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Abstract 
Laminar natural convection in an enclosed cavity with 
differentially heated walls and having fins on the cold 
wall is investigated. The effect of the number of fins and 
their position on the cold wall on heat transfer 
characteristics is analyzed. Governing equations of 
continuity, momentum and energy are solved using 
SIMPLER algorithm. A fuzzy controller with pre-defined 
set of fuzzy rules is implemented as a guiding mechanism 
for faster convergence. Relaxation factors are adjusted 
using fuzzy rules which guide the iterative scheme 
towards convergence in comparatively fewer numbers of 
iterations. A total of 16 cases with different fin aspect 
ratios (0.1 and 0.4) and their position on the cold wall are 
considered for a range of Grashof numbers (103, 105 and 
107).
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1.   Introduction 

Natural convection in enclosed cavities embedded with a 
fin or a series of fins on one wall has many industrial 
applications including reactor design, cryogenic systems, 
cooling of radioactive waste containers, and solar 
collectors [1]-[3]. With the presence of the protruding 
bodies in one or more walls the complexity of the 
problem increases and issue such as convergence of 
solution variables arise. Iterative methods form the basis 
of solving simultaneously the continuity, momentum, and 
energy equations in fluid flow and heat transfer associated 
with it. The SIMPLER algorithm [4], the basis of the 
present work, uses simple substitution in order to solve 
the discretized governing equations of fluid motion, 
energy, and scalar transport. However as stated in [5], the 
success of the iterative method in most CFD problems 
relies on the relaxation of state variables. The optimum 
relaxation factor depends on the nature of the problem, 
number of grid points used for discretization, grid 
spacing, iterative procedure used and other parameters. 
The optimum relaxation factor cannot be analytically 
determined. In relaxation methods, the value of the 
variable to be used for obtaining the solution in the next 

iteration is the value in the current iteration plus a fraction 
of the difference between the current value and the 
predicted value. 

2.   Cognitive Computing 

Research concerned with using cognitive computing 
methods such as fuzzy logic or neural networks to aid 
CFD simulations are limited in number in the literature. 
Cort et al. [6] used a simple feedback control method to 
adjust the relaxation factors in one-dimensional finite 
element heat transfer simulation. Iida et al. [7] published a 
study in which wobbling adaptive control was applied to a 
CFD simulation of the Benard problem. Studies to 
improve the convergence of genetic algorithms using 
fuzzy control have been reported in the literature [8]-[10]. 
Xunliang et. al. [11] controlled the convergence criteria 
using fuzzy logic based on the residual ratio of 
momentum or energy equation. A fuzzy logic algorithm 
for solving turbulent flow conditions is reported by 
Dragojlovic et. al. [12]. 

3.   Methodology 

The relaxation method discussed in the present work 
enables and improves convergence by slowing down the 
update rate of the system matrix coefficients. The iterative 
scheme used in this work is dependent upon the relaxation 
factor according to the following equation: 

* *nb nb
p p p

p

a b

a

where 0 < < 1 is the relaxation factor, p is the value of 
the state variable at node P to be used for the next 
iteration, *

p  is the value of the state variable at node P in 

the previous iteration, nb  are the values of the variables 
at the surrounding nodes and ap, anb, and b are the 
constants from the discretized equation. 

The present work deals with the computational fluid 
dynamics (CFD) simulation of laminar natural convection 
in an enclosed cavity with a single fin and series of fins 
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attached to the cold wall using fuzzy logic guidance 
methodology. Conjugate heat transfer condition is applied 
on the hot wall. Based on the history of the solution curve 
the membership functions are adjusted using a pre-
defined set of fuzzy rules. The objective of the present 
work is to study the heat transfer behavior due to the 
presence of fins by varying the number, position and 
aspect ratio of the fins, thereby adding complexity for the 
fuzzy controller. In all the cases analyzed the controller 
algorithm with a heuristic set of fuzzy rules was able to 
find a converged solution in comparatively lesser number 
of iterations than the constant relaxation factor. The trend 
in the Nusselt number for the above mentioned cases is 
analyzed for three different Grashof numbers and the 
optimum fin number and position on the cold wall is 
reported. 

4. Problem Analyzed - Rectangular cavity with 
conjugate heat transfer in one wall and fin on the cold 
wall  

A schematic of the problem considered is shown in Fig. 1. 
The problem investigated consists of a rectangular 
enclosure having width W and height H, (H = W) with 
conjugate heat transfer imposed in the wall of thickness t.
Isothermal boundary conditions are applied at the extreme 
sides, i.e. cold (Tc) and hot wall (Th) conditions at the left 
and right sides respectively. The cavity is filled with a 
constant property fluid (air, Pr = 0.71) and the horizontal 
sides are insulated. Three walls of the enclosure are 
assumed to be of zero wall thickness while the fourth, the 
right vertical wall, has a thickness t. Because of the 
temperature gradient along the x direction, a buoyancy-
driven recirculation pattern appears in the cavity. The 
solid wall at the right side is simulated by substituting a 
very high value of the dynamic viscosity in the algorithm. 
The problem uses the domain distribution of 40 X 34, i.e. 
40 grid lines along the x-axis and 34 along the y-axis. Out 
of the 40 grid lines used for discretizing x-axis a 
disproportionate share of 10 grid lines were used for 
simulating the solid wall conditions. The grid was packed 
close to the solid walls and the solid-fluid interface so that 
the boundary layer could be well resolved. 

Figure 1. Fin attached to the cold wall of the enclosed 
cavity 

A fin of thickness tf and length L is mounted on the cold 
wall. Two aspect ratios of L/W = 0.1 and 0.4 are studied. 
The number and the position of the fins considered are 
schematically shown in Fig. 2. Table 1 defines the 8 cases 
investigated; in all the cases fin thickness is kept constant.  

Natural convection in an enclosed cavity due to thin fin is 
considered in [13]-[14]; however, the fins were attached 
to the hot wall. Numerical analysis of natural convection 
in an enclosure with fins attached to the cold wall is 
investigated in [15]-[16]; however, multiple fins were 
taken into account and conjugate effects were not 
considered. 

The flow was assumed to be Newtonian, incompressible, 
laminar, two-dimensional and steady. Viscous dissipation 
was neglected. All thermophysical properties were 
assumed constant and independent of the pressure and 
temperature fluctuations. The fluid density was treated 
using the Boussinesq approximation. The buoyancy force 
is in the y-direction. The conservation equations for 
continuity, momentum, and energy are given in Patankar 
[4] as: 
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x y

2u u pu v
x y x

u ,

2
a

v v pu v g T T
x y y

v

2
p

T Tc u v k T
x y

2
517

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



where u, v are the velocity components in x and y
directions, μ, , k and cp are the fluid viscosity, density, 
thermal conductivity and specific heat respectively,  is 
the expansion coefficient and Ta is the ambient 
temperature. The velocity components at the boundaries 
are taken as zero. At the solid-liquid interface, the 
temperature and the heat flux must be continuous; this 
condition is mathematically expressed as: 

w

ffluid wall

k
x k x

where  is the non-dimensional temperature given by: 

c

h c

T T
T T

and kw and kf represent the thermal conductivities of wall 
and fluid respectively. The problem was solved for a 
range of Grashof numbers from 103 to 107; Grashof 
number is defined as: 

2 3

2
H Cg T T L

Gr

5.   Fuzzy logic approach 

The conservation equations listed above were discretized 
by a finite volume approach as defined by the following 
equation: 

p p nb nba a b

where ap is the coefficient for the point P under 
consideration, anb’s are the coefficients of neighboring 
grid points, p is the value of the dependent variable for 

the equation under consideration, nb ’s are the values of 
the neighboring grid points and b is the source term. The 
generic variable  is used to represent u, v, and T. Each 
of the velocity components, temperature and pressure are 
relaxed by a separate relaxation factors. The membership 
functions are adjusted using a pre-defined set of fuzzy 
rules. These rules are designed to adjust the relaxation 
factors during the iterative process. To supply more 
information to the decision making system the controller 
algorithm takes a larger set of characteristic values. The 
number of iterations the new algorithm considers is N 
where  

N = n      if   n < 50 
N = 50    if   n  50 

and n is the number of iterations, this includes the current 
iteration and a moving window of up to 50 earlier 

iterations.  The algorithm is based on iterative oscillations 
and basically consists of two subroutines: one evaluated 
the nature of ‘solution history curve’ and the other 
controls the features of this curve during iteration in order 
to produce and preserve those features that bring the 
fastest convergence. The characteristic quantity that 
represents the solution at the nth iteration is the square 
norm of the solution, also known as the magnitude of the 
solution vector: 

2

1 1
,

l m

n
i j

S n i j

where i and j are the node numbers in x and y directions 
respectively, n is the nodal value of the state variable  at 
the iteration n, l is the total number of nodes in the x
direction and m is the total number of nodes in the y
direction. At every iteration, the assumed values of the 
solution vector were updated with under-relaxed values 
according to the following equation: 

*
1 1n n n n

where  is a relaxation factor which varies between 0 and 
1. The details of the present algorithm are given in 
Dragojlovic et. al. [17]. The degrees of the membership of 
the input and output variables in a given fuzzy set are 
based on their actual values. The set of rules are governed 
by the fuzzy membership functions which vary between 0 
and 1, as shown in Fig. 3. Here P and N represent the 
positive and negative sides and S and B represent the 
small and big respectively. 

Figure 3. Distribution of fuzzy membership functions 

The values of the parameters amf, bmf, mf and mf for each 
membership function which apply to error and the change 
in error are listed in Table 2. The fuzzy membership 
functions which are applied to the increments in the 
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relaxation factors are listed in Table 3. For this set the 
defining parameters are scaled down in value compared to 
those applied to error and error differences in order to 
prevent disturbances in the solution vector during 
iteration caused by large positive increments in relaxation 
factor.

Table 2. Fuzzy membership functions for errors and 
error differences 

Table 3. Fuzzy membership functions for relative 
increments in relaxation factor 

amf bmf mf mf

NB -0.0025 -0.00162 0 -0.000625 
NM -0.001 -0.0005 -0.00062 -0.000312 
NS -0.000188 0 0.000312 0 
PS 0 0.000188 0 0.000312 
PM 0.0005 0.001 0.000312 0.000625 
PB 0.00162 0.0025 0.000625 0

The membership of the input and output variables in the 
fuzzy sets is shown in Table 4.  

Table 4. Fuzzy rule set 

Thus the rule set is a sequence of “If—then” type rules 
which engage the fuzzy linguistic variables in order to 
mimic the human, qualitative way of making decisions.  
An example rule used in this algorithm is: 

IF the error n is positive medium and the 

error difference  is negative  bign

THEN the change in the relaxation factor 
n is positive  small 

Each rule gives a fuzzy set as an output, which is a 
contribution to the final decision on the increment in the 
relaxation factor. The output from the example cited 
above is the fuzzy set “positive small”. The membership 
functions were chosen heuristically based on expert 
experience with laminar CFD problems. The particular set 
used here has also successfully solved a wide range of 
laminar flow problems, including a driven cavity, a 
backward facing step, and a Dean flow. The algorithm is 
not necessarily limited to laminar CFD problems, and 
does not rely on any general features of such problems. In 
fact it has been applied to a non-linear thermal radiation 
simulation successfully, showing the potential for solving 
a wide range of problems. The degree of membership of 
the input and output variables in a given fuzzy set are 
based on their actual values. If the variable n  has a 
degree of membership of 0.75 in the fuzzy set “positive 
big”, for example, this value is the degree of truth to 
which n can be considered positive and big in 

magnitude. The value of ‘0’ would mean that n is
not positive big at all while the value of 1 means that 

n fully belongs to the set “positive big”.

6.   Comparison with benchmark results 

Table 5 shows the comparison of the results obtained 
from the controller algorithm with multiple fins attached 
to the cold wall for Rayleigh number of 104 with the 
benchmark results.  The grid size used for the comparison 
was 40 X 150. Cratio was kept at 28.6.  

Table 5. Comparison of fuzzy logic algorithm with 
published solutions (enclosed cavity having fins on the 

cold wall – no conjugate effects) 

7.   Results 

7.1 Effect of fin aspect ratio on Nusselt number 

Figure 4 shows the variation of the Nusselt number with 
different conductance ratios at fin aspect ratios of 0.1 and 

Membership 
function 

amf bmf mf mf

Negative big 
(NB)

-1 -0.65 0 0.25 

Negative 
medium (NM) 

-0.4 -0.2 0.25 0.125 

Negative small 
(NS) 

-0.075 0 0.125 0

Positive small 
(PS) 

0 0.075 0 0.125 

Positive medium 
(PM) 

0.2 0.4 0.125 0.25 

Positive big (PB) 0.65 1 0.25 0 

Number 
of fins 

3 7 9 11

Yucel
[15] 

1.542 1.565 1.575 1.592 

Scozia
[16] 

1.528 1.571 1.586 1.576 

Present 
work 

1.5378 1.5687 1.591 1.5794 
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0.4 for different cases. Conductance ratio (Cr) is defined 
as:

w

f

k t
Cr

k W

where kw and kf  are the thermal conductivities of wall and 
fluid and t and W are the respective lengths. It can be seen 
from the figure that for all the cases increasing the aspect 
ratio decreases the Nusselt number and this effect is 
prominent at higher values of Cr (=50.0 and 100.0). 
Higher aspect ratio causes the blockage of heat circulation 
patterns thereby reducing the overall heat transfer area, 
which reduces the Nusselt number. A higher value of Cr
adds to the aforementioned effect. For Gr = 103, the effect 
of aspect ratio and the number of fins is insignificant. In 
this case the flow is mainly governed by the conduction 
and the flow patterns are minimally disturbed by the 
length and the number of the fins. 
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Figure 4. Nusselt number vs. Cr for different cases 
studied

7.2 Effect of number and position of fin on Nusselt 
number

Figure 5 compares the Nusselt number at Grashof number 
of 105 for the two aspect ratios. Interestingly, for this case 
and all the cases considered, Case 2 gives the highest 
value of Nusselt number indicating an improved heat 
transfer as compared to the other cases. Keeping the fins 
at positions 1 and 11 does not affect the circulation flow 
cells. At higher Gr and Cr the flow cells are less disturbed 
when the fin is at the center of the wall which enhances 
heat transfer. Also for lower values of Gr it is found that 
the fins should be placed near the top and bottom surfaces 
of the wall while for higher values of Gr and Cr only one 
fin at the center of the wall is an intelligent choice for 
enhancing thermal characteristics of the cavity. 

Figure 5. Nusselt number variation with Cr at Gr = 
105 for different aspect ratios 
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8.   Conclusions  

The present work explores the heat transfer characteristics 
of laminar natural convection in enclosed cavity with fin 
attached to the cold wall. Fuzzy rules with adjustable 
membership functions were implemented for faster 
convergence. The fin position, its length and number were 
varied to study the effect on the Nusselt number in the 
domain. The control algorithm was linked with the 
sequential solver named SIMPLER, which solves the 
partial different equations of fluid flow and heat transfer. 
A short fin with aspect ratio of 0.1 is better for improving 
heat transfer behavior as compared to a longer fin with 
aspect ratio of 0.4. 
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