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Abstract – Classification of object is considered to be the 

first step in many computationally intelligent systems. Objects 
are categorized according to their features or characteristics. 
Objects in the same category can be clustered into groups 
according to the dissimilarity in terms of their features. These 
groups reveal some knowledge about the objects by their 
partitions. Features can be numerical, ordinal or nominal. There 
has not been a good way to measure the dissimilarity among 
ordinal values, which is required for clustering. We present a 
novel algorithm for developing a mapping of ordinal values to 
numerical values for which a measure of dissimilarity exists. The 
algorithm is made part of the fuzzy c-means clustering algorithm. 
The modified algorithm finds better partitioning into clusters as 
well as an ordinal-numerical mapping that reveals the hidden 
structural knowledge of the ordinal feature. Simulations show the 
method to be quite effective. 
 

I. INTRODUCTION 
 

It is natural to consider identification of object types as 
one of the first steps of knowledge acquisition and learning 
about the surrounding environments. Objects can be classified 
into categories based on features that describe the objects. 
Objects in the same category have similar features and can be 
further partitioned into clusters (or called groups) according to 
their dissimilarity or similarity in terms of features. The 
clusters reveal internal structure of a set of the objects through 
partitioning. Clusters are information granules, and hence they 
can be used in computationally intelligent systems as units of 
learning and reasoning. Therefore the computation of 
dissimilarity or similarity between objects plays a very 
important role in computational intelligence. 

Clustering [1, 2] on the basis of three types of features is 
generally used – numerical, ordinal and nominal. Numerical 
feature values lie in the real number space. Values of an 
ordinal feature are labels such as Infant, Child and Adult, with 
a total ordering among values of a particular feature. Nominal 
feature values are labels such as Red, Blue and Yellow, with 
only the relationship of equality among different values.  

Numerical feature values are easily handled in clustering 
because they can be summed up and be compared. Also the 
center of a set of values can be computed. The dissimilarity or 
similarity between two numerical values can be easily 
computed by taking the difference. Nominal feature values do 
not have any relationship except for equality among them, and 
hence the dissimilarity or similarity between two values 
cannot be readily defined. The dissimilarity between two 

different values, e.g., Red and Blue, can be defined as one, and 
the dissimilarity between the same values can be defined as 
zero. Ordinal feature values are similar to nominal values in 
that arithmetic operators do not make sense. Also finding 
centers of sets of values is not obvious. The difference 
between ordinal values and nominal values is that ordinal 
values of an ordinal feature have a total ordering. For example, 
ordinal values Infant, Child and Adult of the ordinal feature of 
AgeLevel have the total ordering Infant < Child < Adult. This 
ordering gives us not only more information about the ordinal 
values but also a tool to compare them. We can say that the 
dissimilarity between Infant and Child is less than the 
dissimilarity between Infant and Adult. However, we cannot 
say how much one ordinal value is bigger than another one. 
Hence we do not have a good way for comparing which one is 
smaller or larger among the dissimilarities, e.g., the 
dissimilarity between Infant and Child, and the dissimilarity 
between Child and Adult. 

The objective of this paper is to present a reasonable 
algorithm to map ordinal values of an ordinal feature to 
numerical values. We will call the one-to-one mapping 
“ordinal-numerical mapping” in the remainder of this paper. 
Once the ordinal values are mapped to numerical values, the 
dissimilarity between two ordinal values can be formulated 
like numerical values. The dissimilarity between two ordinal 
values is replaced by the dissimilarity between their images. 
Furthermore we can also readily associate fuzzy sets for the 
ordinal values, with their mapped numerical values located on 
the universe of discourse as centers of the fuzzy sets. One of 
the authors of this paper published an article about fuzzy set 
covering of ordinal feature values [3]. 

There can be various ordinal-numerical mappings for the 
same ordinal feature for different categories of objects. The 
mapping is dependent on the categories of objects investigated. 
For example, the mapping of Infant, Child and Adult to 
numerical values can be different for different species Dog 
and Cat. Our algorithm extracts the internal structure of 
ordinal values, which is also related to clusters of given 
objects. That internal structure is turned into an ordinal-
numerical mapping. The algorithm is part of the fuzzy c-
means clustering algorithm [4, 5] to improve the quality of 
clustering. The fuzzy c-means clustering algorithm is known 
to find good quality clusters quickly and to be noise tolerant. 

In the next section, we briefly review the framework of 
the fuzzy c-means clustering algorithm. In section III, the 
problem of the mapping of ordinal values to numerical is 
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explained. The algorithm of the ordinal-numerical mapping is 
explained in section IV. Simulation results follow in section V. 
We conclude this paper in section VI. 
 

II. Fuzzy C-MEANS Clustering Algorithm 
 
The fuzzy c-means clustering algorithm for patterns 

consisting of numerical feature values is defined by 
minimization of the objective function (2.1) 
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where { }1,..., NX X X=  is a data set of N  patterns; c  is the 

number of clusters; ,i ju  is the degree of membership of 

pattern jX  in the thi cluster; iV  is the center (or called 

prototype) of the thi cluster; and m  is the indicator of 
fuzziness of clusters. 

Only a pseudo minimum of the above objective function 
can be found by keeping either the membership at a particular 
value and finding values for the centers or fixing the centers 
and solving for the membership. If this is done alternatively, 
the optimal values for both may be approximated. 
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The above two formulas are computed repeatedly in a loop 
until some termination criteria are met. Here is the fuzzy c-
means clustering algorithm. 
 
Algorithm 1. (Fuzzy c-Means Clustering) 

Initialization: 
Initialize iV  for 1,...,i c= , with random numbers; 

Repeat: 
(Step 1) Compute ,i ju  1,..., ; 1,...,i c j N" = " = ; using (2.3) 

(Step 2) Compute iV  1,...,i c" = ;  using (2.4) 

while { }, , ,max _ _i j i j i jold u new ue £ - ; 

 
III. PROBLEM STATEMENT 

 
Let the set of N patterns representing the objects be 

{ }1,..., NX X X= . Without loss of generality we assume that 

there is only one ordinal feature with the rest being numerical. 

Let { }1,..., nL l l=  be the domain of the ordinal feature, 

satisfying 1 2 ... nl l l< < < , and let ix  be the ordinal feature 

value for a pattern iX . We can assume that L  is equal to 

{ | 1,..., }ix i N=  without loss of generality. 

Consider a mapping, ( )g × , from ordinal values into the 

unit interval [0,1] , as defined in (3.1). 

 
: [0,1]

i i

g L

l a

fi֏  (3.1) 

satisfying 
 11,..., 1, 0 1i ii n a a +" = - < < <  (3.2) 

Figure 1 shows the relations among the ordinal feature 
values and their mapped numerical values. 0a  and 1na +  are 0 

and 1 respectively. For example, the ordinal feature ix  with 

value 1l  of a pattern iX  is mapped to 1a . 
 

 
 

Fig. 1. Relation between ordinal feature values and their mapped numerical 
values 

 
From the assumption that L  is equal to { | 1,..., }ix i N= , 

we can have the following property, 
 1,..., ,  and ( )p p k k kk n x x l g l a" = $ ’ = =  (3.3) 
The above property (3.3) is used in the development of the 
modified fuzzy algorithm in the next section. 

Dissimilarity can now be expressed as in (3.4), using the 
mapping function ( )g ×  defined in (3.1). 

 ( , ) ( , ) ( ) ( )s t i j i j j idis x x dis l l g l g l a a= - = -≜  (3.4) 

The values of sx  and tx  are il  and jl  respectively with i j< . 

For example, 2 1 2 2 1( , ) ( , )idis x x dis l l a a= = -  in Figure 1. Thus 
the ordinal values have been replaced by as numerical values 
as defined by the ordinal-numerical mapping ( )g × . What is 

novel is that the numerical equivalents are not pre-assigned 
but rather are determined as part of the clustering process as 
will be seen later. 
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IV. MODIFIED FUZZY CLUSTERING ALGORITHM INCLUDING 

ORDINAL-NUMERICAL MAPPING 
 
Clustering is done with an arbitrary initial ordinal-

numerical mapping for each ordinal feature. As a part of 
clustering process the ordinal-numerical mappings are updated 
followed by the determination of new clusters. This is 
repeated until there is no significant improvement. As the 
results of the modified fuzzy clustering algorithm, improved 
clusters in terms of known clustering performance measures 
explained in [6-8] are found using updated ordinal-numerical 
mappings. This method does not require the assumption of 
equal distances between ordinal values. 

Since the fuzzy c-means clustering algorithm [4, 5] finds 
clusters effectively even in the presence of noises, the existing 
algorithm is modified to include determination of the ordinal-
numerical mappings. Details of the modified clustering 
algorithm now follow. 

We assume that all the numerical feature values are 
normalized in the unit interval [0,1] . Even though the 

algorithm is described in terms of one ordinal feature, it is 
readily generalized to patterns with more than one ordinal 
feature. 
 
Algorithm 2. (Adaptive Fuzzy Clustering) 

Let 
c  be the given number of clusters; 

1, ..., Nx x  be the ordinal feature values for N patterns; 

1{ ,..., }nL l l=  be the domain of the ordinal feature covering  

all 1,..., Nx x , with the total ordering 1 ... nl l< < ; 

0e >  be the termination criterion; 
Initialization: 

Initialize the ordinal-numerical mapping 1: { ,..., }ng L A a afi =  

1,..., ,
1i

i
i n a

n
" = =

+
, where ia  corresponds to il ; 

Initialize the cluster centers , 1,..., ,iV i c" = with random numbers 

in [0,1] ;  

Repeat: 
(Step 1) Compute , , 1,..., , 1,...,i ju i c j N" = " =   

using (2.3); 
(Step 2) Compute , 1,...,iV i c" = , using (2.4);  

(Step 3) Update the ordinal-numerical mapping ( )g × ,  

i.e., , 1,...,ia i n" = ; 

while { }, , ,max _ _i j i j i jold u new ue £ -  ; 

 
In the computation of ,i ju  and iV  in Step 1 and Step 2 of 

the above algorithm, Formulas (2.3) and (2.4) of the fuzzy c-
means clustering algorithm are used, with the dissimilarity 
(3.4) defined on the ordinal-numerical mapping ( )g × . In Step 

3, the ordinal-numerical mapping is adapted so that the quality 
of clusters found in Steps 1 and 2 improves. 

An objective function (3.5) restricted to the ordinal 
feature, not all the features, is used in Step 3 in Algorithm 2, 
in order to find a proper ordinal-numerical mapping ( )g × . In 

the objective function, the ordinal feature values 1,..., Nx x  of 

N  patterns, the memberships ,i ju  and the numerical values 

iv  of the cluster centers iV  are assumed. (Note that the 
objective function (3.5) is independent of the objective 
function (2.1) used in Steps 1 and 2. iV  is a vector containing 

the numerical value iv , and iv  represents all the ordinal 

feature values in the thi  cluster. iv  is the weighted center of 

mapped numerical values in the ordinal feature.)  

 ( )2

,
1 1

( , , ; ) ( )
c N

m
i j j i

i j

Q x u v a u g x v
= =

= -∑∑  (3.5) 

where 

 

number of clusters

number of labels in the ordinal feature

number of patterns

fuzziness of clusters

( ) ordinal-numerical mapping

weighted center of the mapped numerical values 

of the ordinal feature
i

c

n

N

m

g

v

×

th

th

th
,

 values in the  cluster

ordinal feature value of the  pattern 

degree of membership of  in the  cluster

j j

i j j

i

x j X

u X i

 (3.6) 

subject to 
 10 ... 1na a< < < <  (3.7) 

Function (3.5) can be rewritten as follows. 
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Note that ( ) , 1,...,p p kx g x a k n’ = " = , always exists due to 

the assumption (3.3). (For the convenience of explanation, we 
will keep using the same indices i  for clusters, j  for patterns, 

l  for labels in the ordinal feature and k  for D ’s in the 
remainders of the paper as long as there is no confusion.) 

Our concern now is to find , 1,..., ,la l n" =  which 
minimize the objective function (3.8) with the constraints (3.7), 
using the method of Lagrange multipliers. However, it is not 
simple to use the method of Lagrange multipliers, with the 
inequality constraints 10 ... 1na a< < < <  in (3.7). We convert 
the objective function (3.8) into another form in which the 
inequality constraints 10 ... 1na a< < < <  in (3.7) become a 
unity constrain, so that the method of Lagrange multipliers can 
be easily used. For that purpose, we first introduce 1 1,..., n+D D  
as shown in Figure 1. They are defined as (3.10). 

 1 1,...,

1 1
k k

k
n

a a k n

a k n
-- " =

D =  - = +  (3.10) 
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Then the objective function (3.8) is converted as follows, with 
the new unity constraint in (3.12). 
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Once we find the minimal solutions 1 1,..., n+D D  with the above 
constraints (3.12), satisfying the objective function (3.11), we 
can easily compute , 1,...,la l n" = , which minimize the 
objective function (3.8).  

In the computation of the approximate solutions in Step 3 
of Algorithm 2, we do not consider the positivity constraints in 
(3.12) in order to use the Lagrange multipliers method. Only 
the unity constraint is considered. Once the solutions are 
found, they are examined whether the positivity constraints are 
hold. If the positivity constraints are not hold, the new 
solutions are simply discarded. Experiments showed that the 
chance to get the solutions of non-positive values is low.  

In order to find the minimal solutions 1 1,..., n+D D , we add 
the unity constraint (3.12) with the Lagrange multiplier giving 
us (3.13). 
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The partial derivatives of R  with respect to , 1,...,t t nD " = , 
are given by (3.14).  
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We have the linear equations with respect to tD  from 0
t

R¶ =
¶D

, 

and the linear equations can be arranged as follows. 
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Now we have 1n +  linear equations – n  equations in 
(3.15) and the unity constraint in (3.12). We do not solve 
directly these 1n +  linear equations to get approximate 
solutions for 2n +  variables – , 1,..., 1,t t nD " = +  and l . We 
further simplify the above equations in (3.15) as follows. 
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where ( ) , 1,..., 1,T
k k nD " = +  is the solution at the previous thT  

iteration, and ( 1)T
t

+D  is the solution at the current th( 1)T +  

iteration in Algorithm 2. ( ) , 1,..., 1,T
k k nD " = +  are used as 

given values when ( 1)T
t

+D  is computed. The unity constraint in 
(3.12) is also changed slightly as follows. 
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Then ( 1)T
t

+D  is driven from (3.16) as follows. 
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We can easily see 0tx >  from the definition of ,i lm  in (3.9) 

and the positivity of ,i ju  in (2.2). 

We can find l  first from the above formula (3.18) by 

applying the unity constraint (3.17) of ( 1)T
t

+D ’s, as follows. 
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This l  is applied back into the formula (3.18) to find the 

new ( 1)T
t

+D , as follows. 
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From the new ( 1) , 1,...,T
t t n+D " = , computed in Formula (3.21), 

( 1)
1

T
n

+
+D  is computed as follows. 
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The formulas (3.21) and (3.22) give us the approximate 
solutions minimizing (3.11) with only the unity constraint in 
(3.12). Because the positivity constraints in (3.12) are not used 
in the computation, some of the found solutions can be equal 
to zero or negative. In that case, the found solutions are not 
used and the previous solutions are preserved. As mentioned 
earlier, the chance that the found solutions are non-positive is 
small according to the experiments. 
 

V. EXPERIMENTAL RESULTS 
 

We used three synthetic data sets for the experiments. All 
the three synthetic data sets have 500 patterns of one ordinal 
feature and one numerical feature. The ordinal feature has five 
ordinal values. The three data sets have ten, five and two 
clusters respectively. The simulation ran ten times and 
averages were obtained, with the very small termination 
threshold 0.00001e = . 
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First we compared the effectiveness of our algorithm 
(denoted AFCM) to the fuzzy c-means clustering algorithm 
(denoted FCM,) which uses the initial ordinal-numerical 
mapping. The comparison was done with the three 
performance measures – partition coefficient (denoted BPC) in 
[6], partition entropy in [7] and another measure partition 
index (denoted XBPI) in [8]. Table 1 shows the effectiveness 
of our modified fuzzy clustering algorithm. The number 10, 5 
and 2 mean the number of clusters in the data sets. (Note that 
the more, BPC the better; the less BPE, the better; and the less 
XBPI, the better.) 

 
 FCM-

10 
AFCM-

10 
FCM-5 AFCM-5 FCM-2 AFCM-

2 
BPC 0.61 0.70 0.68 0.79 0.935 0.956 
BPE 0.91 0.70 0.64 0.43 0.137 0.103 
XBPI 0.15 0.09 0.12 0.07 0.041 0.012 

 

Table 1. Performance comparison results. The numbers 10, 5 and 2 mean the 
number of clusters in the data sets. 

 
Next, Figures 2 and 3 show the found ordinal-numerical 

mappings in two different data sets of clustering numbers 10 
and 5 respectively. The ordinal values in both cases started 
with equally distributed five numerical values, but the 
experimental results show that three ordinal values would be 
enough in the first data set of ten clusters, and two ordinal 
values would be enough in the second data set of five clusters. 
Figure 4 shows the five clusters found using FCM with the 
same second data set. 
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Fig. 2. Found ordinal-numerical mapping in a data set of ten clusters, using 

AFCM. The solid black squares are the centers of the clusters. 
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Fig. 3. Found ordinal-numerical mapping in a data set of five clusters, using 

AFCM. The solid black squares are the centers of the clusters. 
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Figure 4. Clusters in the data set of five clusters, using FCM. The same data 

set is used in Figure 3 with AFCM to find the ordinal-numerical mapping. The 
solid black squares are the centers of the clusters. 

 
VI. CONCLUSION 

 
We presented a novel modified fuzzy c-means clustering 

algorithm that includes the mapping of ordinal feature values 
to numerical values as part of the clustering process. The 
mapped numerical values obtained from the ordinal feature 
values are used in the measurement of dissimilarity among 
ordinal feature values. The simulations show the modified 
clustering algorithm finds improved partitioning into clusters. 
A secondary benefit is the production of the ordinal to 
numerical mapping in its own right and the purpose of 
clustering is then to find this mapping. It is as if the inverse of 
the unknown real to ordinal mapping has been found. Of 
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course it is also possible that the underlying real to ordinal 
mapping is a many to one mapping. The found ordinal-
numerical mapping provides additional information about the 
ordinal features in a given data set, which implies new updated 
ordinal features. 
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