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Abstract

Variational principles for the rate distortion (RD) theory,
and the Information Bottleneck (IB) method, are formulated
within the ambit of the generalized nonextensive statistics
of Tsallis. Numerical schemes for the nonextensive RD the-
ory and IB method are derived. The physical implications
of using nonextensive statistics vis-á-vis Boltzmann-Gibbs
statistics are exemplified with the aid of numerical simula-
tions.

1. Introduction

The generalized (nonextensive) statistics of Tsallis [1,2]
has recently been the focus of much attention in statisti-
cal physics, and allied disciplines1. Nonextensive statis-
tics has found applications in a wide spectrum of disci-
plines ranging from condensed matter physics to finan-
cial mathematics. A continually updated bibliography of
works related to nonextensive statistics may be found at
http://tsallis.cat.cbpf.br/biblio.htm.

Nonextensive statistics generalizes the extensive
Boltzmann-Gibbs statistics, and has much utility in com-
plex systems. Some of features possessed by complex
systems, which invite the use of nonextensive statistics are
long range correlations, fluctuations, ergodicity, chirality
and fractal behavior, amongst others. By definition, the
Tsallis entropy is defined in terms of discrete variables as

Sq (x) =

1−
∑

x
pq (x)

1− q
, where,

∑

x

p (x) = 1. (1)

The constant q is referred to as the nonextensivity pa-
rameter. Given two independent variables x and y, one of

1In this paper the terms generalized and nonextensive are used inter-
changeably

the fundamental consequences of nonextensivity is demon-
strated by the pseudo-additivity relation

Sq (xy) = Sq (x) + Sq (y) + (1− q)Sq (x)Sq (y) . (2)

Here, (1) and (2) imply that extensive statistics is recov-
ered as q → 1. Taking the limit q → 1 in (1) and evoking
l’Hospital’s rule, Sq (x)→ S (x), the Shannon entropy.

The jointly convex generalized Kullback-Leibler diver-
gence (K-Ld) is of the form [3]

Iq (p (x) ‖q (x) ) =
∑

x

p (x)

(
p(x)
r(x)

)q−1

− 1

q − 1
. (3)

In the limit q → 1, the extensive K-Ld is readily re-
covered. Akin to the Tsallis entropy, the generalized K-Ld
obeys the pseudo-additivity relation [3].

Rate distortion (RD) theory constitutes one of the cor-
nerstones of contemporary information theory [4, 5]. RD
theory has found applications in diverse disciplines, which
include data compression and clustering. Deterministic an-
nealing (DA) [6, 7] and the information bottleneck (IB)
method [8] are two influential paradigms in machine learn-
ing, that are closely related to RD theory. The representa-
tion of RD theory in the form of a variational principle, ex-
pressed within the Boltzmann-Gibbs-Shannon framework,
has been established (see Chapter 13 of [4]).

The seminal paper on source coding within the frame-
work of nonextensive statistics by Landsberg and Vedral
[9], has provided the impetus for a number of investigations
into the use of nonextensive information theory within the
context of coding problems. The works of Yamano [10,11]
represent a sample of some of the prominent efforts in this
regard.

The objective of this paper is to re-formulate RD theory
and the IB method within the ambit of nonextensive statis-
tics. Further, numerical algorithms derived on the basis of
generalized statistics are presented for the nonextensive RD
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theory and IB method. For the RD theory, the numerical
algorithm modifies the well known Blahut-Arimoto scheme
[12].

One of the noteworthy results of the IB method is the
self-consistent derivation of the distortion measure from the
joint statistics of the source distributionX and the relevance
variable Y [8]. Section 4 of this paper tacitly demonstrates
that this result carries over into the nonextensive regime.
Finally, the distinctions between extensive vis-á-vis nonex-
tensive statistics are highlighted with the aid of simple, but
qualitatively revealing, numerical simulations.

2. Select Theory in Generalized Statistics

2.1 Selected results from q-algebra

Generalized statistical mechanics often utilizes results
from q-algebra, in order to derive equations that resemble
their counterparts obtained from Boltzmann-Gibbs statis-
tics. Herein, selected results utilized in this paper are de-
scribed. The Tsallis entropy (1), and, the generalized K-Ld
(3) may be written as

Sq (p (x)) = −
∑

x

p (x)
q
lnq p (x) , (4)

and,

Iq (p (x) ‖r(x) ) = −
∑

x

p (x) lnq
r(x)

p(x)
, (5)

respectively. Here, the q-deformed logarithm is

lnq (x) =
x1−q − 1

1− q
. (6)

In this paper, 0 < q < 1. Similarly, the q-deformed
exponential is described by

ex
q =






[1 + (1− q)x]

1
/(1− q)

; 1 + (1− q)x ≥ 0
0; otherwise

(7)
It is important to note that the results of q-algebra are

not constructions specifically manufactured to express re-
sults obtained from generalized statistics, in a form analo-
gous to their counterparts in extensive statistics. The results
of q-algebra have a long lineage, and the existence of cer-
tain results (specifically the q-deformed exponential) were
known to Leibniz [13]. Some of the salient results of q-
algebra, that are employed in this paper are

lnq (xy) = lnq (x) ⊕q lnq (x)
= lnq (x) + lnq (y) + (1− q) lnq (x) lnq (y) ,

lnq

(
x/y

)

= lnq (x)⊖q lnq (x)

where,⊖qy = −y
1+(1−q)y) .

(8)

2.2 Constraints

Generalized statistics has utilized a number of con-
straints to define expectations. The original Tsallis (OT)
constraints of the form 〈A〉 =

∑

i

piAi [1], were con-

venient owing to their similarity to the maximum en-
tropy constraints. These were abandoned because of dif-
ficulties encountered in obtaining an acceptable form for
the partition function. The OT constraints were subse-
quently replaced by the Curado-Tsallis (C-T) [14] con-
straints 〈A〉q =

∑

i

p
q
i Ai. The C-T constraints were later

replaced by the normalized Tsallis-Mendes-Plastino (T-M-

P) constraints [15] 〈A〉q =
∑

i

pq
i

ℵq(x)Ai;ℵq (x) =
∑

i

p
q
i .

The dependence of the expectation value on the normaliza-
tion pdf ℵq (x), rendered the T-M-P constraints to be self-
referential.

A recent work by Ferri, Martinez, and Plastino [16] has
described a methodology to “rescue” the OT constraints,
and, has linked the OT, C-T, and, T-M-P constraints. The
present paper utilizes a procedure that is closely related to
the work of Ferri, Martinez, and Plastino [16]. This has
enabled the nonextensive variational principles for the RD
theory and the IB method to be cast in a manner that closely
parallels the extensive case.

3 Nonextensive RD Variational Principle

Let X ∈ Ξ be a discrete random variable, distributed
according to the marginal pdf p (x). Let X̃ ∈ Ξ̃ be an-
other discrete random variable, distributed according to the
marginal pdf p (x̃). Here, X̃ is a compressed representa-
tion (quantized codebook) of X, defined through a (possibly
stochastic) mapping between each value x ∈ Ξ to a repre-
sentative value x̃ ∈ Ξ̃. This mapping is characterized by the
conditional probability p (x̃ |x ), which induces a soft par-
titioning (assignment) of the X discrete random variables.
Each x ∈ Ξ relates to all x̃ ∈ Ξ̃ through a normalized con-
ditional pdf conditional probability p (x̃ |x).

Consider the nonextensive RD Lagrangian

L
q
RD [x̃ |x ] = Iq

(

X; X̃
)

+ β 〈d (x, x̃)〉p(x,x̃) , (9)

subject to the normalization of the conditional probabil-
ity p (x̃ |x ). The distortion measure is denoted by d(x, x̃),
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which is taken to be the Euclidean square distance for most
problems in science and engineering [7]. Here, Iq(X; X̃) is
the generalized mutual information defined by

Iq

(

X; X̃
)

= −
∑

x,x̃

p (x, x̃) lnq

(
p(x)p(x̃)

p(x)p(x̃|x )

)

=
∑

x,x̃

p(x)p(x̃|x )
(

p(x̃|x )

p(x̃)

)q−1
−1

q−1 .

(10)

Defining Rq (D) = min
p( x̃|x):〈d(x,x̃)〉p(x,x̃)≤D

Iq

(

X; X̃
)

,

δRq (D) = δIq

(

X; X̃
)

+ βδ 〈d (x, x̃)〉p(x,x̃) = 0

⇒
δIq(X;X̃)

δ〈d(x,x̃)〉p(x,x̃)
= −β.

(11)
The joint pdf p (x, x̃) is taken to be normalized, thus,

∑

x,x̃
p (x, x̃) = 1. Expanding p (x, x̃) = p (x) p (x̃ |x ), (11)

acquires the form

L
q
RD [ x̃| x] =

∑

x,x̃

p(x)p( x̃|x)
(

p( x̃|x)
p(x̃)

)q−1
−1

(q−1) +β
∑

x,x̃

d (x, x̃) p (x) p ( x̃| x)+

+
∑

x
λ (x)

∑

x̃
p ( x̃|x).

(12)
Defining p (x̃) =

∑

x
p (x)p (x̃ |x ), and noting that

δp(x̃)
δp(x̃|x )

= p (x), the variational derivative of (12) yields

δLq
RD

[x̃|x ]

δp(x̃|x ) =

= p (x)

[

q
q−1

(
p(x̃|x )
p(x̃)

)q−1

+ βd (x, x̃) + λ̃ (x)

]

= 0.

(13)
It is important to note that conditional probabilities first ac-
quired prominence in nonextensive statistics owing to their
utility in characterizing quantum entanglement. This was
accomplished in the seminal work of Abe and Rajagopal
[17]. In (13) the scaled Lagrange multiplier λ̃ (x) = λ(x)

p(x) −

p (x)(1−q), evaluated for each value of x, enforces the nor-
malization of the conditional probability . Note that for
both the RD theory and the IB method, the normalization
Lagrange multiplier acts as a ”reservoir” into which terms
independent of x̃ may be absorbed. Expanding (13), yields

p (x̃ |x ) = p (x̃)

[
(1− q)

q

{

λ̃ (x) + βd (x, x̃)
}]1/(q−1)

.

(14)
The scaled normalization Lagrange multiplier is obtained as
follows. Multiplying the terms in the square bracket in (13)

by the conditional probability p ( x̃|x), and summing over
x̃ yields

q
q−1

∑

x̃

p (x̃)
(

p( x̃|x)
p(x̃)

)q

+

+β
∑

x̃

d (x, x̃) p ( x̃|x)

︸ ︷︷ ︸

β〈d(x,x̃)〉p( x̃|X=x)

+λ̃ (x)
∑

x̃

p ( x̃|x) = 0. (15)

Evoking the normalization condition for the condi-
tional pdf with the source sample fixed at X = x, i.e.
∑

x̃

p ( x̃|X = x) = 1, yields

λ̃ (x) =
q

(1− q)
ℵq (x) − β 〈d (x, x̃)〉p( x̃|X=x) . (16)

Here, ℵq (x) =
∑

x̃

p (x̃)
(

p( x̃|x)
p(x̃)

)q

. The conditional pdf

p ( x̃|x) acquires the form

p ( x̃|x) = p (x̃)

{

ℵq (x) +
(1− q)

q
β∆d (x, x̃)

}1/(q − 1)
,

(17)

where, ∆d (x, x̃) =
{

d (x, x̃) − 〈d (x, x̃)〉p( x̃|X=x)

}

. Re-

arranging the terms in (17) yields

p ( x̃| x) =
p(x̃)

{

1−
(q−1)βd(x,x̃)

qℵq(x)+(q−1)β〈d(x,x̃)〉p( x̃c|X=x)

}1/(q−1)

[qℵq(x)+(q−1)β〈d(x,x̃)〉p( x̃|X=x)]
1/(1−q) ,

= p(x̃){1−(q−1)β∗d(x,x̃)}1/(q−1)

ℑ
1/(1−q)

RD

,

(18)
where the effective inverse temperature β∗ =

β
qℵq(x)+(q−1)β〈d(x,x̃)〉p( x̃|X=x)

= β
ℑRD

. Transforming

q → 2− q∗ in the numerator and evoking (7), (18) acquires
the familiar form

p (x̃ |x ) =
p (x̃) expq∗(−β∗d (x, x̃))

Z̃(x, β∗)
. (19)

Note that Z̃ (x, β∗) = ℑ
1/(1−q)

RD , the partition function eval-
uated at each point of the source distribution.

To provide the nonextensive RD theory with a statisti-
cal physics connotation [5-7], the effective nonextensive RD
Helmholtz free energy is

F
q
RD (β∗) =

−1

β∗

〈

lnq Z̃ (x, β∗)
〉

p(x)
=

1

β∗

〈
ℑRD − 1

q − 1

〉

p(x).

(20)
Solution of (19) may be viewed from two distinct per-

spectives, i.e. the canonical perspective and the paramet-
ric perspective. Owing to the self-referential nature of the
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effective inverse temperature β∗, the analysis and solution
of (19) within the context of the canonical perspective is
a formidable undertaking. For practical applications, the
parametric perspective is utilized by evaluating the con-
ditional pdf p ( x̃| x), employing the nonextensive Blahut-
Arimoto algorithm, for a-priori specified β∗ ∈ [0,∞]. Note
that within the context of the parametric perspective, the
self-referential nature of β∗ vanishes. The inverse tempera-
ture β and the effective inverse temperature β∗ relate as

β =
qℵq (x)β∗

[

1− β∗ (q − 1) 〈d (x, x̃)〉p( x̃|X=x)

] . (21)

The Blahut-Arimoto algorithm for nonextensive RD the-
ory is described in Algorithm 1.

Algorithm 1 Nonextensive Blahut-Arimoto
Input
1. Source distribution p (x) ∈ X.
2. Set of representatives of quantized codebook given by
p (x̃) ∈ X̃ values.
3. Parameter (effective inverse temperature) β∗ ∈ [0,∞].
4. Convergence parameter ε.
5. Distortion measure d(x, x̃).
Output
Value of Rq(D) where its slope equals −β =

−qℵq(x)β∗

[1−β∗(q−1)〈d(x,x̃)〉p( x̃|X=x)]
.

Initialization
Initialize Ro

q ←∞ and randomly initialize p(x̃).
While True
• pm+1 (x̃ |x )←

p(m)(x̃) expq∗(−β∗∆d(x,x̃))

Z̃(m+1)(x,β∗)

• pm+1 (x̃)←
∑

x
p (x)pm+1 (x̃ |x)

R
(m+1)
q (D) = Iq

(
p (x) p(m+1) ( x̃| x) ||p (x) p(m+1) (x̃)

)
.

If
(

R
(m)
q (D)− R

(m+1)
q (D)

)

≤ ε

Break

4. Nonextensive IB Variational Principle

The IB method of Tishby, Pereira, and Bialek [8] extends
RD theory by introducing a principle for extracting rele-
vant structure from data. This is accomplished by model-
ing structure extraction as data compression, followed by a
quantification of the information preserved by the extracted
structure with regards to a specific relevance variable. A
thorough discussion of the IB method and some of its ex-
tensions is provided in the doctoral dissertation of Slonim
[18].

Here, X ∈ X is a discrete random variable, distributed
according to the marginal pdf p (x) - the source distribu-
tion. Further, X̃ ∈ X̃ is another discrete random variable,

distributed according to the marginal pdf p (x̃). Here, X̃

is the bottleneck representation (analogous to the quantized
codebook in RD theory). The relevance variable is repre-
sented by the discrete random variables Y ∈ Y2. Inclusion
of the relevance variable leads to the further introduction of
two conditional pdf ’s p (y| x), and, p (y| x̃).

The crux of the IB method is to ”squeeze” the informa-
tion between the source distribution X and space of rele-
vant variables Y through a compact bottleneck representa-
tion X̃. This process is described by the Markov relation
X̃ ↔ X ↔ Y .

The nonextensive IB Lagrangian is

L
q
IB = Iq

(

X; X̃
)

−βIq

(

X̃; Y
)

−
∑

x

λ (x)
∑

x̃

p ( x̃| x),

(22)
subject to the normalization of the conditional probabil-
ity, i.e.

∑

x̃
p (x̃ |x ) = 1. Here, Iq (•; •) denotes the

generic generalized mutual information. The IB Lagrangian
represents a tradeoff between the compression informa-

tion Iq

(

X; X̃
)

, and, the relevance information Iq

(

X̃; Y
)

.

Minimizing (22) with respect to the conditional probability
p ( x̃|x) for each x and x̃, yields

qp(x)
q−1

(
p( x̃|x)
p(x̃)

)q−1

+

−β

{

q
q−1

∑

y
p (y) pq (x| y)

(
p( x̃|x)
p(x̃)

)q−1
}

− λ(1) (x) = 0,

where,

−λ(1) (x) = −λ (x)− p(2−q) (x) + β
∑

y
p (y) pq(x|y)

p(q−1)(x)

(23)
The Markov consistency condition p ( x̃| x) = p( x̃|y)

p(x|y)
with

Bayes rule p( x̃|y)
p(x̃) = p(y|x̃)

p(y) , yields

p ( x̃|x) =
p (x̃) p (y| x̃)

p (y) p (x| y)
. (24)

Substituting (24) into (23), followed by algebraic manipula-
tions to introduce the generalized K-Ld with the aid of (8),
yields

[

q
q−1

(
p( x̃|x)
p(x̃)

)q−1

+ β

{

q
∑

y
p (y| x) lnq

(
p( y|x)
p( y|x̃)

)
}]

+

−λ(2) (x) = 0,

where,

−λ(2) (x) = ⊕qqβ
∑

y
p (y| x) lnq

(
p(y)

p(y|x)

)

− λ(1) (x)/
p (x)+

+ qβ
1−q

∑

y
p (y| x).

(25)

2Calligraphic fonts denote sets

512

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



Solving (25) for p ( x̃| x) yields

p ( x̃| x) =

p (x̃)

[

q−1
q

{

−qβ
∑

y
p (y| x) lnq

(
p(y|x)
p(y|x̃)

)

+ λ(2) (x)

}] 1
(q−1)

.

(26)
Multiplying (25) by p ( x̃|x), and, summing over x̃

yields

λ(2) (x) =

= q
q−1ℵq (x) + qβ

〈

∑

y
p (y| x) lnq

(
p(y|x)
p(y|x̃)

)
〉

p( x̃|X=x)

.

(27)

Here, ℵq (x) =
∑

x̃

p (x̃)
(

p( x̃|x)
p(x̃)

)q

. Substituting (27) into

(26), setting q → 2− q∗ and evoking (7), yields an expres-
sion in the form of the q-deformed exponential

p ( x̃|x) = p (x̃)

expq∗

{

−β∗
IB

∑

y

p(y|x) lnq

(
p( y|x)
p( y|x̃)

)
}

ℑ
1

(1−q)

IB

= p (x̃)
expq∗{−β∗

IBIq[p( y|x)‖p(y|x̃)]}

ℑ

1
(1−q)

IB

.

(28)
In (28), the effective trade-off parameter, and, the partition
function evaluated at each instance of the source distribu-
tion are

β∗
IB = β

ℑIB
,

and,

Z̃ (x, β∗
IB) = ℑ

1
(1−q)

IB =
=

∑

x̃

p (x̃) expq∗ (−β∗
IBIq [p (y| x)‖ p (y| x̃)]),

where,

ℑIB = ℵq (x)+

+ (q − 1)β

〈

∑

y
p (y| x) lnq

(
p(y|x)
p(y|x̃)

)
〉

p( x̃|X=x)

,

(29)
respectively. The effective trade-off parameter for the IB
method relates to the trade-off parameter as

β =
β∗

IBℵq (x)


1− (q − 1)β∗
IB

〈

∑

y
p (y| x) lnq

(
p(y|x)
p(y|x̃)

)
〉

p( x̃|X=x)





.

(30)
From (28), one obtains the iterative relation

p(m+1) ( x̃|x)← p(m)(x̃)

Z̃m+1(x,β∗
IB)
×

× expq∗

{
−β∗

IBIq

[
p (y| x)

∥
∥p(m) (y| x̃)

]}
,

∀x̃ ∈ X̃ , x ⊂ X

(31)

Here, (31) represents the primary distinction between the
nonextensive IB method and the extensive IB method. Com-
paring (31) to the equivalent expression in the method IB
method [8], readily reveals that in the nonextensive case the
exponential term is replaced by the q-deformed exponential
and the K-Ld by the generalized K-Ld. The Markov relation
X̃ ↔ X ↔ Y yields relations common to both nonexten-
sive and extensive IB methods [18]

p(m) (x̃) =
∑

x
p (x)p(m) ( x̃| x) ,

and,

p(m) (y| x̃) = 1
p(m)(x̃)

∑

x
p(m) ( x̃| x) p (x, y) .

(32)

The gist of the simulation is to a-priori vary β∗
IB ∈ [0,∞],

followed by an a-posteriori solution of (31) and (32) in a
manner akin to the EM algorithm [19]. Algorithm 2 demon-
strates the implementation of an iterative generalized IB
method.

Algorithm 2 Nonextensive Iterative Information Bottle-
neck Method

Input
1. Joint distribution p(x, y).
2. Effective trade-off parameter β∗

IB ∈ [0,∞].
4. Cardinality |X̃ | = M , convergence parameter ε.
Output
A (typically ”soft”) partition X̃ of X into M clusters.
Initialization
Randomly initialize p(x̃|x) and find the corresponding
p(x̃) and p(y|x̃).
While True

•

p(m+1) ( x̃| x)← p(m)(x̃)

Z̃m+1(x,β∗
IB)
×

× expq∗

{
−β∗

IBIq

[
p (y| x)

∥
∥p(m) (y| x̃)

]}
,

∀x̃ ∈ X̃ , x ⊂ X

• p(m+1) (x̃)←
∑

x
p (x)p(m+1) ( x̃| x) , ∀x̃ ∈ X̃

•
p(m+1) (y| x̃) = 1

p(m+1)(x̃)

∑

x
p(m+1) ( x̃|x) p (x, y),

∀x̃ ∈ X̃ , y ⊂ Y
If ∀x ∈ X , J − Sq(NonextensiveJensen −
Shannon)

[
p(m+1) ( x̃|x) , p(m) ( x̃| x)

]
≤ ε

Break

5 Numerical Simulations and Physical Inter-
pretations

The qualitative distinctions between nonextensive statis-
tics and extensive statistics is demonstrated with the aid of
the respective RD models. To this end, a sample of 1000
two-dimensional data points is drawn from three spherical
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Gaussian distributions with means at (2, 3.5), (0, 0), (0, 2)
(the quantized codebook). The priors and standard devia-
tions are 0.3, 0.4, 0.3, and, 0.2, 0.5, 1.0, respectively.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D

R
D

Shannon Theory

Generalized Statistics
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Figure 1. Rate distortion curves for nonexten-
sive and extensive statistics

Fig.1 depicts the extensive and nonextensive RD curves,
with the constituent discrete points overlaid upon them.
Each curve has been generated for β ∈ [.1, 2.5] (extensive
case), and β∗ ∈ [.1, 100] (nonextensive cases), respectively.
It is observed that the nonextensive theory for the nonexten-
sivity parameter q in the range 0 < q < 1 uniformly exhibit
a lower threshold for the minimum achievable compression-
information in the distortion-compression plane, as com-
pared to the extensive case. Note that for the nonextensive
cases, the slope of the tangent drawn at any point on the
RD curve is the negative of the inverse temperature−β, and
not,−β∗.

At the commencement, β → 0, β∗ → 0, the Blahut-
Arimoto algorithm solves for the compression phase. As
β and β∗ increase, the data points undergo soft clustering
around the cluster centers. The hard clustering regime sig-
nifies regions where β →∞, β∗ →∞.

As is observed in Fig. 1, the hard clustering regions cor-
respond to portions of the RD curves where the discrete
points are tightly packed. It is observed that the nonexten-
sive RD models undergo compression and clustering more
rapidly than the equivalent extensive RD model. A pri-
mary cause for such behavior is described in Fig. 2, where
the nonextensive effective inverse temperatures β∗ are de-
picted versus the corresponding inverse temperatures β,
with the aid of (21). As is noticed, β∗ increases rapidly
with marginal increases in β.

The above arguments result in an observation in Fig.1
that is of particular significance. Specifically, even for less
relaxed distortion constraints 〈d (x, x̃)〉p(x,x̃), any nonex-
tensive case for 0 < q < 1 possesses a lower mini-

mum compression information than the corresponding ex-
tensive case. The threshold for the minimum achievable
compression-information decreases as q → 0. Note that all
nonextensive RD curves inhabit the non-achievable region
for the extensive case. By definition, the non-achievable
region is the region below a given RD curve, and signifies
the domain in the compression-distortion plane where com-
pression does not occur.

Further, nonextensive RD models possessing a lower
nonextensivity parameter q inhabit the non-achievable re-
gions of nonextensive RD models possessing a higher value
of q. These features imply the superiority of nonextensive
models to perform data compression vis-á-vis any compa-
rable model derived from Boltzmann-Gibbs statistics.
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Figure 2. Curves for β v/s β∗

6 Ongoing Work

A variational principle for a generalized RD theory and
IB method has been presented. Ongoing work is focused
upon two objectives. First, employing the T-M-P con-
straints a different set of variational principles is obtained.
A comparative analysis between nonextensive variational
principles for the RD theory and the IB method is currently
underway. Next, the RD model and the Blahut-Arimoto
numerical scheme studied in this paper represent an ideal-
ized scenario, involving well behaved sources and distortion
measures.

An ongoing study treats a more realistic RD scenario by
extending the works of Rose [20] and Banerjee et. al. [21].
This is accomplished via the formulation and analysis of a
generalized Bregman RD (GBRD) model. One of the im-
portant features of the GBRD model is the derivation of
a Tsallis-Bregman lower bound for the RD function. The
Tsallis-Bregman lower bound will enable in establishing a
principled theoretical rationale for the lower minimum com-
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pression information demonstrated by the generalized RD
models, vis-á-vis equivalent extensive RD models. Results
of these studies will be presented elsewhere.
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