
FPGA as a Tool for Implementing Non-fixed Structure Fuzzy Logic
Controllers

Jose Luis González, Oscar Castillo, and Luis T. Aguilar

Abstract— This paper presents an open architecture design
to implement Fuzzy Logic Controllers (FLC) on a Field Pro-
grammable Gate Array (FPGA) integrated circuit. This non-
fixed structures design is capable of Fuzzy Inference Engine
(FIE) parameters on-line user specification, achieves a design
space that includes Mamdani FIE, max-min rule evaluation,
and weighted average defuzzification method, with user defined
Membership Function(MF)type and number, MF parameters,
antecedent and consequent rule construction, and output vari-
able MFs; achieving it within a single chip, high speed,
low cost, small footprint FPGA. VHDL language is use for
hardware design description of a tested 8-bit resolution FLC;
portability and scalability is possible with minor modifications.
Algorithms, timing diagrams and hardware resources required
are presented; truncation related errors and processing speed
achieved is reported.

I. INTRODUCTION

Fuzzy Logic Controllers have the ability to infer good
results on conditions of imprecise and noisy data, allowing
it to tackle problems where the analytic plant model is in-
complete or is time-variant, situation that makes it difficult or
impractical to use classical analytical design methodologies
[9].

More reliable Fuzzy Logic theoretic foundations have been
able to provide a variety of algorithms to implement Fuzzy
Inference Engines (FIE) for control purposes, each of this
with different degree of numerical computation complexity
and linguistic knowledge representation.

Most FIE models have similar capabilities but it should be
mentioned that cost, size (footprint), processing speed, theo-
retic fidelity, and flexibility must be considered to achieve a
reliable working FLC. These elements are mutually exclusive
then it is common to find literature where on any given
working application one consideration is given priority over
others (see e.g., [1], [2], [6], [7], [10], [11]).

A. Motivation

Common platforms for FLC algorithm implementation
are: Personal Computers (PC), microprocessor or microcon-
troller based slim systems, custom digital integrated circuits
and custom analog integrated circuits; each of these plat-
forms offers different levels of advantages over the others
either because cost, size (footprint), processing speed, ease
of implementation, theoretic fidelity, and versatility.

J.L Gonzalez is with Facultad de Ciencias Quimicas en Ingenieria de la
Universidad Autonoma de Baja California (email: joseg@uabc.mx)

O. Castillo is with Instituto Tecnologico de Tijuana, Departamento en
Ciencias de la Computacion (email: ocastillo@tectijuana.mx)

Luis T. Aguilar is with Instituto Politécnico Nacional, Centro de Investi-
gación y Desarrollo de Tecnologı́a Digital, Ave. del parque 1310 Mesa de
Otay, Tijuana Mexico 22510; (e-mail: luis.aguilar@ieee.org).

Although PCs are the most versatile and offers best
theoretic fidelity, due to cost, size and processing speed are
not best choice for some applications.

On recent years, Field Programmable Gate Arrays (FP-
GAs) have been used to produce working single chip FIEs
(see e.g., [6], [8]); low cost, relative short design cycles and
ease of synthesis are desirable characteristics that allows
FPGA to be used for custom dedicated hardware designs,
but only on projects like [4] that the architecture is flexible
enough to reach a wide range of applications (design space).
Like in ([1], [10], [6]) once the design has been chosen
and synthesized on the FPGA, it can not be edited. On
large design space projects ([6], [8]) that use Look Up
Tables (LUT) instead of general numerical computation its
versatility is restricted to a particular FIE model because
LUTs are non-reconfigurable once they have been hardware
synthesized, making it a fixed custom solution hardware.

A flexible, open architecture on-line programmable hard-
ware design can broaden FLC applications if a slim, fast,
low cost system be available, for this FPGA was selected
for a non-fixed FLC design.

B. Objectives

Development of the architecture presented on this paper
sets out to facilitate synthesis of FLC of non-fixed struc-
tures on single chip, low cost FPGA; concurrent hardware
processing design achieves high speed throughput; included
complementary hardware within the FPGA eases interface
to a command unit, and at the same time allows for on-line
FIE parameter editing and thus produce a non-fixed FLC
dedicated hardware.

Use of programmable memory instead of LUTs to allocate
parameters for use on general purpose numerical computa-
tion units, gives the user chance to change FIE parameters
on-line and substantially increase hardware versatility, and
set it on a coprocessor like category: a Fuzzy Logic Copro-
cessor (FLCp).

This editing capability gives FLC ability to change its
control decision surface on-line, and thus makes it useful
for adaptive FLC research, for which this architecture was
develop.

C. Methodology

To achieve desired goals, all FLC components and com-
plementary interface hardware is fitted within a low cost
single chip FPGA IC; additionally, this FLC design em-
ploys concurrent processing whenever possible to maximize
throughout.

523

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

PLANT

INPUT
Ref. Value

error

Fuzzy
outputz -1

z -1

X
error

change

feedback

integrator

X

OUTPUT
achieved value

FUZZIFIER INFERENCE
RULES

IF X . . .
THEN Y

DEFUZZIFIER

Memory bank
FIE parameter allocation

Command
Unit

FIE

FPGA

X

Fig. 1. Fuzzy Logic Controller general structure; FIE, complementary controller hardware and programmable memory bank.

A large design space is possible incorporating memory
allocations for FIE parameters to be programmed via a
command unit interface by a microprocessor or other similar
device, this reduces design-to-implementation complexity
simplifying it to standard memory write operation.

The designed architecture was coded using VHDL lan-
guage for hardware description, a highly modular codifica-
tion scheme was employ in order to enable incorporation of
wider FLC model variations on future works; use of VHDL
enables scalability and portability, and facilitates increases
on resolution.

D. Outline

The paper is outlined as follows: Section II starts with
description of targeted design space and all of Mamdani FIEs
embedded variations targeted (input MFs, rule construction,
output MF defuzz), and list required fuzzy inference and
numerical computations to achieve them. Listed requirements
are further discuss on Section III, to present necessary
hardware to achieve its on-line programmability; flow di-
agrams are presented. On section IV some of the most
relevant VHDL code is presented and discussed. Section
V reports required hardware for each FLC component, in
order to present scalability and portability potentials. Section
VI reports execution times achieved, and truncation related
errors due to the 8-bit working resolution used on the tried
implementation, as it establishes fidelity to theoretic model.
Section VII presents discussions on expected application for
the proposed architecture.

II. HARDWARE BASED FLC REQUIREMENTS

Most FLC research and applications are PC based, this
is because of ease of design-to-implementation, high fidelity
to theoretic model, resources availability (memory, space),
high end processing, flexibility, and most of all because its
inherent general purpose architecture allows a wide range
of FIE models to be executed; but this is possible at high
cost, large footprint, and its centralized processing requires a
processor fast enough to achieve a relative slower throughput.

On hardware based implementations, computation com-
plexity is a mayor limitation; of available FIE models the
most used is Sugenos because of its ease of computation,
this is the reason why it was selected on [1], [2], [7], [11]
and others. Sugenos FIE lacks direct linguistic knowledge
representation as Mamdanis does allow, but Mamdanis is
used less because it requires more elaborated computation
and thus more hardware and is slower on sequential process-
ing designs. For the FLC hardware presented here Mamdanis
model was selected.

Figure 1 shows a Mamdani FIE embedded within a FLC
in a FPGA; to perform control decision function, the FIE
is complemented with additional hardware as suggested by
[9] and [12], this includes: error calculation, error change
calculation, and output integration functions.

All listed complementary hardware perform their process-
ing function independently of the particular FIE embedded,
and because of that are of static and fixed design. FIE
parameters changes do not require modifications of these
modular components, their design is as described on [11]
and [12].

FLC versatility and on-line programmable capabilities lays
within the embedded FIE. Mandanis FIE calls for three stage
processing: Fuzzification, Rule inference and Defuzzifica-
tion.

Mandanis models has many variations, for this paper
purpose those listed on Table I were selected for the de-
veloped architecture; modular VHDL codification allows to
exchange at design time some of those modules to use other
Mandanis model variations like other Membership Function
(MF) types, rule evaluation, or defuzzifications method.

Design space achieved is limited by variations listed on
Table I. FIE data Input are error and change of error, each
of these are process during Fuzzification by Membership
Functions (MF), their type, quantity and position within do-
main are user defined. MFs types possible in this architecture
are Trapezoidal and/or Triangular MF, up to 8 of them, and
can be position along input doming freely; Figure 2 shows
a 7 MF input partition of trapezoidal and triangular MF

524

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE I
MAMDANIS FIE TARGETED DESIGN SPACE; USER DEFINED

COMPONENTS AND PARAMETERS.

Processing Type/Method Quantity
Input n/a 2

Fuzzification: -Trapezoidal 2 . . . 8
MF -Triangular

Rule evaluation -max-min 2 . . . 20
Defuzzification -Weighted average n/a
Output variable -Trapezoidal 2 . . . 5

MFs -Triangular

combination.
Rule evaluation is done by max-min method, and this

system is capable of handling up 20 rules; antecedent and
consequent rule parts are user defined. As in (1) antecedent
connectives (w and y) activate on some degree one output
MF (z).

IF x = X0 AND y = Y0 THEN z = Z0. (1)

On any given FIE, a maximum rule count can be of k-rules
as describe by (2)

k = nx · xy · . . . · nv. (2)

where n stands for quantity of MFs on each input variable x,
y and v. Given that this FIE handles two input variables with
up to eight MFs each, 64 rules are possible. As proposed
in [1] and [3] not all rules contribute much and are not
necessary; presented system is capable of handling up to 20
user defined rules. The antecedent part of the rules require
20 comparison operations to carry out the min operation
(one per rule), the consequent part of the rules require 5
comparison operations to carry out the min operation (one
per each output MF).

Deffuzification is done with weighted average method as
in (3), and the output variable can be partitioned with up to
five MFs, of trapezoidal or triangular type.

z0 =
∑n

l=1 Zl × µ(zl)∑n
l=1 µ(zl)

(3)

User defined capabilities requires that FIE parameters
are not hardwired during design description, instead, to
achieved the non-fixed structures FIE parameters are stored
on memory allocations that are programmed on-line.

III. NON-FIXED STRUCTURES FLC DESIGN

Given that a high speed, dedicated FLC was desired on
a dedicated hardware, and that FIE parameters were to be
edited on-line, two operation modes were implemented: Pro-
gram mode, and Fuzzy Inference mode. During each mode
of operation, state machines controls execution of relevant
dedicated modules, a system level operation description is
presented on Figure 3.

X0 X1 X2 X3

(a) (b)

Fig. 2. State machine operation; program mode state and fuzzy inference
mode state.

Program
mode

Fuzzy Inference
mode

Initialization

Fig. 3. Fuzzy Inference Mode State Machine; nine operation states and
one wait state (for program mode operation).

As shown in Fig. 3, FLC initialization starts in Program
mode, during which FIE parameters are written to memory
allocations within the FPGA hardware; once the FIE to be
emulated is programmed, the system is switch to Fuzzy
Inference mode, were input data is process thru the FLC
and outputted as control decision

Operation modes shown in Figure 3 represents each a
state machine that activates relevant hardware modules. Next,
Inference Mode state machine is presented, including listing
of hardware modules it controls; then, non-fixed modules
are discuss including flow diagrams from which VHDL
code is obtained. Finally, program mode related hardware
is presented.

A. Fuzzy Inference Mode State Machine

During Fuzzy Inference mode of operation, dedicated
hardware that carries out all process related to the FLC
operation, including the 3-stage Mandani FIE algorithm are
activated, and data is passed sequentially until output is
achieved, new data is then inputted to repeat the process.

Figure 4 shows the state machine for the Fuzzy Inference
mode operation; it is a 10 state machine that activates
hardware modules described on Figure 1 as follows:

St0 Wait: A wait state to pause Fuzzy Inference op-
erations while on Program Mode, during which new FIE
parameters are written to memory by the command unit
interface.

St1 DataRead: During this state, external input data is
uploaded, consist of conventional asynchronous write cycle.

St2 Error: This state activates subtraction between Refer-
ence Value and Achieved Value, thus, it calculate error input
variable.

St3 ErrChange: During this state a subtraction between
present and previous error is made to calculate error change

525

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

St0_wait

St3_ErrChange St4_MFs St5_Antecedent St6_Consequent St7_Defuzz_A St8_Defuzz_B St9_IntegrationSt1_DataRead St2_Error

�
CLK

�
CLK

�
CLK

�
CLK

�
CLK

�
CLK

�
CLK

�
CLK

�
CLK, MODE = 1�
CLK, MODE = 0

�
CLK,

MODE = 0

�
CLK, MODE = 1

Fig. 4. Fuzzy Inference Mode State Machine; nine operation states and one wait state (for program mode operation).

Initialization

Fuzzification
Antecedent
connectives

Agreggation
operators

Defuzzification
(a)

Defuzzification
(b)

St0

St1 St2 St3 St4 St5

min

min

min

min

max

max

max

max

denominator

numerator Final output

Fig. 5. Non-fixed structures related states; dedicated hardware activated
during each state.

input variable.
St4 MFs: This state activates the two fuzzification mod-

ules, and their eight MF each. Memory stored data is used
as fuzzification parameters.

St5 Antecedent: This state executes the 20 min operator
modules as the antecedent connective operators. Memory
stored data is used with this modules to construct rules
antecedents.

St6 Consequent: During this state, five max operator
modules are activated as the consequent aggregation op-
erators. Memory stored data is used with this module to
construct rule consequents.

St7 DefuzzA: This state activates two defuzzification
modules as detail on next sections. Memory stored data is
used to incorporate user defined output MFs center values.

St8 DefuzzB: This state activates third defuzzification
module that calculate final inference result.

St9 Integration: During this state inference result is in-
tegrated to calculate final control decision output.

Fixed structure hardware modules are those with pro-
cess that are independent of the FIE implemented, this
structures are activated during St1 DataRead, St2 Error,
St3 ErrChange, St8 DefuzzB, and St9 Integration. These
structures are conventional digital arrangements as describe
on [11] and [12], and their details not included on this paper.

Figure 5 shows states four thru seven and the respective
non-fixed structures that each one activates.

To meet high speed throughput and as Figure 5 shows with
vertical dashed arrows, each state activates simultaneously as
many dedicated modules as needed by the required operation
and FIE parameters; these quantities correspond to those
listed on Table I, that is, 2 fuzzification modules (one per

input variable), 20 min operator modules (one per each rule),
5 max operator modules (one per each output MF), and three
modules for defuzzification process purposes.

Details for each type of modules are presented next, con-
current operation and topology arrangements are presented.

B. Fuzzification Modules

Given that the FLC must accommodate two input vari-
ables (error and error change), two independent concurrently
operated dedicated modules for fuzzication operation where
incorporated.

Each of these modules, as detail in [10], evaluates MFs like
those shown in Figure 2(a); before degrees of membership to
each linguistic variable are assign it must evaluate on which
domain interval input data is in, this is done using (4) with
Figure 2(b) related data.

µA(x) =





0 x < x0

f ′(x) x0 < x < x1

1 x1 < x < x2

f ′′(x) x2 < x < x3

0 x3 < x

(4)

where

x′ = x− x′0 (5)
x′′ = x3 − x′ (6)

f ′(x′) = m1x
′′ (7)

f
′′
(x
′′
) = m2x

′′
. (8)

Then one or two linguistic variables (those on the slope
regions) may be assign degrees of membership different than
’0’, a numerical calculation must be executed to determine
this values, this is detail on previous work [3] and [10], and
done with equations (5)-(8).

For FLC user defined and on-line editing capabilities,
all MF parameters values are store on memory allocations
within the FPGA. Figure 6 shows data flow diagram; on it,
input data is compared with parameters that define interval
on all input domain.

As explain in [3], [5] and [10] a subtraction may be needed
(5) (6), before a multiplication operation (7) (8) with slope
data; which numerical values are used for these operations is
controlled by multiplexers once the correct interval is know;
final assignments are made with these arithmetic results
and/or 0 value degree of membership. Multiplexers (Mux)

526

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Interval evaluation
(Comparison)

Input
Data

Memory Allocation
MFs defining parameters
Intervals: X0, X1,…X14

Mux
Subtraction

-

Multiplication
x

Memory Allocation
MFs defining parameters

Slopes: m0, m2,…m7
Mux

Mux
Assigment

x

Outputs
Membership degrees

(a) (b)

Fig. 6. Membership Function Modules, data flow diagram.

(a)
Fuzzy data input

Min
Operator

<

Max
Operator

>

Antecedent
Connective

Modules

Fuzzy data input

Min
Operator

<

Aggregation
Operator
Modules

Output MF activation degree

M
ultiplexer

M
em

or
y

se
le

ct
or

s
data input

data output

(b)

Fig. 7. Rule Base modules; (a) max-min rule inference method modules,
(b) memory controlled multiplexer for data router function.

allow sharing one subtraction and one multiplication circuit
between all MFs, as one (or maybe none) of these operation
would be needed, reducing hardware requirements.

C. Rule Base Modules

Once data has been fuzzified, fuzzy rule inference is
executed for each rule as (1) during states St5 Antecedent
and St6 Consequent of the Fuzzy Inference Mode state
machine. As previously stated, fuzzy antecedent connectives
and aggregation operators were selected to be evaluated by
max-min method, sequence shown on Figure 7(a).

Because rule base is to be programmed on-line, no
hardwire connection was incorporated at hardware design
time. To specify how antecedent connectives are to be
constructed, multiplexers were incorporated to route selected
MF output to antecedent connectives module inputs and, for
rules consequent construction additional multiplexers were
added to do the same data selection for aggregation operator
functions. Figure 7(b) shows a multiplexer data selector’s
inputs controlled by data stored on a memory.

Figure 8 shows data flow diagram of rule base evaluation
algorithm. During state St5 Antecedent fuzzy data produce
by the MFs modules is available to all 40 antecedent con-
nectives layer multiplexers, each is controlled by memory
stored data. Multiplexers are paired for every one of the
20 available rules. When data reach antecedent connective
modules, a comparison is made and min operator function
is executed on every one of the 20 rules antecedents.

In state St6 Consequent once the antecedents are evalu-
ated, aggregation operators must be executed on those cases
were one output MF is activated by more than one rule, this
is done with max operator. Aggregation operator construction

Memory Allocation
Antecedent Connective

Selection data
Mux

Min Operator
<

Max Operator
>

Antecedent
Connective

Modules

Fuzzy data
‘y’ input variable

Min Operator
<

Aggregation
Operator
Modules

Output MF’s activation degree

Min Operator
<

Data BUS

Data BUS

Mux Mux Mux Mux Mux

Fuzzy data
‘x’ input variable

Memory Allocation
Aggregation operators

Selection data
Mux Mux Mux Mux Mux Mux

Max Operator
>

Fig. 8. Rule base modules data flow diagram.

Z1 Z2 Z3

µ2(z)

µ3(z)

µ1(z)

Fig. 9. Typical defuzzification data, for a 3 MF output variable example.

employs same previous strategy, so 20 multiplexers on a
consequent layer were created, each one selects one of the
antecedent connective data and routers it to the max operator
hardware modules.

Every four multiplexers sends data to max operator mod-
ules inputs, there are five of this modules (one per output
MF), so each output MF can be activated by as much as four
rules. A comparison and data selection is carried out, output
is send to next state hardware modules for defuzzification
operation. As figure 8 shows, independent concurrent oper-
ation of each of the layered hardware modules is possible
and was specified by VHDL code.

D. Defuzzification Modules

As stated previously, weighted average method was se-
lected as defuzzification process. The FLC was design to
handle up to 5 output MFs, so (3) is expanded for this five
valued possibility as (9).

z0 =
Z ′1 · µ(z1) + . . . + Z ′5 · µ(z5)

µ(z1) + . . . + µ(z5)
(9)

where Z ′n stands for center of each of the n-th output MFs
(where Zn ∈ z), and µ(zn) stands for the activation degree
of each one. Figure 9 shows a typical area to evaluate for a
three output MF case.

Due to numerical computation complexity and to mini-
mize hardware requirements, (9) was executed on two steps
(St7 DeffuzA and St8 DefuzzB); on the first one, two dedi-
cated modules were implemented, one to calculate numerator
and another for the denominator, these execute concurrently.

527

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Memory Allocation
Centers of Output MFs

Z1 Z2 . . . Z5

numerator

x

Final Output value

Division
operation

µ1(z) µ1(z) µ1(z) µ1(z) µ1(z)

x x

+

+

denominator

Fig. 10. Deffucification data flow diagram; user defined centers of output-
MFs.

On state St8 DfuzzB, division operation was executed, but
because of its relative high degree of complexity, it was
implemented by a look up table strategy, because this process
is independent of the FIE implement it does not limit system
flexibility. Taking advantage of the fact that only integer
values in the range 0 to 255 are expected (for the 8-bit
target resolution design), the position of most significant
bits on both numerator and denominator, and organization
of expected results on this reduced search space memory
requirements for this look up table are significantly reduced.

Figure 10 shows data flow for defuzzification hardware
modules; on it, multiplication operation hardware modules
use memory stored data as user defined parameters of centers
of each output MF.

E. Program Mode Related Hardware

Command unit interface hardware is a fixed structure
module, it allows communication to an external command
unit as shown on Figure 1; manages data storage to memory
allocated within FPG with a typical memory write cycles.

Once data is written, memory contains data use as FIE
parameters on non-fixed structures FLC components. Figure
11 shows the structures for the external command unit
interface hardware, this is made up of a typical address
decoder circuit and a address memory array; once all values
are stored FLC has been configured for a particular FIE
model, and data process can proceed once operation mode
is change to fuzzy inference mode.

Next, key VHDL code is presented, and portability and
scalability opportunities are pointed out.

IV. VHDL SYSTEM CODE

For portability and scalability purposes only primitive
VHDL description standard codes were employed; when ever
possible concurrent process was implemented.

Data mention on previous sections falls within 3 VHDL
categories: Port, Signal and Variables.

Port type data are those that correspond to actual FPGA
input or output electrical signals, and are how the device
communicates with external components; as such, VHDL
Port declaration is as follows:

Port (CLK : in std logic; --clock signal
Mode : in std logic; --mode control
Write : in std logi; --write enable
RDY : out std logic; --ready signal
Ref Value :in std logic vector(7 downto 0);
Real Value:in std logic vector(7 downto 0);
Output : out std logic vector(7downto 0);
Data : std logic vector (7 downto 0));

Mode and RDY one-bit signals are for handshake pur-
poses, DATA is an input data port thru with data is written
to embedded FPGA memory for FIE parameter storage.

Ref Value, Real Value are 8-bit data inputs for acquiring
target value and actual value of physical variable; Output is
an 8-bit output data port thru which fuzzy control decision
is send to targeted plant or poser amplifier.

Signal type data are electrical signals that must physically
exits within FPGA hardware; this signals are created by em-
bedded modules and use local buses as Figure 1 and 4 shows
to send data from one module to the next. Each hardware
module on Figures 5, 6, 7, 8 and 10 are interconnected
via these type of signals; activation signals send by state
machines correspond too to these type. Following VHDL
shows partial list of signal type data.

TYPE type sreg IS (St0 Wait, St1 DataRead. . .
SIGNAL sreg, next sreg : type sreg;
SIGNAL error : std logic vector(7 downto 0);
SIGNAL changeErr :std logic vector(7 dowto 0);
· · ·
SIGNAL ErrMF0, ErrMF1,ErrMF3,...,ErrMF7 :

std logic vector(7 dowto 0);
SIGNAL ChaErrMF0, ChaErrMF1,...,ChErrMF7 :

std logic vector(7 dowto 0);
· · ·

TYPE declares data type for state machine registers (sreg)
with its possible values (one per each estate); then current
estate and next stare are declared.
SIGNALS like error carries error calculated data from

producing modules to where it is required; same is done for
error change signal on next line of code. Each MF values
produced on Fig. 6 are send to Multiplexers on Fig. 8 thru
signals as signal are created with ErrMF0 for Error MF
number 0, and the rest. Same is done for data from Error
Change fuzzyfication module.

Embedded memory with stored FIE parameters values,
connects its data to corresponding hardware where is needed
thru signal type bus declaration as showed.

Variable type data handling is declared and used within
a hardware module, and used for hardware behavior de-
scription; because is not needed outside its module it may
disappeared during synthesis process if it can done so by
minimization and optimization algorithms employed by the
FPGA development software.

VHDL reserved word std logic describes one-bit long
port, signal or variable; reserved word std logic vector
(7 downto 0) describes an 8-bit long port, signal or variable.

VHDL code modification of system resolution make
scalability an easy task, limited only by the amount of

528

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE II
REQUIRED RESOURCES FOR FIXED STRUCTURE COMPONENTS.

Module logic Units Required
State Machine (10-state) 12

Error Evaluation 43
Error Change evaluation 46

Output integration 60

TABLE III
REQUIRED RESOURCES FOR MF MODULE SYNTHESIS PER TRIED

RESOLUTION.

Resolution Logic Units %
required (out of 3,840)

8-bit 304 7.9
10-bit 374 9.7
12-bit 443 11.5

electrical resources to be required. Use of only primitive
VHDL instructions and avoiding custom libraries assures
code portability to other larger devices, or other technologies
or device manufactures.

V. FPGA SYSTEM HARDWARE SYNTHESIS

FLC VHDL code was synthesized for a Xilinx Inc. FPGA
device type Spartan-3 XC3S200, which has 3,840 logic units,
and is a low cost and offers low to midrange electrical
resources.

Table III shows required logic resources used for relevant
fixed structure modules, as those shown on Figure 1, a 8-bit
resolution FLC was implemented with these modules.

For non-fixed structures like MFs, Multiplexers and others,
resources required are related to the target resolution; denser
logic was required by MFs module; tests for 8, 10 and 12
bit resolution were as presented on Table III.

As table III shows, system syntheses efficiently relative to
the amount of available FPGA resources, making scalability
reachable.

VI. EXPERIMENTAL PERFORMANCE VERIFICATION

Reliable operation of any given electrical system is related
to the fidelity with which emulates a target theoretic model
whose throughput is to reproduce. For any digital base
system, word length is of mayor concern as it determines
systems fidelity to the theoretic model and as such, limits
expected behavior.

Truncation errors are subjected to the 8-bits resolution
targeted design; the 8-bit resolution sets the expected min-
imum error threshold; additional truncations errors has to
be considered on all hardware modules that are required to
execute operations such as multiplication and division, this
occurs on MF modules, and two defuzzification modules.

On MF modules and as presented on [10], the additional
error is ±1/2 value of the least significant bit (LSB), and it
is due to a roundup executed during multiplication operation,
this error is uniformly distributed on input domain.

On defuzzification numerator module, additional multipli-
cations operations are executed and same roundup errors

are produced, but these cancel up as up 5 of these errors
are present (±1/2 LSB), a maximum error of ±1 LSB is
observed.

Finally, defucification division module, adds one ±1/2
LSB error. Overall error is determined per FIE parameters
programmed, maximum error observed on simulations is ±1
LSB.

Throughput achieved with this FLC architecture is as fol-
lows. During fuzzy inference operation mode, each inference
takes nine clock cycles. During program mode operation, all
or some of the values stored on the memory array may be
change (MFs, and/or rule base, and/or defuzz parameters),
an overall FIE change takes 63 memory write cycles.

Execution times measured and those from simulation
software gives similar results and differences may be produce
by measurement instrument; typical module input-to-output
delays were found to be on average 7.9 ns, and none were
over 9 ns, this allows FPGA operation at 50 MHz clock
speed with out errors.

VII. CONCLUSIONS

A hardware based, single chip, FPGA based, open archi-
tecture dedicated Fuzzy Logic Controller was presented; its
writable memory FIE parameter control allows it to emulate
a variety of Mamdani Inference Engines, including non-
fixed number of membership functions on each of its 2
input variables (8 MF maximum on each input), 20 units
of dedicated hardware for same number of fuzzy rules,
whose antecedent construction and rules connectives are
editable on-line, allowing a large design space within same
hardware architecture, given this system ability to achieve
high throughput processing speed, with know fidelity to
theoretic model to ±1 LSB.

VHDL codification of showed data flow diagrams permits
design portability to other larger FPGA devices, and VHDL
code modification can increase data resolution with only
minor changes as shown. Scalability test of VHDL showed
consisting implementation thru resolutions tested.

Fuzzy inference control decision at 9 clock cycles allows
to use this system as a dedicated on-line editable Fuzzy Logic
Controller at a low cost and with very small footprint.

Fast on-line programmable structures permit changes on
the FLC for future hardware implementation of adaptive
fuzzy controller, and its conventional interface subsystem
allows it to be considered as a peripheral dedicated hardware
on microcontroller or microprocessor based digital systems.

REFERENCES

[1] F. Boshchetti, A. Gabrielli, E. Gandolfi and M. Masseti, “Digital
Membership Function Generators and Non-contribute Rule Eliminator
for High Speed Fuzzy Architectures”, Proceedings of the 1995 World
Congress on Neural Networks.

[2] H. Eichfeld, T. Kunenmund and M. Menke, “A 12-b General Purpose
Fuzzy Logic Controller Chip”, IEEE Transactions on Fuzzy Systems,
vol. 4, no. 4, Nov. 1996.

[3] J. L. Gonzalez Vazquez, “Analisis de Controladores Difusos Imple-
mentados en Procesadors Digitales FPGAs”, M. Sc. thesis, Instituto
Tecnologico de Tijuana, 2006, Tijuana, Mexico.

529

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

[4] J. L. Gonzalez-Vazquez, O. Castillo, L. T. Aguilar, “A Generic
Approach to Fuzzy Logic Controller Sinthesis on FPGA”, World
Congress on Computacional Intelligence, Vancouver Canada, 2006.

[5] J. L. Gonzalez Vazquez, O. Castilloa and L. T. Aguilar, “Sintesis
de Funciones de Membresia Trapezoidales para Implementacion de
Controladores de Lggica Difusa”, HAFSA Internacional Conference
on Fuzzy Systems, Neural Networks and Genetic Algorithms, Tijuana,
Mxico, 2005.

[6] V. H. Grisaldes, J.E. Bonilla and M. A. Melgarejo, “Diseño e Imple-
mentación de un Controlador Difuso Basado en FPGA”, IWS 2001,
VII Workshop IBERCHIP, Motevideo, Uruguay.

[7] D. L. Hung, “Dedicated Digital Fuzzy Hardware”, Micro, IEEE, vol.
18, no. 4, pp. 31–39, Aug. 1995.

[8] E. Lago, C. J. Jimenez, D. R. Lpez, S. Sanchez Solano, A Barriga,
“XFVHDL: A Tool for Sntesis o Fuzzy Logic Controllers”, Desing
Automation and Test in Europe (DATE’98), Paris, pp. 102–107, Feb.
1998.

[9] Timothy J. Ross, Fuzzy Logic, With Engineering Applications, 2nd Ed.
England: John Wiley & Sons, 2004. ISBN 0-470-86075-8.

[10] S. Sanchez-Solano, A. Cabrera, C. J. Jimnez, P. Brox, I. Barutone,
A. Barriga, “Implementación sobre FPGAs de Sistemas Difusos Pro-
gramables”, IWS 2003, IX Workshop IBERCHIP, La Habana, Cuba.

[11] S.X. Yang, H. Li, Max, Q. H. Meng, P. X. Liu, “An Embedded
Fuzzy Controller for a Behavior-Base Mobile Robot with Guaranteed
Performance”, IEEE Transactions on Fuzzy Systems, vol. 12, no. 4,
Aug. 2004.

[12] Li-Xin Wang, A Course in Fuzzy Systems and Control, Prentice Hall,
U.S.A., 1996.

530

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

