is the

antibody (Ab). Hence, in this simple model of the natural

immune system we consider three immunological entities, B

cells, Ag and Ab, defined as binary strings. We consider the

case when the signal is perturbed by noise during

transmission, and does not always undergo the same change in

transmission. In this case, one may assume that E=f(S,N). In a

noisy channel there are two parallel, conflicting and sometime

non-commensurable processes at work: the source and the

noise, in this article, the population of lymphocytes and the

pathogen organisms. Coding theory for machine learning

studies the trade-offs (e.g., the observed Pareto Fronts)

between three conflicting objectives: the source-signal, the

noise-problem, and the expected-received-signal. Actually, in

the natural immune system there are several parallel processes

at different temporal and spatial scales; in this paper, we will

consider only two parallel processes: the ones that generate the

B cell and the antibody populations.

If the input of the channel, Xt
, at generation t is the B cell

population then the entropy, H (Xt ) , and the entropy of the

received signal, H (Y t ) , can be defined as

H (Xt ) = fm
t

m= 0

l

log fm
t

H (Y t ) = gm
t

m= 0

l

log gm
t

where the B cells distribution function, fm
t

, is defined as the

number of B cells at time t with distance m from the antigen,

Bm
t

, over the total number of B cells:

fm
t
=

Bm
t

Bm
t

m= 0

l

and

gm
t
=

Abm
t

Abm
t

m= 0

l

where Abm
t

is the number of antibodies that at time t have

fitness function value m. We note that in the noiseless case

H (X ) H (X )

where is the temporal window with a fixed number of

generations. Moreover, there are two conditional entropies

H (X |Y ) and H (Y | X) , the entropy of the received signal

when the input known and conversely. Finally, among these

entropies we have the relation:

H (X,Y ) =H (X) +H (Y | X) = H (Y ) +H (X |Y )

where H (X,Y ) is the joint entropy, while the mutual

information (or the rate of actual transmission R) is defined as

follows:

I (X;Y ) =H (X) H (X |Y ) = H (Y ) H (Y | X) =

= H (X) +H (Y ) H (X,Y )

We note that if X and Y are independent then I(X;Y)=0, while

if X and Y are not perfectly independent then:

I (X;Y ) =H (X) H (Y )

Hence, H(X,Y) measures the dependency between the two

variables. Since, Xt
and Y t

represent the population of B cells

and antibodies at generation t respectively, we assume they are

dependent. The termination condition of an Artificial Immune

System modeled as a noisy channel is straightforward: if for a

certain number of generations, , one have that

H (X ) H (Y )
then the received signal is the same of the input signal hence

the noise-antigen has been corrected-recognized. We fail in

the case of transmission in a noiseless channel. We note that

the noise-antigen is corrected-recognized by a B cell (or

antibody) if the B cell receptor represents the optimal (or

suboptimal) solution for the given Ag-problem-instance.

In this framework, the Shannon Entropy is used to measure

the flatness of the information distribution provided by a set of

solution points, hence it is desirable to maximize it. We do not

consider the entropy H as a measure of the uncertainty in a

stochastic event with a given probability distribution. Now we

have a metric for the goodness of the spread of points in a k-

dimensional objective space.

The Kullback entropy is perhaps the most frequently used

information-theoretic distance measure from a theoretical

point of view. The Kullback entropy K is a functional of two

PDFs p(x) and q(x),

K = dxp(x) log[p(x) q(x)]

The discrete form of the previous equation is

K = p(xm ) log[p(xm ) q(xm )]
m

To analyze the learning processes, we use the notion of

information gain, an entropic function associated to the

quantity of information the algorithm discovers during the

learning phase. It follows that the Information Gain can be

defined as:

IG (t,t0) = fm
t log[ fm

t fm
t 0 ]

m= 0

l
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K(t,t0) is the quantity of information the algorithm discovers

during the convergence process. The gain is the amount of

information the system has already learned from the given

optimization problem, with respect to the initial (time step t0)

distribution function. Once the learning process starts, the

information gain (IG) increases monotonically until it reaches a

final steady state. Moreover, in general the information gain is

a kind of entropy function useful both on-line and at run-time

to understand the algorithms' behavior and to set the

parameters of the procedures. In fact, in some application

domains it is important to compute the total amount of

information between two adjacent time steps:

IG (t,t ) = fm
t log[ fm

t fm
t ]

m= 0

l

V. GENERAL MODEL

Consider the mathematical model of signal processing by

the IC approach. Step 1 corresponds to feature extraction.

Steps 2-5 and Step 9 correspond to training. Steps 6-8

correspond to recognition.

1. Let },...,{ 1 u
ttT = be a fragment of the real-valued

signal, where T
N

u 2= and
T
N is some number exponent so

that u is a power of 2. Compute DTT of this fragment as the

values of feature vector ],...,[ 1=
n
xxX , where X

N
n 2= ,

TX
NN so that

X
N is a level of the discrete tree.

2. Form a training matrix ]...[ 1=
m
XXA of dimension

nm , where
m
XX ,...,1 are training vectors (obtained by

DTT of signal parts
m
TT ,...,1 ) with known values mff ,...,1 of

some training function )(Xf .

3. Compute the first q singular values qss ,...,1 and the

corresponding left and right singular vectors qLL ,...,1 and

qRR ,...,1 by SVD of the training matrix, where rq and r

is rank of the matrix. Such SVD can be computed by a rather

simple and robust iterative scheme (Tarakanov [et al.] 2003).

4. For any training vector iX , compute its mapping

]...[)( 1= iqii yyXY into a q -dimensional space of FIN:

1

1

1

1
RX

s
y ii = ,…, qi

q

iq RX
s

y =
1

.

5. Using procedures of apoptosis and autoimmunization,

reduce m training points of FIN to mk points, where the

points number k is self-defined by the inner invariant of FIN

(see Proposition 2 in previous section).

6. For any n-dimensional test-vector Z (antigen obtained by

DTT of any signal fragment), compute its mapping

]...[)( 1= qyyZY into the q -dimensional space of FIN:

1

1

1

1
RZ

s
y = ,…, q

q

q RZ
s

y =
1

.

7. Among the reduced training points of FIN
k
YY ,,1 K ,

determine the p nearest points to )(ZY , pYY ,...,1 , and their

distances:

YYd == 11 ,…, YYd pp == .

8. Interpolate )(Zf by the following sum:

=

=

p

i

ii faf

1

,

where )( ii Yff = are the training values in the nearest

points of FIN, whereas the coefficients ia are determined by

the distances:

+

=
p

ij j
i

i

d
d

a
1

1

1
.

9. Use the Information Gain (Nicosia 2004) to adjust the

parameters pqnu ,,, (dimensions of signal parts, feature

vector, space of FIN, and number of nearest points of FIN).

Such parameter tuning can be performed using a test set of

signal fragments (which FIN has not been trained) but with

known values of function f . As future work we plan to use

cross-fold evaluation techniques.

Note the following useful features of FIN. It can be shown

that

=

=

p

i

ia

1

1 . It can be also shown that iff = if 0=id

for any i (then 0jd for any ij ).

Consider a special case when the input antigen represents a

row of the training matrix and, thus, it is equal to a training

vector: miXZ
i

,,1, K== . According to the SVD

properties (Steps 2-4), the projection of such antigen into the

space of FIN coincides with the corresponding training point

of FIN: )()(
i
XYZY = . In such a case, Step 5 calculates the

following distances of the nearest points of FIN: 0
1
=d ,

0,,02 pdd K . Then, according to Step 8: 1
1
=a ,

0,02 == paa K , and the output of FIN is equal to the value

of the function )( iXf for corresponding training vector
i
X :

iff = .

VI. COMPARATIVE PERFORMANCE OF THE APPROACH

According to (Tarakanov A. & Y., 2004, 2005), consider

the following example. Let the task be to predict the structure

of a laser diode which would provide us with the output signal

of maximum optical power. The test data for the laser diode

structure with 5 parameters is given in Table 1. This data was

obtained using the computational physics method. The

experimental results for such structures do not yet exist.

However, the computational results for a simpler structure,

which has only 1 internal barrier, correspond well to the

experimental structures.
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The optical power depends on the properties of the internal

structure (barriers) in the laser diode. The input data composes

these barriers, as well as being the emitters, namely the

percentage of aluminium in the ternary solution AlGaAs,

which defines the energy offset of these barriers. Therefore,

the indicators are defined as follows:

= x1 and x5 are aluminium percentages in emitters of

electrons and holes, respectively;

= x2, x3, and x4 are aluminium percentages in 1
st
, 2

nd
and

3
rd

internal barriers respectively.

The class (index) number corresponds to the output optical

power in a response to the nanosecond current pulse with

amplitude of 3.2 Ampere (A) as follows: class 1: 0-2 Watt

(Wt); class 2: 2-3 Wt; class 3: 3-4 Wt; class 4: 4-5 Wt; class 5:

5-6 Wt; class 6: 6-7 Wt; class 7: more than 7 Wt.

We used the first 15 structures in Table 1 as the training

patterns (the class is marked in bold) and all 19 structures as

the test patterns.

Table 1. Optical power of different laser diode structures

X# x1 x2 x3 x4 x5 Class c*

(optical power)

1 40 40 30 30 40 1

2 40 20 40 30 40 1

3 40 30 55 40 40 1

4 30 40 40 30 55 1

5 40 30 40 30 40 2

6 40 40 40 30 55 3

7 40 40 30 40 40 3

8 40 20 30 40 40 4

9 40 30 40 55 40 4

10 40 30 40 40 40 4

11 55 40 40 30 30 4

12 30 40 40 30 30 5

13 40 40 40 30 40 6

14 55 40 40 30 55 6

15 40 40 40 30 30 7

16 30 40 40 30 40 1

17 40 40 40 20 40 1

18 40 40 40 40 40 3

19 40 20 40 40 40 4

Comparative performance of the IC approach, ANN trained by

error back propagation, and the genetic algorithm (GA) for

this example is given in Table 2, where the error is the

absolute difference between the computed class and the actual

class given in Table 1. These results show that both ANN and

GA give inadmissible errors, whereas ANN is too slow in

comparison with IC and GA.

Other examples in (Tarakanov & Prokaev 2007; Tarakanov [et

al.] 2007) also show a better accuracy of IC over ANN and the

GA. This work also demonstrates the theoretically rigorous

feature of training IC with a zero error rate. On the other hand,

the training errors of ANN and of the GA are usually too high.

In addition, attempts to reduce training errors of ANN may

lead to the so called overtraining effect when total error

increases drastically. These advantages of IC in training time

and accuracy are expected to rise as the dimension of the

training data increases. According to the results reported in

(Tarakanov, Kvachev & Sukhorukov 2005), the IC algorithm

reduces more than 50000 41-dimensional training signals of

network traffic to less than 800 points of 3D FIN by 62 sec

(AMD 1.5 GHz) without any loss of accuracy of recognition

(intrusion detection).

Table 2. Comparative performance of IC, ANN and GA

Algorithm IC ANN GA

Training patterns 15 15 15

Training time (s)

for Pentium-4 1.8 GHz

<1 120 <1

Total errors on training set 0 0 0

Maximal error on training

set

0 0 0

Test patterns 19 19 19

Errors on non-training

patterns

0 9 9

Total errors on test set 0 9 9

Maximal error on test set 0 4 5

Mean error per pattern 0.00 0.47 0.47

VII. CONCLUSION

The results reported in (Nicosia, 2004; Nicosia [et al.] 2002,

2003, 2006, 2007; Tarakanov A. & Y., 2004, 2005; Tarakanov

[et al.] 2005, 2006) suggest that the IC approach is

competitive and sometime outperforms other robust methods

of computational intelligence (in particular, neurocomputing

and evolutionary algorithms) in terms of training time and

accuracy. Possible ways to reinforce these advantages may be

norms other than Euclidian norm together with more delicate

and sophisticated methods of interpolation by nearest points of

FIN and other entropy functions (e.g., Renyi, 1970).
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